aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Conversion/GPUCommon/GPUOpsLowering.cpp
blob: 0d3157d515de769d25a37e349f97f19fe7468fd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
//===- GPUOpsLowering.cpp - GPU FuncOp / ReturnOp lowering ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "GPUOpsLowering.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Builders.h"
#include "llvm/Support/FormatVariadic.h"

using namespace mlir;

LogicalResult
GPUFuncOpLowering::matchAndRewrite(gpu::GPUFuncOp gpuFuncOp, OpAdaptor adaptor,
                                   ConversionPatternRewriter &rewriter) const {
  Location loc = gpuFuncOp.getLoc();

  SmallVector<LLVM::GlobalOp, 3> workgroupBuffers;
  workgroupBuffers.reserve(gpuFuncOp.getNumWorkgroupAttributions());
  for (const auto &en : llvm::enumerate(gpuFuncOp.getWorkgroupAttributions())) {
    Value attribution = en.value();

    auto type = attribution.getType().dyn_cast<MemRefType>();
    assert(type && type.hasStaticShape() && "unexpected type in attribution");

    uint64_t numElements = type.getNumElements();

    auto elementType =
        typeConverter->convertType(type.getElementType()).template cast<Type>();
    auto arrayType = LLVM::LLVMArrayType::get(elementType, numElements);
    std::string name = std::string(
        llvm::formatv("__wg_{0}_{1}", gpuFuncOp.getName(), en.index()));
    auto globalOp = rewriter.create<LLVM::GlobalOp>(
        gpuFuncOp.getLoc(), arrayType, /*isConstant=*/false,
        LLVM::Linkage::Internal, name, /*value=*/Attribute(),
        /*alignment=*/0, gpu::GPUDialect::getWorkgroupAddressSpace());
    workgroupBuffers.push_back(globalOp);
  }

  // Rewrite the original GPU function to an LLVM function.
  auto funcType = typeConverter->convertType(gpuFuncOp.getType())
                      .template cast<LLVM::LLVMPointerType>()
                      .getElementType();

  // Remap proper input types.
  TypeConverter::SignatureConversion signatureConversion(
      gpuFuncOp.front().getNumArguments());
  getTypeConverter()->convertFunctionSignature(
      gpuFuncOp.getType(), /*isVariadic=*/false, signatureConversion);

  // Create the new function operation. Only copy those attributes that are
  // not specific to function modeling.
  SmallVector<NamedAttribute, 4> attributes;
  for (const auto &attr : gpuFuncOp->getAttrs()) {
    if (attr.getName() == SymbolTable::getSymbolAttrName() ||
        attr.getName() == function_like_impl::getTypeAttrName() ||
        attr.getName() == gpu::GPUFuncOp::getNumWorkgroupAttributionsAttrName())
      continue;
    attributes.push_back(attr);
  }
  // Add a dialect specific kernel attribute in addition to GPU kernel
  // attribute. The former is necessary for further translation while the
  // latter is expected by gpu.launch_func.
  if (gpuFuncOp.isKernel())
    attributes.emplace_back(kernelAttributeName, rewriter.getUnitAttr());
  auto llvmFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
      gpuFuncOp.getLoc(), gpuFuncOp.getName(), funcType,
      LLVM::Linkage::External, /*dsoLocal*/ false, attributes);

  {
    // Insert operations that correspond to converted workgroup and private
    // memory attributions to the body of the function. This must operate on
    // the original function, before the body region is inlined in the new
    // function to maintain the relation between block arguments and the
    // parent operation that assigns their semantics.
    OpBuilder::InsertionGuard guard(rewriter);

    // Rewrite workgroup memory attributions to addresses of global buffers.
    rewriter.setInsertionPointToStart(&gpuFuncOp.front());
    unsigned numProperArguments = gpuFuncOp.getNumArguments();
    auto i32Type = IntegerType::get(rewriter.getContext(), 32);

