aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
blob: d8150aeb828a59f55e12c0572dbbd6c02538c574 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
//===- ComplexToStandard.cpp - conversion from Complex to Standard dialect ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/ComplexToStandard/ComplexToStandard.h"

#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include <memory>
#include <type_traits>

namespace mlir {
#define GEN_PASS_DEF_CONVERTCOMPLEXTOSTANDARD
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir

using namespace mlir;

namespace {

enum class AbsFn { abs, sqrt, rsqrt };

// Returns the absolute value, its square root or its reciprocal square root.
Value computeAbs(Value real, Value imag, arith::FastMathFlags fmf,
                 ImplicitLocOpBuilder &b, AbsFn fn = AbsFn::abs) {
  Value one = b.create<arith::ConstantOp>(real.getType(),
                                          b.getFloatAttr(real.getType(), 1.0));

  Value absReal = b.create<math::AbsFOp>(real, fmf);
  Value absImag = b.create<math::AbsFOp>(imag, fmf);

  Value max = b.create<arith::MaximumFOp>(absReal, absImag, fmf);
  Value min = b.create<arith::MinimumFOp>(absReal, absImag, fmf);
  Value ratio = b.create<arith::DivFOp>(min, max, fmf);
  Value ratioSq = b.create<arith::MulFOp>(ratio, ratio, fmf);
  Value ratioSqPlusOne = b.create<arith::AddFOp>(ratioSq, one, fmf);
  Value result;

  if (fn == AbsFn::rsqrt) {
    ratioSqPlusOne = b.create<math::RsqrtOp>(ratioSqPlusOne, fmf);
    min = b.create<math::RsqrtOp>(min, fmf);
    max = b.create<math::RsqrtOp>(max, fmf);
  }

  if (fn == AbsFn::sqrt) {
    Value quarter = b.create<arith::ConstantOp>(
        real.getType(), b.getFloatAttr(real.getType(), 0.25));
    // sqrt(sqrt(a*b)) would avoid the pow, but will overflow more easily.
    Value sqrt = b.create<math::SqrtOp>(max, fmf);
    Value p025 = b.create<math::PowFOp>(ratioSqPlusOne, quarter, fmf);
    result = b.create<arith::MulFOp>(sqrt, p025, fmf);
  } else {
    Value sqrt = b.create<math::SqrtOp>(ratioSqPlusOne, fmf);
    result = b.create<arith::MulFOp>(max, sqrt, fmf);
  }

  Value isNaN =
      b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, result, result, fmf);
  return b.create<arith::SelectOp>(isNaN, min, result);
}

struct AbsOpConversion : public OpConversionPattern<complex::AbsOp> {
  using OpConversionPattern<complex::AbsOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    ImplicitLocOpBuilder b(op.getLoc(), rewriter);

    arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();

    Value real = b.create<complex::ReOp>(adaptor.getComplex());
    Value imag = b.create<complex::ImOp>(adaptor.getComplex());
    rewriter.replaceOp(op, computeAbs(real, imag, fmf, b));

    return success();
  }
};

// atan2(y,x) = -i * log((x + i * y)/sqrt(x**2+y**2))
struct Atan2OpConversion : public OpConversionPattern<complex::Atan2Op> {
  using OpConversionPattern<complex::Atan2Op>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::Atan2Op op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);

    auto type = cast<ComplexType>(op.getType());
    Type elementType = type.getElementType();
    arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

    Value lhs = adaptor.getLhs();
    Value rhs = adaptor.getRhs();

    Value rhsSquared = b.create<complex::MulOp>(type, rhs, rhs, fmf);
    Value lhsSquared = b.create<complex::MulOp>(type, lhs, lhs, fmf);
    Value rhsSquaredPlusLhsSquared =
        b.create<complex::AddOp>(type, rhsSquared, lhsSquared, fmf);
    Value sqrtOfRhsSquaredPlusLhsSquared =
        b.create<complex::SqrtOp>(type, rhsSquaredPlusLhsSquared, fmf);

    Value zero =
        b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
    Value one = b.create<arith::ConstantOp>(elementType,
                                            b.getFloatAttr(elementType, 1));
    Value i = b.create<complex::CreateOp>(type, zero, one);
    Value iTimesLhs = b.create<complex::MulOp>(i, lhs, fmf);
    Value rhsPlusILhs = b.create<complex::AddOp>(rhs, iTimesLhs, fmf);

    Value divResult = b.create<complex::DivOp>(
        rhsPlusILhs, sqrtOfRhsSquaredPlusLhsSquared, fmf);
    Value logResult = b.create<complex::LogOp>(divResult, fmf);

    Value negativeOne = b.create<arith::ConstantOp>(
        elementType, b.getFloatAttr(elementType, -1));
    Value negativeI = b.create<complex::CreateOp>(type, zero, negativeOne);

    rewriter.replaceOpWithNewOp<complex::MulOp>(op, negativeI, logResult, fmf);
    return success();
  }
};

template <typename ComparisonOp, arith::CmpFPredicate p>
struct ComparisonOpConversion : public OpConversionPattern<ComparisonOp> {
  using OpConversionPattern<ComparisonOp>::OpConversionPattern;
  using ResultCombiner =
      std::conditional_t<std::is_same<ComparisonOp, complex::EqualOp>::value,
                         arith::AndIOp, arith::OrIOp>;

  LogicalResult
  matchAndRewrite(ComparisonOp op, typename ComparisonOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    auto type = cast<ComplexType>(adaptor.getLhs().getType()).getElementType();

    Value realLhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getLhs());
    Value imagLhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getLhs());
    Value realRhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getRhs());
    Value imagRhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getRhs());
    Value realComparison =
        rewriter.create<arith::CmpFOp>(loc, p, realLhs, realRhs);
    Value imagComparison =
        rewriter.create<arith::CmpFOp>(loc, p, imagLhs, imagRhs);

    rewriter.replaceOpWithNewOp<ResultCombiner>(op, realComparison,
                                                imagComparison);
    return success();
  }
};

// Default conversion which applies the BinaryStandardOp separately on the real
// and imaginary parts. Can for example be used for complex::AddOp and
// complex::SubOp.
template <typename BinaryComplexOp, typename BinaryStandardOp>
struct BinaryComplexOpConversion : public OpConversionPattern<BinaryComplexOp> {
  using OpConversionPattern<BinaryComplexOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(BinaryComplexOp op, typename BinaryComplexOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto type = cast<ComplexType>(adaptor.getLhs().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
    arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

    Value realLhs = b.create<complex::ReOp>(elementType, adaptor.getLhs());
    Value realRhs = b.create<complex::ReOp>(elementType, adaptor.getRhs());
    Value resultReal = b.create<BinaryStandardOp>(elementType, realLhs, realRhs,
                                                  fmf.getValue());
    Value imagLhs = b.create<complex::ImOp>(elementType, adaptor.getLhs());
    Value imagRhs = b.create<complex::ImOp>(elementType, adaptor.getRhs());
    Value resultImag = b.create<BinaryStandardOp>(elementType, imagLhs, imagRhs,
                                                  fmf.getValue());
    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
                                                   resultImag);
    return success();
  }
};

template <typename TrigonometricOp>
struct TrigonometricOpConversion : public OpConversionPattern<TrigonometricOp> {
  using OpAdaptor = typename OpConversionPattern<TrigonometricOp>::OpAdaptor;

  using OpConversionPattern<TrigonometricOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(TrigonometricOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    auto type = cast<ComplexType>(adaptor.getComplex().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

    Value real =
        rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
    Value imag =
        rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());

    // Trigonometric ops use a set of common building blocks to convert to real
    // ops. Here we create these building blocks and call into an op-specific
    // implementation in the subclass to combine them.
    Value half = rewriter.create<arith::ConstantOp>(
        loc, elementType, rewriter.getFloatAttr(elementType, 0.5));
    Value exp = rewriter.create<math::ExpOp>(loc, imag, fmf);
    Value scaledExp = rewriter.create<arith::MulFOp>(loc, half, exp, fmf);
    Value reciprocalExp = rewriter.create<arith::DivFOp>(loc, half, exp, fmf);
    Value sin = rewriter.create<math::SinOp>(loc, real, fmf);
    Value cos = rewriter.create<math::CosOp>(loc, real, fmf);

    auto resultPair =
        combine(loc, scaledExp, reciprocalExp, sin, cos, rewriter, fmf);

    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultPair.first,
                                                   resultPair.second);
    return success();
  }

  virtual std::pair<Value, Value>
  combine(Location loc, Value scaledExp, Value reciprocalExp, Value sin,
          Value cos, ConversionPatternRewriter &rewriter,
          arith::FastMathFlagsAttr fmf) const = 0;
};

struct CosOpConversion : public TrigonometricOpConversion<complex::CosOp> {
  using TrigonometricOpConversion<complex::CosOp>::TrigonometricOpConversion;

  std::pair<Value, Value> combine(Location loc, Value scaledExp,
                                  Value reciprocalExp, Value sin, Value cos,
                                  ConversionPatternRewriter &rewriter,
                                  arith::FastMathFlagsAttr fmf) const override {
    // Complex cosine is defined as;
    //   cos(x + iy) = 0.5 * (exp(i(x + iy)) + exp(-i(x + iy)))
    // Plugging in:
    //   exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x))
    //   exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x)))
    // and defining t := exp(y)
    // We get:
    //   Re(cos(x + iy)) = (0.5/t + 0.5*t) * cos x
    //   Im(cos(x + iy)) = (0.5/t - 0.5*t) * sin x
    Value sum =
        rewriter.create<arith::AddFOp>(loc, reciprocalExp, scaledExp, fmf);
    Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, cos, fmf);
    Value diff =
        rewriter.create<arith::SubFOp>(loc, reciprocalExp, scaledExp, fmf);
    Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, sin, fmf);
    return {resultReal, resultImag};
  }
};

struct DivOpConversion : public OpConversionPattern<complex::DivOp> {
  using OpConversionPattern<complex::DivOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::DivOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    auto type = cast<ComplexType>(adaptor.getLhs().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

    Value lhsReal =
        rewriter.create<complex::ReOp>(loc, elementType, adaptor.getLhs());
    Value lhsImag =
        rewriter.create<complex::ImOp>(loc, elementType, adaptor.getLhs());
    Value rhsReal =
        rewriter.create<complex::ReOp>(loc, elementType, adaptor.getRhs());
    Value rhsImag =
        rewriter.create<complex::ImOp>(loc, elementType, adaptor.getRhs());

    // Smith's algorithm to divide complex numbers. It is just a bit smarter
    // way to compute the following formula:
    //  (lhsReal + lhsImag * i) / (rhsReal + rhsImag * i)
    //    = (lhsReal + lhsImag * i) (rhsReal - rhsImag * i) /
    //          ((rhsReal + rhsImag * i)(rhsReal - rhsImag * i))
    //    = ((lhsReal * rhsReal + lhsImag * rhsImag) +
    //          (lhsImag * rhsReal - lhsReal * rhsImag) * i) / ||rhs||^2
    //
    // Depending on whether |rhsReal| < |rhsImag| we compute either
    //   rhsRealImagRatio = rhsReal / rhsImag
    //   rhsRealImagDenom = rhsImag + rhsReal * rhsRealImagRatio
    //   resultReal = (lhsReal * rhsRealImagRatio + lhsImag) / rhsRealImagDenom
    //   resultImag = (lhsImag * rhsRealImagRatio - lhsReal) / rhsRealImagDenom
    //
    // or
    //
    //   rhsImagRealRatio = rhsImag / rhsReal
    //   rhsImagRealDenom = rhsReal + rhsImag * rhsImagRealRatio
    //   resultReal = (lhsReal + lhsImag * rhsImagRealRatio) / rhsImagRealDenom
    //   resultImag = (lhsImag - lhsReal * rhsImagRealRatio) / rhsImagRealDenom
    //
    // See https://dl.acm.org/citation.cfm?id=368661 for more details.
    Value rhsRealImagRatio =
        rewriter.create<arith::DivFOp>(loc, rhsReal, rhsImag, fmf);
    Value rhsRealImagDenom = rewriter.create<arith::AddFOp>(
        loc, rhsImag,
        rewriter.create<arith::MulFOp>(loc, rhsRealImagRatio, rhsReal, fmf),
        fmf);
    Value realNumerator1 = rewriter.create<arith::AddFOp>(
        loc,
        rewriter.create<arith::MulFOp>(loc, lhsReal, rhsRealImagRatio, fmf),
        lhsImag, fmf);
    Value resultReal1 = rewriter.create<arith::DivFOp>(loc, realNumerator1,
                                                       rhsRealImagDenom, fmf);
    Value imagNumerator1 = rewriter.create<arith::SubFOp>(
        loc,
        rewriter.create<arith::MulFOp>(loc, lhsImag, rhsRealImagRatio, fmf),
        lhsReal, fmf);
    Value resultImag1 = rewriter.create<arith::DivFOp>(loc, imagNumerator1,
                                                       rhsRealImagDenom, fmf);