    Value zero = nullptr;
    if (!workgroupBuffers.empty())
      zero = rewriter.create<LLVM::ConstantOp>(loc, i32Type,
                                               rewriter.getI32IntegerAttr(0));
    for (const auto &en : llvm::enumerate(workgroupBuffers)) {
      LLVM::GlobalOp global = en.value();
      Value address = rewriter.create<LLVM::AddressOfOp>(loc, global);
      auto elementType =
          global.getType().cast<LLVM::LLVMArrayType>().getElementType();
      Value memory = rewriter.create<LLVM::GEPOp>(
          loc, LLVM::LLVMPointerType::get(elementType, global.getAddrSpace()),
          address, ArrayRef<Value>{zero, zero});

      // Build a memref descriptor pointing to the buffer to plug with the
      // existing memref infrastructure. This may use more registers than
      // otherwise necessary given that memref sizes are fixed, but we can try
      // and canonicalize that away later.
      Value attribution = gpuFuncOp.getWorkgroupAttributions()[en.index()];
      auto type = attribution.getType().cast<MemRefType>();
      auto descr = MemRefDescriptor::fromStaticShape(
          rewriter, loc, *getTypeConverter(), type, memory);
      signatureConversion.remapInput(numProperArguments + en.index(), descr);
    }

    // Rewrite private memory attributions to alloca'ed buffers.
    unsigned numWorkgroupAttributions = gpuFuncOp.getNumWorkgroupAttributions();
    auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
    for (const auto &en : llvm::enumerate(gpuFuncOp.getPrivateAttributions())) {
      Value attribution = en.value();
      auto type = attribution.getType().cast<MemRefType>();
      assert(type && type.hasStaticShape() && "unexpected type in attribution");

      // Explicitly drop memory space when lowering private memory
      // attributions since NVVM models it as `alloca`s in the default
      // memory space and does not support `alloca`s with addrspace(5).
      auto ptrType = LLVM::LLVMPointerType::get(
          typeConverter->convertType(type.getElementType())
              .template cast<Type>(),
          allocaAddrSpace);
      Value numElements = rewriter.create<LLVM::ConstantOp>(
          gpuFuncOp.getLoc(), int64Ty,
          rewriter.getI64IntegerAttr(type.getNumElements()));
      Value allocated = rewriter.create<LLVM::AllocaOp>(
          gpuFuncOp.getLoc(), ptrType, numElements, /*alignment=*/0);
      auto descr = MemRefDescriptor::fromStaticShape(
          rewriter, loc, *getTypeConverter(), type, allocated);
      signatureConversion.remapInput(
          numProperArguments + numWorkgroupAttributions + en.index(), descr);
    }
  }

  // Move the region to the new function, update the entry block signature.
  rewriter.inlineRegionBefore(gpuFuncOp.getBody(), llvmFuncOp.getBody(),
                              llvmFuncOp.end());
  if (failed(rewriter.convertRegionTypes(&llvmFuncOp.getBody(), *typeConverter,
                                         &signatureConversion)))
    return failure();

  rewriter.eraseOp(gpuFuncOp);
  return success();
}

static const char formatStringPrefix[] = "printfFormat_";

template <typename T>
static LLVM::LLVMFuncOp getOrDefineFunction(T &moduleOp, const Location loc,
                                            ConversionPatternRewriter &rewriter,
                                            StringRef name,
                                            LLVM::LLVMFunctionType type) {
  LLVM::LLVMFuncOp ret;
  if (!(ret = moduleOp.template lookupSymbol<LLVM::LLVMFuncOp>(name))) {
    ConversionPatternRewriter::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointToStart(moduleOp.getBody());
    ret = rewriter.create<LLVM::LLVMFuncOp>(loc, name, type,
                                            LLVM::Linkage::External);
  }
  return ret;
}

LogicalResult GPUPrintfOpToHIPLowering::matchAndRewrite(
    gpu::PrintfOp gpuPrintfOp, gpu::PrintfOpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  Location loc = gpuPrintfOp->getLoc();

  mlir::Type llvmI8 = typeConverter->convertType(rewriter.getI8Type());
  mlir::Type i8Ptr = LLVM::LLVMPointerType::get(llvmI8);
  mlir::Type llvmIndex = typeConverter->convertType(rewriter.getIndexType());
  mlir::Type llvmI32 = typeConverter->convertType(rewriter.getI32Type());
  mlir::Type llvmI64 = typeConverter->convertType(rewriter.getI64Type());
  // Note: this is the GPUModule op, not the ModuleOp that surrounds it
  // This ensures that global constants and declarations are placed within
  // the device code, not the host code
  auto moduleOp = gpuPrintfOp->getParentOfType<gpu::GPUModuleOp>();