    Value rhsImagRealRatio =
        rewriter.create<arith::DivFOp>(loc, rhsImag, rhsReal, fmf);
    Value rhsImagRealDenom = rewriter.create<arith::AddFOp>(
        loc, rhsReal,
        rewriter.create<arith::MulFOp>(loc, rhsImagRealRatio, rhsImag, fmf),
        fmf);
    Value realNumerator2 = rewriter.create<arith::AddFOp>(
        loc, lhsReal,
        rewriter.create<arith::MulFOp>(loc, lhsImag, rhsImagRealRatio, fmf),
        fmf);
    Value resultReal2 = rewriter.create<arith::DivFOp>(loc, realNumerator2,
                                                       rhsImagRealDenom, fmf);
    Value imagNumerator2 = rewriter.create<arith::SubFOp>(
        loc, lhsImag,
        rewriter.create<arith::MulFOp>(loc, lhsReal, rhsImagRealRatio, fmf),
        fmf);
    Value resultImag2 = rewriter.create<arith::DivFOp>(loc, imagNumerator2,
                                                       rhsImagRealDenom, fmf);

    // Consider corner cases.
    // Case 1. Zero denominator, numerator contains at most one NaN value.
    Value zero = rewriter.create<arith::ConstantOp>(
        loc, elementType, rewriter.getZeroAttr(elementType));
    Value rhsRealAbs = rewriter.create<math::AbsFOp>(loc, rhsReal, fmf);
    Value rhsRealIsZero = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::OEQ, rhsRealAbs, zero);
    Value rhsImagAbs = rewriter.create<math::AbsFOp>(loc, rhsImag, fmf);
    Value rhsImagIsZero = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::OEQ, rhsImagAbs, zero);
    Value lhsRealIsNotNaN = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::ORD, lhsReal, zero);
    Value lhsImagIsNotNaN = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::ORD, lhsImag, zero);
    Value lhsContainsNotNaNValue =
        rewriter.create<arith::OrIOp>(loc, lhsRealIsNotNaN, lhsImagIsNotNaN);
    Value resultIsInfinity = rewriter.create<arith::AndIOp>(
        loc, lhsContainsNotNaNValue,
        rewriter.create<arith::AndIOp>(loc, rhsRealIsZero, rhsImagIsZero));
    Value inf = rewriter.create<arith::ConstantOp>(
        loc, elementType,
        rewriter.getFloatAttr(
            elementType, APFloat::getInf(elementType.getFloatSemantics())));
    Value infWithSignOfRhsReal =
        rewriter.create<math::CopySignOp>(loc, inf, rhsReal);
    Value infinityResultReal =
        rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsReal, fmf);
    Value infinityResultImag =
        rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsImag, fmf);

    // Case 2. Infinite numerator, finite denominator.
    Value rhsRealFinite = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::ONE, rhsRealAbs, inf);
    Value rhsImagFinite = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::ONE, rhsImagAbs, inf);
    Value rhsFinite =
        rewriter.create<arith::AndIOp>(loc, rhsRealFinite, rhsImagFinite);
    Value lhsRealAbs = rewriter.create<math::AbsFOp>(loc, lhsReal, fmf);
    Value lhsRealInfinite = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::OEQ, lhsRealAbs, inf);
    Value lhsImagAbs = rewriter.create<math::AbsFOp>(loc, lhsImag, fmf);
    Value lhsImagInfinite = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::OEQ, lhsImagAbs, inf);
    Value lhsInfinite =
        rewriter.create<arith::OrIOp>(loc, lhsRealInfinite, lhsImagInfinite);
    Value infNumFiniteDenom =
        rewriter.create<arith::AndIOp>(loc, lhsInfinite, rhsFinite);
    Value one = rewriter.create<arith::ConstantOp>(
        loc, elementType, rewriter.getFloatAttr(elementType, 1));
    Value lhsRealIsInfWithSign = rewriter.create<math::CopySignOp>(
        loc, rewriter.create<arith::SelectOp>(loc, lhsRealInfinite, one, zero),
        lhsReal);
    Value lhsImagIsInfWithSign = rewriter.create<math::CopySignOp>(
        loc, rewriter.create<arith::SelectOp>(loc, lhsImagInfinite, one, zero),
        lhsImag);
    Value lhsRealIsInfWithSignTimesRhsReal =
        rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsReal, fmf);
    Value lhsImagIsInfWithSignTimesRhsImag =
        rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsImag, fmf);
    Value resultReal3 = rewriter.create<arith::MulFOp>(
        loc, inf,
        rewriter.create<arith::AddFOp>(loc, lhsRealIsInfWithSignTimesRhsReal,
                                       lhsImagIsInfWithSignTimesRhsImag, fmf),
        fmf);
    Value lhsRealIsInfWithSignTimesRhsImag =
        rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsImag, fmf);
    Value lhsImagIsInfWithSignTimesRhsReal =
        rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsReal, fmf);
    Value resultImag3 = rewriter.create<arith::MulFOp>(
        loc, inf,
        rewriter.create<arith::SubFOp>(loc, lhsImagIsInfWithSignTimesRhsReal,
                                       lhsRealIsInfWithSignTimesRhsImag, fmf),
        fmf);

    // Case 3: Finite numerator, infinite denominator.
    Value lhsRealFinite = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::ONE, lhsRealAbs, inf);
    Value lhsImagFinite = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::ONE, lhsImagAbs, inf);
    Value lhsFinite =
        rewriter.create<arith::AndIOp>(loc, lhsRealFinite, lhsImagFinite);
    Value rhsRealInfinite = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::OEQ, rhsRealAbs, inf);
    Value rhsImagInfinite = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::OEQ, rhsImagAbs, inf);
    Value rhsInfinite =
        rewriter.create<arith::OrIOp>(loc, rhsRealInfinite, rhsImagInfinite);
    Value finiteNumInfiniteDenom =
        rewriter.create<arith::AndIOp>(loc, lhsFinite, rhsInfinite);
    Value rhsRealIsInfWithSign = rewriter.create<math::CopySignOp>(
        loc, rewriter.create<arith::SelectOp>(loc, rhsRealInfinite, one, zero),
        rhsReal);
    Value rhsImagIsInfWithSign = rewriter.create<math::CopySignOp>(
        loc, rewriter.create<arith::SelectOp>(loc, rhsImagInfinite, one, zero),
        rhsImag);
    Value rhsRealIsInfWithSignTimesLhsReal =
        rewriter.create<arith::MulFOp>(loc, lhsReal, rhsRealIsInfWithSign, fmf);
    Value rhsImagIsInfWithSignTimesLhsImag =
        rewriter.create<arith::MulFOp>(loc, lhsImag, rhsImagIsInfWithSign, fmf);
    Value resultReal4 = rewriter.create<arith::MulFOp>(
        loc, zero,
        rewriter.create<arith::AddFOp>(loc, rhsRealIsInfWithSignTimesLhsReal,
                                       rhsImagIsInfWithSignTimesLhsImag, fmf),
        fmf);
    Value rhsRealIsInfWithSignTimesLhsImag =
        rewriter.create<arith::MulFOp>(loc, lhsImag, rhsRealIsInfWithSign, fmf);
    Value rhsImagIsInfWithSignTimesLhsReal =
        rewriter.create<arith::MulFOp>(loc, lhsReal, rhsImagIsInfWithSign, fmf);
    Value resultImag4 = rewriter.create<arith::MulFOp>(
        loc, zero,
        rewriter.create<arith::SubFOp>(loc, rhsRealIsInfWithSignTimesLhsImag,
                                       rhsImagIsInfWithSignTimesLhsReal, fmf),
        fmf);

    Value realAbsSmallerThanImagAbs = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::OLT, rhsRealAbs, rhsImagAbs);
    Value resultReal = rewriter.create<arith::SelectOp>(
        loc, realAbsSmallerThanImagAbs, resultReal1, resultReal2);
    Value resultImag = rewriter.create<arith::SelectOp>(
        loc, realAbsSmallerThanImagAbs, resultImag1, resultImag2);
    Value resultRealSpecialCase3 = rewriter.create<arith::SelectOp>(
        loc, finiteNumInfiniteDenom, resultReal4, resultReal);
    Value resultImagSpecialCase3 = rewriter.create<arith::SelectOp>(
        loc, finiteNumInfiniteDenom, resultImag4, resultImag);
    Value resultRealSpecialCase2 = rewriter.create<arith::SelectOp>(
        loc, infNumFiniteDenom, resultReal3, resultRealSpecialCase3);
    Value resultImagSpecialCase2 = rewriter.create<arith::SelectOp>(
        loc, infNumFiniteDenom, resultImag3, resultImagSpecialCase3);
    Value resultRealSpecialCase1 = rewriter.create<arith::SelectOp>(
        loc, resultIsInfinity, infinityResultReal, resultRealSpecialCase2);
    Value resultImagSpecialCase1 = rewriter.create<arith::SelectOp>(
        loc, resultIsInfinity, infinityResultImag, resultImagSpecialCase2);

    Value resultRealIsNaN = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::UNO, resultReal, zero);
    Value resultImagIsNaN = rewriter.create<arith::CmpFOp>(
        loc, arith::CmpFPredicate::UNO, resultImag, zero);
    Value resultIsNaN =
        rewriter.create<arith::AndIOp>(loc, resultRealIsNaN, resultImagIsNaN);
    Value resultRealWithSpecialCases = rewriter.create<arith::SelectOp>(
        loc, resultIsNaN, resultRealSpecialCase1, resultReal);
    Value resultImagWithSpecialCases = rewriter.create<arith::SelectOp>(
        loc, resultIsNaN, resultImagSpecialCase1, resultImag);

    rewriter.replaceOpWithNewOp<complex::CreateOp>(
        op, type, resultRealWithSpecialCases, resultImagWithSpecialCases);
    return success();
  }
};

struct ExpOpConversion : public OpConversionPattern<complex::ExpOp> {
  using OpConversionPattern<complex::ExpOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::ExpOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    auto type = cast<ComplexType>(adaptor.getComplex().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

    Value real =
        rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
    Value imag =
        rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
    Value expReal = rewriter.create<math::ExpOp>(loc, real, fmf.getValue());
    Value cosImag = rewriter.create<math::CosOp>(loc, imag, fmf.getValue());
    Value resultReal =
        rewriter.create<arith::MulFOp>(loc, expReal, cosImag, fmf.getValue());
    Value sinImag = rewriter.create<math::SinOp>(loc, imag, fmf.getValue());
    Value resultImag =
        rewriter.create<arith::MulFOp>(loc, expReal, sinImag, fmf.getValue());

    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
                                                   resultImag);
    return success();
  }
};

struct Expm1OpConversion : public OpConversionPattern<complex::Expm1Op> {
  using OpConversionPattern<complex::Expm1Op>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::Expm1Op op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto type = cast<ComplexType>(adaptor.getComplex().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

    mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
    Value exp = b.create<complex::ExpOp>(adaptor.getComplex(), fmf.getValue());

    Value real = b.create<complex::ReOp>(elementType, exp);
    Value one = b.create<arith::ConstantOp>(elementType,
                                            b.getFloatAttr(elementType, 1));
    Value realMinusOne = b.create<arith::SubFOp>(real, one, fmf.getValue());
    Value imag = b.create<complex::ImOp>(elementType, exp);

    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, realMinusOne,
                                                   imag);
    return success();
  }
};

struct LogOpConversion : public OpConversionPattern<complex::LogOp> {
  using OpConversionPattern<complex::LogOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::LogOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto type = cast<ComplexType>(adaptor.getComplex().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
    mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);

    Value abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex(),
                                         fmf.getValue());
    Value resultReal = b.create<math::LogOp>(elementType, abs, fmf.getValue());
    Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
    Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
    Value resultImag =
        b.create<math::Atan2Op>(elementType, imag, real, fmf.getValue());
    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
                                                   resultImag);
    return success();
  }
};

struct Log1pOpConversion : public OpConversionPattern<complex::Log1pOp> {
  using OpConversionPattern<complex::Log1pOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::Log1pOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto type = cast<ComplexType>(adaptor.getComplex().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
    mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);

    Value real = b.create<complex::ReOp>(adaptor.getComplex());
    Value imag = b.create<complex::ImOp>(adaptor.getComplex());

    Value half = b.create<arith::ConstantOp>(elementType,
                                             b.getFloatAttr(elementType, 0.5));
    Value one = b.create<arith::ConstantOp>(elementType,
                                            b.getFloatAttr(elementType, 1));
    Value realPlusOne = b.create<arith::AddFOp>(real, one, fmf);
    Value absRealPlusOne = b.create<math::AbsFOp>(realPlusOne, fmf);
    Value absImag = b.create<math::AbsFOp>(imag, fmf);

    Value maxAbs = b.create<arith::MaximumFOp>(absRealPlusOne, absImag, fmf);
    Value minAbs = b.create<arith::MinimumFOp>(absRealPlusOne, absImag, fmf);