  auto ocklBegin =
      getOrDefineFunction(moduleOp, loc, rewriter, "__ockl_printf_begin",
                          LLVM::LLVMFunctionType::get(llvmI64, {llvmI64}));
  LLVM::LLVMFuncOp ocklAppendArgs;
  if (!adaptor.args().empty()) {
    ocklAppendArgs = getOrDefineFunction(
        moduleOp, loc, rewriter, "__ockl_printf_append_args",
        LLVM::LLVMFunctionType::get(
            llvmI64, {llvmI64, /*numArgs*/ llvmI32, llvmI64, llvmI64, llvmI64,
                      llvmI64, llvmI64, llvmI64, llvmI64, /*isLast*/ llvmI32}));
  }
  auto ocklAppendStringN = getOrDefineFunction(
      moduleOp, loc, rewriter, "__ockl_printf_append_string_n",
      LLVM::LLVMFunctionType::get(
          llvmI64,
          {llvmI64, i8Ptr, /*length (bytes)*/ llvmI64, /*isLast*/ llvmI32}));

  /// Start the printf hostcall
  Value zeroI64 = rewriter.create<LLVM::ConstantOp>(
      loc, llvmI64, rewriter.getI64IntegerAttr(0));
  auto printfBeginCall = rewriter.create<LLVM::CallOp>(loc, ocklBegin, zeroI64);
  Value printfDesc = printfBeginCall.getResult(0);

  // Create a global constant for the format string
  unsigned stringNumber = 0;
  SmallString<16> stringConstName;
  do {
    stringConstName.clear();
    (formatStringPrefix + Twine(stringNumber++)).toStringRef(stringConstName);
  } while (moduleOp.lookupSymbol(stringConstName));

  llvm::SmallString<20> formatString(adaptor.format());
  formatString.push_back('\0'); // Null terminate for C
  size_t formatStringSize = formatString.size_in_bytes();

  auto globalType = LLVM::LLVMArrayType::get(llvmI8, formatStringSize);
  LLVM::GlobalOp global;
  {
    ConversionPatternRewriter::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointToStart(moduleOp.getBody());
    global = rewriter.create<LLVM::GlobalOp>(
        loc, globalType,
        /*isConstant=*/true, LLVM::Linkage::Internal, stringConstName,
        rewriter.getStringAttr(formatString));
  }

  // Get a pointer to the format string's first element and pass it to printf()
  Value globalPtr = rewriter.create<LLVM::AddressOfOp>(loc, global);
  Value zero = rewriter.create<LLVM::ConstantOp>(
      loc, llvmIndex, rewriter.getIntegerAttr(llvmIndex, 0));
  Value stringStart = rewriter.create<LLVM::GEPOp>(
      loc, i8Ptr, globalPtr, mlir::ValueRange({zero, zero}));
  Value stringLen = rewriter.create<LLVM::ConstantOp>(
      loc, llvmI64, rewriter.getI64IntegerAttr(formatStringSize));

  Value oneI32 = rewriter.create<LLVM::ConstantOp>(
      loc, llvmI32, rewriter.getI32IntegerAttr(1));
  Value zeroI32 = rewriter.create<LLVM::ConstantOp>(
      loc, llvmI32, rewriter.getI32IntegerAttr(0));

  auto appendFormatCall = rewriter.create<LLVM::CallOp>(
      loc, ocklAppendStringN,
      ValueRange{printfDesc, stringStart, stringLen,
                 adaptor.args().empty() ? oneI32 : zeroI32});
  printfDesc = appendFormatCall.getResult(0);

  // __ockl_printf_append_args takes 7 values per append call
  constexpr size_t argsPerAppend = 7;
  size_t nArgs = adaptor.args().size();
  for (size_t group = 0; group < nArgs; group += argsPerAppend) {
    size_t bound = std::min(group + argsPerAppend, nArgs);
    size_t numArgsThisCall = bound - group;