    Value useReal = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT,
                                            realPlusOne, absImag, fmf);
    Value maxMinusOne = b.create<arith::SubFOp>(maxAbs, one, fmf);
    Value maxAbsOfRealPlusOneAndImagMinusOne =
        b.create<arith::SelectOp>(useReal, real, maxMinusOne);
    Value minMaxRatio = b.create<arith::DivFOp>(minAbs, maxAbs, fmf);
    Value logOfMaxAbsOfRealPlusOneAndImag =
        b.create<math::Log1pOp>(maxAbsOfRealPlusOneAndImagMinusOne, fmf);
    Value logOfSqrtPart = b.create<math::Log1pOp>(
        b.create<arith::MulFOp>(minMaxRatio, minMaxRatio, fmf), fmf);
    Value r = b.create<arith::AddFOp>(
        b.create<arith::MulFOp>(half, logOfSqrtPart, fmf),
        logOfMaxAbsOfRealPlusOneAndImag, fmf);
    Value resultReal = b.create<arith::SelectOp>(
        b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, r, r, fmf), minAbs,
        r);
    Value resultImag = b.create<math::Atan2Op>(imag, realPlusOne, fmf);
    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
                                                   resultImag);
    return success();
  }
};

struct MulOpConversion : public OpConversionPattern<complex::MulOp> {
  using OpConversionPattern<complex::MulOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::MulOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
    auto type = cast<ComplexType>(adaptor.getLhs().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
    auto fmfValue = fmf.getValue();

    Value lhsReal = b.create<complex::ReOp>(elementType, adaptor.getLhs());
    Value lhsRealAbs = b.create<math::AbsFOp>(lhsReal, fmfValue);
    Value lhsImag = b.create<complex::ImOp>(elementType, adaptor.getLhs());
    Value lhsImagAbs = b.create<math::AbsFOp>(lhsImag, fmfValue);
    Value rhsReal = b.create<complex::ReOp>(elementType, adaptor.getRhs());
    Value rhsRealAbs = b.create<math::AbsFOp>(rhsReal, fmfValue);
    Value rhsImag = b.create<complex::ImOp>(elementType, adaptor.getRhs());
    Value rhsImagAbs = b.create<math::AbsFOp>(rhsImag, fmfValue);

    Value lhsRealTimesRhsReal =
        b.create<arith::MulFOp>(lhsReal, rhsReal, fmfValue);
    Value lhsRealTimesRhsRealAbs =
        b.create<math::AbsFOp>(lhsRealTimesRhsReal, fmfValue);
    Value lhsImagTimesRhsImag =
        b.create<arith::MulFOp>(lhsImag, rhsImag, fmfValue);
    Value lhsImagTimesRhsImagAbs =
        b.create<math::AbsFOp>(lhsImagTimesRhsImag, fmfValue);
    Value real = b.create<arith::SubFOp>(lhsRealTimesRhsReal,
                                         lhsImagTimesRhsImag, fmfValue);

    Value lhsImagTimesRhsReal =
        b.create<arith::MulFOp>(lhsImag, rhsReal, fmfValue);
    Value lhsImagTimesRhsRealAbs =
        b.create<math::AbsFOp>(lhsImagTimesRhsReal, fmfValue);
    Value lhsRealTimesRhsImag =
        b.create<arith::MulFOp>(lhsReal, rhsImag, fmfValue);
    Value lhsRealTimesRhsImagAbs =
        b.create<math::AbsFOp>(lhsRealTimesRhsImag, fmfValue);
    Value imag = b.create<arith::AddFOp>(lhsImagTimesRhsReal,
                                         lhsRealTimesRhsImag, fmfValue);

    // Handle cases where the "naive" calculation results in NaN values.
    Value realIsNan =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, real, real);
    Value imagIsNan =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, imag, imag);
    Value isNan = b.create<arith::AndIOp>(realIsNan, imagIsNan);

    Value inf = b.create<arith::ConstantOp>(
        elementType,
        b.getFloatAttr(elementType,
                       APFloat::getInf(elementType.getFloatSemantics())));

    // Case 1. `lhsReal` or `lhsImag` are infinite.
    Value lhsRealIsInf =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, lhsRealAbs, inf);
    Value lhsImagIsInf =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, lhsImagAbs, inf);
    Value lhsIsInf = b.create<arith::OrIOp>(lhsRealIsInf, lhsImagIsInf);
    Value rhsRealIsNan =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, rhsReal, rhsReal);
    Value rhsImagIsNan =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, rhsImag, rhsImag);
    Value zero =
        b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
    Value one = b.create<arith::ConstantOp>(elementType,
                                            b.getFloatAttr(elementType, 1));
    Value lhsRealIsInfFloat =
        b.create<arith::SelectOp>(lhsRealIsInf, one, zero);
    lhsReal = b.create<arith::SelectOp>(
        lhsIsInf, b.create<math::CopySignOp>(lhsRealIsInfFloat, lhsReal),
        lhsReal);
    Value lhsImagIsInfFloat =
        b.create<arith::SelectOp>(lhsImagIsInf, one, zero);
    lhsImag = b.create<arith::SelectOp>(
        lhsIsInf, b.create<math::CopySignOp>(lhsImagIsInfFloat, lhsImag),
        lhsImag);
    Value lhsIsInfAndRhsRealIsNan =
        b.create<arith::AndIOp>(lhsIsInf, rhsRealIsNan);
    rhsReal = b.create<arith::SelectOp>(
        lhsIsInfAndRhsRealIsNan, b.create<math::CopySignOp>(zero, rhsReal),
        rhsReal);
    Value lhsIsInfAndRhsImagIsNan =
        b.create<arith::AndIOp>(lhsIsInf, rhsImagIsNan);
    rhsImag = b.create<arith::SelectOp>(
        lhsIsInfAndRhsImagIsNan, b.create<math::CopySignOp>(zero, rhsImag),
        rhsImag);

    // Case 2. `rhsReal` or `rhsImag` are infinite.
    Value rhsRealIsInf =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, rhsRealAbs, inf);
    Value rhsImagIsInf =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, rhsImagAbs, inf);
    Value rhsIsInf = b.create<arith::OrIOp>(rhsRealIsInf, rhsImagIsInf);
    Value lhsRealIsNan =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, lhsReal, lhsReal);
    Value lhsImagIsNan =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, lhsImag, lhsImag);
    Value rhsRealIsInfFloat =
        b.create<arith::SelectOp>(rhsRealIsInf, one, zero);
    rhsReal = b.create<arith::SelectOp>(
        rhsIsInf, b.create<math::CopySignOp>(rhsRealIsInfFloat, rhsReal),
        rhsReal);
    Value rhsImagIsInfFloat =
        b.create<arith::SelectOp>(rhsImagIsInf, one, zero);
    rhsImag = b.create<arith::SelectOp>(
        rhsIsInf, b.create<math::CopySignOp>(rhsImagIsInfFloat, rhsImag),
        rhsImag);
    Value rhsIsInfAndLhsRealIsNan =
        b.create<arith::AndIOp>(rhsIsInf, lhsRealIsNan);
    lhsReal = b.create<arith::SelectOp>(
        rhsIsInfAndLhsRealIsNan, b.create<math::CopySignOp>(zero, lhsReal),
        lhsReal);
    Value rhsIsInfAndLhsImagIsNan =
        b.create<arith::AndIOp>(rhsIsInf, lhsImagIsNan);
    lhsImag = b.create<arith::SelectOp>(
        rhsIsInfAndLhsImagIsNan, b.create<math::CopySignOp>(zero, lhsImag),
        lhsImag);
    Value recalc = b.create<arith::OrIOp>(lhsIsInf, rhsIsInf);

    // Case 3. One of the pairwise products of left hand side with right hand
    // side is infinite.
    Value lhsRealTimesRhsRealIsInf = b.create<arith::CmpFOp>(
        arith::CmpFPredicate::OEQ, lhsRealTimesRhsRealAbs, inf);
    Value lhsImagTimesRhsImagIsInf = b.create<arith::CmpFOp>(
        arith::CmpFPredicate::OEQ, lhsImagTimesRhsImagAbs, inf);
    Value isSpecialCase = b.create<arith::OrIOp>(lhsRealTimesRhsRealIsInf,
                                                 lhsImagTimesRhsImagIsInf);
    Value lhsRealTimesRhsImagIsInf = b.create<arith::CmpFOp>(
        arith::CmpFPredicate::OEQ, lhsRealTimesRhsImagAbs, inf);
    isSpecialCase =
        b.create<arith::OrIOp>(isSpecialCase, lhsRealTimesRhsImagIsInf);
    Value lhsImagTimesRhsRealIsInf = b.create<arith::CmpFOp>(
        arith::CmpFPredicate::OEQ, lhsImagTimesRhsRealAbs, inf);
    isSpecialCase =
        b.create<arith::OrIOp>(isSpecialCase, lhsImagTimesRhsRealIsInf);
    Type i1Type = b.getI1Type();
    Value notRecalc = b.create<arith::XOrIOp>(
        recalc,
        b.create<arith::ConstantOp>(i1Type, b.getIntegerAttr(i1Type, 1)));
    isSpecialCase = b.create<arith::AndIOp>(isSpecialCase, notRecalc);
    Value isSpecialCaseAndLhsRealIsNan =
        b.create<arith::AndIOp>(isSpecialCase, lhsRealIsNan);
    lhsReal = b.create<arith::SelectOp>(
        isSpecialCaseAndLhsRealIsNan, b.create<math::CopySignOp>(zero, lhsReal),
        lhsReal);
    Value isSpecialCaseAndLhsImagIsNan =
        b.create<arith::AndIOp>(isSpecialCase, lhsImagIsNan);
    lhsImag = b.create<arith::SelectOp>(
        isSpecialCaseAndLhsImagIsNan, b.create<math::CopySignOp>(zero, lhsImag),
        lhsImag);
    Value isSpecialCaseAndRhsRealIsNan =
        b.create<arith::AndIOp>(isSpecialCase, rhsRealIsNan);
    rhsReal = b.create<arith::SelectOp>(
        isSpecialCaseAndRhsRealIsNan, b.create<math::CopySignOp>(zero, rhsReal),
        rhsReal);
    Value isSpecialCaseAndRhsImagIsNan =
        b.create<arith::AndIOp>(isSpecialCase, rhsImagIsNan);
    rhsImag = b.create<arith::SelectOp>(
        isSpecialCaseAndRhsImagIsNan, b.create<math::CopySignOp>(zero, rhsImag),
        rhsImag);
    recalc = b.create<arith::OrIOp>(recalc, isSpecialCase);
    recalc = b.create<arith::AndIOp>(isNan, recalc);

    // Recalculate real part.
    lhsRealTimesRhsReal = b.create<arith::MulFOp>(lhsReal, rhsReal, fmfValue);
    lhsImagTimesRhsImag = b.create<arith::MulFOp>(lhsImag, rhsImag, fmfValue);
    Value newReal = b.create<arith::SubFOp>(lhsRealTimesRhsReal,
                                            lhsImagTimesRhsImag, fmfValue);
    real = b.create<arith::SelectOp>(
        recalc, b.create<arith::MulFOp>(inf, newReal, fmfValue), real);

    // Recalculate imag part.
    lhsImagTimesRhsReal = b.create<arith::MulFOp>(lhsImag, rhsReal, fmfValue);
    lhsRealTimesRhsImag = b.create<arith::MulFOp>(lhsReal, rhsImag, fmfValue);
    Value newImag = b.create<arith::AddFOp>(lhsImagTimesRhsReal,
                                            lhsRealTimesRhsImag, fmfValue);
    imag = b.create<arith::SelectOp>(
        recalc, b.create<arith::MulFOp>(inf, newImag, fmfValue), imag);

    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, imag);
    return success();
  }
};

struct NegOpConversion : public OpConversionPattern<complex::NegOp> {
  using OpConversionPattern<complex::NegOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::NegOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    auto type = cast<ComplexType>(adaptor.getComplex().getType());
    auto elementType = cast<FloatType>(type.getElementType());

    Value real =
        rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
    Value imag =
        rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
    Value negReal = rewriter.create<arith::NegFOp>(loc, real);
    Value negImag = rewriter.create<arith::NegFOp>(loc, imag);
    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, negReal, negImag);
    return success();
  }
};

struct SinOpConversion : public TrigonometricOpConversion<complex::SinOp> {
  using TrigonometricOpConversion<complex::SinOp>::TrigonometricOpConversion;

  std::pair<Value, Value> combine(Location loc, Value scaledExp,
                                  Value reciprocalExp, Value sin, Value cos,
                                  ConversionPatternRewriter &rewriter,
                                  arith::FastMathFlagsAttr fmf) const override {
    // Complex sine is defined as;
    //   sin(x + iy) = -0.5i * (exp(i(x + iy)) - exp(-i(x + iy)))
    // Plugging in:
    //   exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x))
    //   exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x)))
    // and defining t := exp(y)
    // We get:
    //   Re(sin(x + iy)) = (0.5*t + 0.5/t) * sin x
    //   Im(cos(x + iy)) = (0.5*t - 0.5/t) * cos x
    Value sum =
        rewriter.create<arith::AddFOp>(loc, scaledExp, reciprocalExp, fmf);
    Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, sin, fmf);
    Value diff =
        rewriter.create<arith::SubFOp>(loc, scaledExp, reciprocalExp, fmf);
    Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, cos, fmf);
    return {resultReal, resultImag};
  }
};