    SmallVector<mlir::Value, 2 + argsPerAppend + 1> arguments;
    arguments.push_back(printfDesc);
    arguments.push_back(rewriter.create<LLVM::ConstantOp>(
        loc, llvmI32, rewriter.getI32IntegerAttr(numArgsThisCall)));
    for (size_t i = group; i < bound; ++i) {
      Value arg = adaptor.args()[i];
      if (auto floatType = arg.getType().dyn_cast<FloatType>()) {
        if (!floatType.isF64())
          arg = rewriter.create<LLVM::FPExtOp>(
              loc, typeConverter->convertType(rewriter.getF64Type()), arg);
        arg = rewriter.create<LLVM::BitcastOp>(loc, llvmI64, arg);
      }
      if (arg.getType().getIntOrFloatBitWidth() != 64)
        arg = rewriter.create<LLVM::ZExtOp>(loc, llvmI64, arg);

      arguments.push_back(arg);
    }
    // Pad out to 7 arguments since the hostcall always needs 7
    for (size_t extra = numArgsThisCall; extra < argsPerAppend; ++extra) {
      arguments.push_back(zeroI64);
    }

    auto isLast = (bound == nArgs) ? oneI32 : zeroI32;
    arguments.push_back(isLast);
    auto call = rewriter.create<LLVM::CallOp>(loc, ocklAppendArgs, arguments);
    printfDesc = call.getResult(0);
  }
  rewriter.eraseOp(gpuPrintfOp);
  return success();
}

LogicalResult GPUPrintfOpToLLVMCallLowering::matchAndRewrite(
    gpu::PrintfOp gpuPrintfOp, gpu::PrintfOpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  Location loc = gpuPrintfOp->getLoc();

  mlir::Type llvmI8 = typeConverter->convertType(rewriter.getIntegerType(8));
  mlir::Type i8Ptr = LLVM::LLVMPointerType::get(llvmI8, addressSpace);
  mlir::Type llvmIndex = typeConverter->convertType(rewriter.getIndexType());

  // Note: this is the GPUModule op, not the ModuleOp that surrounds it
  // This ensures that global constants and declarations are placed within
  // the device code, not the host code
  auto moduleOp = gpuPrintfOp->getParentOfType<gpu::GPUModuleOp>();

  auto printfType = LLVM::LLVMFunctionType::get(rewriter.getI32Type(), {i8Ptr},
                                                /*isVarArg=*/true);
  LLVM::LLVMFuncOp printfDecl =
      getOrDefineFunction(moduleOp, loc, rewriter, "printf", printfType);

  // Create a global constant for the format string
  unsigned stringNumber = 0;
  SmallString<16> stringConstName;
  do {
    stringConstName.clear();
    (formatStringPrefix + Twine(stringNumber++)).toStringRef(stringConstName);
  } while (moduleOp.lookupSymbol(stringConstName));

  llvm::SmallString<20> formatString(adaptor.format());
  formatString.push_back('\0'); // Null terminate for C
  auto globalType =
      LLVM::LLVMArrayType::get(llvmI8, formatString.size_in_bytes());
  LLVM::GlobalOp global;
  {
    ConversionPatternRewriter::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointToStart(moduleOp.getBody());
    global = rewriter.create<LLVM::GlobalOp>(
        loc, globalType,
        /*isConstant=*/true, LLVM::Linkage::Internal, stringConstName,
        rewriter.getStringAttr(formatString), /*allignment=*/0, addressSpace);
  }

  // Get a pointer to the format string's first element
  Value globalPtr = rewriter.create<LLVM::AddressOfOp>(loc, global);
  Value zero = rewriter.create<LLVM::ConstantOp>(
      loc, llvmIndex, rewriter.getIntegerAttr(llvmIndex, 0));
  Value stringStart = rewriter.create<LLVM::GEPOp>(
      loc, i8Ptr, globalPtr, mlir::ValueRange({zero, zero}));

  // Construct arguments and function call
  auto argsRange = adaptor.args();
  SmallVector<Value, 4> printfArgs;
  printfArgs.reserve(argsRange.size() + 1);
  printfArgs.push_back(stringStart);
  printfArgs.append(argsRange.begin(), argsRange.end());

  rewriter.create<LLVM::CallOp>(loc, printfDecl, printfArgs);
  rewriter.eraseOp(gpuPrintfOp);
  return success();
}