// The algorithm is listed in https://dl.acm.org/doi/pdf/10.1145/363717.363780.
struct SqrtOpConversion : public OpConversionPattern<complex::SqrtOp> {
  using OpConversionPattern<complex::SqrtOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::SqrtOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    ImplicitLocOpBuilder b(op.getLoc(), rewriter);

    auto type = cast<ComplexType>(op.getType());
    auto elementType = cast<FloatType>(type.getElementType());
    arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();

    auto cst = [&](APFloat v) {
      return b.create<arith::ConstantOp>(elementType,
                                         b.getFloatAttr(elementType, v));
    };
    const auto &floatSemantics = elementType.getFloatSemantics();
    Value zero = cst(APFloat::getZero(floatSemantics));
    Value half = b.create<arith::ConstantOp>(elementType,
                                             b.getFloatAttr(elementType, 0.5));

    Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
    Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
    Value absSqrt = computeAbs(real, imag, fmf, b, AbsFn::sqrt);
    Value argArg = b.create<math::Atan2Op>(imag, real, fmf);
    Value sqrtArg = b.create<arith::MulFOp>(argArg, half, fmf);
    Value cos = b.create<math::CosOp>(sqrtArg, fmf);
    Value sin = b.create<math::SinOp>(sqrtArg, fmf);
    // sin(atan2(0, inf)) = 0, sqrt(abs(inf)) = inf, but we can't multiply
    // 0 * inf.
    Value sinIsZero =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, sin, zero, fmf);

    Value resultReal = b.create<arith::MulFOp>(absSqrt, cos, fmf);
    Value resultImag = b.create<arith::SelectOp>(
        sinIsZero, zero, b.create<arith::MulFOp>(absSqrt, sin, fmf));
    if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan |
                                            arith::FastMathFlags::ninf)) {
      Value inf = cst(APFloat::getInf(floatSemantics));
      Value negInf = cst(APFloat::getInf(floatSemantics, true));
      Value nan = cst(APFloat::getNaN(floatSemantics));
      Value absImag = b.create<math::AbsFOp>(elementType, imag, fmf);

      Value absImagIsInf =
          b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absImag, inf, fmf);
      Value absImagIsNotInf =
          b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, absImag, inf, fmf);
      Value realIsInf =
          b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, inf, fmf);
      Value realIsNegInf =
          b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, negInf, fmf);

      resultReal = b.create<arith::SelectOp>(
          b.create<arith::AndIOp>(realIsNegInf, absImagIsNotInf), zero,
          resultReal);
      resultReal = b.create<arith::SelectOp>(
          b.create<arith::OrIOp>(absImagIsInf, realIsInf), inf, resultReal);

      Value imagSignInf = b.create<math::CopySignOp>(inf, imag, fmf);
      resultImag = b.create<arith::SelectOp>(
          b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, absSqrt, absSqrt),
          nan, resultImag);
      resultImag = b.create<arith::SelectOp>(
          b.create<arith::OrIOp>(absImagIsInf, realIsNegInf), imagSignInf,
          resultImag);
    }

    Value resultIsZero =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absSqrt, zero, fmf);
    resultReal = b.create<arith::SelectOp>(resultIsZero, zero, resultReal);
    resultImag = b.create<arith::SelectOp>(resultIsZero, zero, resultImag);

    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
                                                   resultImag);
    return success();
  }
};

struct SignOpConversion : public OpConversionPattern<complex::SignOp> {
  using OpConversionPattern<complex::SignOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::SignOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto type = cast<ComplexType>(adaptor.getComplex().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
    arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

    Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
    Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
    Value zero =
        b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
    Value realIsZero =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero);
    Value imagIsZero =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero);
    Value isZero = b.create<arith::AndIOp>(realIsZero, imagIsZero);
    auto abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex(), fmf);
    Value realSign = b.create<arith::DivFOp>(real, abs, fmf);
    Value imagSign = b.create<arith::DivFOp>(imag, abs, fmf);
    Value sign = b.create<complex::CreateOp>(type, realSign, imagSign);
    rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isZero,
                                                 adaptor.getComplex(), sign);
    return success();
  }
};

template <typename Op>
struct TanTanhOpConversion : public OpConversionPattern<Op> {
  using OpConversionPattern<Op>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(Op op, typename Op::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    ImplicitLocOpBuilder b(op.getLoc(), rewriter);
    auto loc = op.getLoc();
    auto type = cast<ComplexType>(adaptor.getComplex().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
    const auto &floatSemantics = elementType.getFloatSemantics();

    Value real =
        b.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
    Value imag =
        b.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
    Value negOne = b.create<arith::ConstantOp>(
        elementType, b.getFloatAttr(elementType, -1.0));

    if constexpr (std::is_same_v<Op, complex::TanOp>) {
      // tan(x+yi) = -i*tanh(-y + xi)
      std::swap(real, imag);
      real = b.create<arith::MulFOp>(real, negOne, fmf);
    }

    auto cst = [&](APFloat v) {
      return b.create<arith::ConstantOp>(elementType,
                                         b.getFloatAttr(elementType, v));
    };
    Value inf = cst(APFloat::getInf(floatSemantics));
    Value four = b.create<arith::ConstantOp>(elementType,
                                             b.getFloatAttr(elementType, 4.0));
    Value twoReal = b.create<arith::AddFOp>(real, real, fmf);
    Value negTwoReal = b.create<arith::MulFOp>(negOne, twoReal, fmf);

    Value expTwoRealMinusOne = b.create<math::ExpM1Op>(twoReal, fmf);
    Value expNegTwoRealMinusOne = b.create<math::ExpM1Op>(negTwoReal, fmf);
    Value realNum =
        b.create<arith::SubFOp>(expTwoRealMinusOne, expNegTwoRealMinusOne, fmf);

    Value cosImag = b.create<math::CosOp>(imag, fmf);
    Value cosImagSq = b.create<arith::MulFOp>(cosImag, cosImag, fmf);
    Value twoCosTwoImagPlusOne = b.create<arith::MulFOp>(cosImagSq, four, fmf);
    Value sinImag = b.create<math::SinOp>(imag, fmf);

    Value imagNum = b.create<arith::MulFOp>(
        four, b.create<arith::MulFOp>(cosImag, sinImag, fmf), fmf);

    Value expSumMinusTwo =
        b.create<arith::AddFOp>(expTwoRealMinusOne, expNegTwoRealMinusOne, fmf);
    Value denom =
        b.create<arith::AddFOp>(expSumMinusTwo, twoCosTwoImagPlusOne, fmf);

    Value isInf = b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
                                          expSumMinusTwo, inf, fmf);
    Value realLimit = b.create<math::CopySignOp>(negOne, real, fmf);

    Value resultReal = b.create<arith::SelectOp>(
        isInf, realLimit, b.create<arith::DivFOp>(realNum, denom, fmf));
    Value resultImag = b.create<arith::DivFOp>(imagNum, denom, fmf);

    if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan |
                                            arith::FastMathFlags::ninf)) {
      Value absReal = b.create<math::AbsFOp>(real, fmf);
      Value zero = b.create<arith::ConstantOp>(
          elementType, b.getFloatAttr(elementType, 0.0));
      Value nan = cst(APFloat::getNaN(floatSemantics));

      Value absRealIsInf =
          b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absReal, inf, fmf);
      Value imagIsZero =
          b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero, fmf);
      Value absRealIsNotInf = b.create<arith::XOrIOp>(
          absRealIsInf, b.create<arith::ConstantIntOp>(true, /*width=*/1));

      Value imagNumIsNaN = b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO,
                                                   imagNum, imagNum, fmf);
      Value resultRealIsNaN =
          b.create<arith::AndIOp>(imagNumIsNaN, absRealIsNotInf);
      Value resultImagIsZero = b.create<arith::OrIOp>(
          imagIsZero, b.create<arith::AndIOp>(absRealIsInf, imagNumIsNaN));

      resultReal = b.create<arith::SelectOp>(resultRealIsNaN, nan, resultReal);
      resultImag =
          b.create<arith::SelectOp>(resultImagIsZero, zero, resultImag);
    }

    if constexpr (std::is_same_v<Op, complex::TanOp>) {
      // tan(x+yi) = -i*tanh(-y + xi)
      std::swap(resultReal, resultImag);
      resultImag = b.create<arith::MulFOp>(resultImag, negOne, fmf);
    }

    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
                                                   resultImag);
    return success();
  }
};

struct ConjOpConversion : public OpConversionPattern<complex::ConjOp> {
  using OpConversionPattern<complex::ConjOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::ConjOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    auto type = cast<ComplexType>(adaptor.getComplex().getType());
    auto elementType = cast<FloatType>(type.getElementType());
    Value real =
        rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
    Value imag =
        rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
    Value negImag = rewriter.create<arith::NegFOp>(loc, elementType, imag);

    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, negImag);

    return success();
  }
};

/// Converts lhs^y = (a+bi)^(c+di) to
///    (a*a+b*b)^(0.5c) * exp(-d*atan2(b,a)) * (cos(q) + i*sin(q)),
///    where q = c*atan2(b,a)+0.5d*ln(a*a+b*b)
static Value powOpConversionImpl(mlir::ImplicitLocOpBuilder &builder,
                                 ComplexType type, Value lhs, Value c, Value d,
                                 arith::FastMathFlags fmf) {
  auto elementType = cast<FloatType>(type.getElementType());

  Value a = builder.create<complex::ReOp>(lhs);
  Value b = builder.create<complex::ImOp>(lhs);

  Value abs = builder.create<complex::AbsOp>(lhs, fmf);
  Value absToC = builder.create<math::PowFOp>(abs, c, fmf);

  Value negD = builder.create<arith::NegFOp>(d, fmf);
  Value argLhs = builder.create<math::Atan2Op>(b, a, fmf);
  Value negDArgLhs = builder.create<arith::MulFOp>(negD, argLhs, fmf);
  Value expNegDArgLhs = builder.create<math::ExpOp>(negDArgLhs, fmf);

  Value coeff = builder.create<arith::MulFOp>(absToC, expNegDArgLhs, fmf);
  Value lnAbs = builder.create<math::LogOp>(abs, fmf);
  Value cArgLhs = builder.create<arith::MulFOp>(c, argLhs, fmf);
  Value dLnAbs = builder.create<arith::MulFOp>(d, lnAbs, fmf);
  Value q = builder.create<arith::AddFOp>(cArgLhs, dLnAbs, fmf);
  Value cosQ = builder.create<math::CosOp>(q, fmf);
  Value sinQ = builder.create<math::SinOp>(q, fmf);

  Value inf = builder.create<arith::ConstantOp>(
      elementType,
      builder.getFloatAttr(elementType,
                           APFloat::getInf(elementType.getFloatSemantics())));
  Value zero = builder.create<arith::ConstantOp>(
      elementType, builder.getFloatAttr(elementType, 0.0));
  Value one = builder.create<arith::ConstantOp>(
      elementType, builder.getFloatAttr(elementType, 1.0));
  Value complexOne = builder.create<complex::CreateOp>(type, one, zero);
  Value complexZero = builder.create<complex::CreateOp>(type, zero, zero);
  Value complexInf = builder.create<complex::CreateOp>(type, inf, zero);

  // Case 0:
  // d^c is 0 if d is 0 and c > 0. 0^0 is defined to be 1.0, see
  // Branch Cuts for Complex Elementary Functions or Much Ado About
  // Nothing's Sign Bit, W. Kahan, Section 10.
  Value absEqZero =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, abs, zero, fmf);
  Value dEqZero =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, d, zero, fmf);
  Value cEqZero =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, c, zero, fmf);
  Value bEqZero =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, b, zero, fmf);

  Value zeroLeC =
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLE, zero, c, fmf);
  Value coeffCosQ = builder.create<arith::MulFOp>(coeff, cosQ, fmf);
  Value coeffSinQ = builder.create<arith::MulFOp>(coeff, sinQ, fmf);
  Value complexOneOrZero =
      builder.create<arith::SelectOp>(cEqZero, complexOne, complexZero);
  Value coeffCosSin =
      builder.create<complex::CreateOp>(type, coeffCosQ, coeffSinQ);
  Value cutoff0 = builder.create<arith::SelectOp>(
      builder.create<arith::AndIOp>(
          builder.create<arith::AndIOp>(absEqZero, dEqZero), zeroLeC),
      complexOneOrZero, coeffCosSin);

  // Case 1:
  // x^0 is defined to be 1 for any x, see
  // Branch Cuts for Complex Elementary Functions or Much Ado About
  // Nothing's Sign Bit, W. Kahan, Section 10.
  Value rhsEqZero = builder.create<arith::AndIOp>(cEqZero, dEqZero);
  Value cutoff1 =
      builder.create<arith::SelectOp>(rhsEqZero, complexOne, cutoff0);

  // Case 2:
  // 1^(c + d*i) = 1 + 0*i
  Value lhsEqOne = builder.create<arith::AndIOp>(
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, a, one, fmf),
      bEqZero);
  Value cutoff2 =
      builder.create<arith::SelectOp>(lhsEqOne, complexOne, cutoff1);

  // Case 3:
  // inf^(c + 0*i) = inf + 0*i, c > 0
  Value lhsEqInf = builder.create<arith::AndIOp>(
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, a, inf, fmf),
      bEqZero);
  Value rhsGt0 = builder.create<arith::AndIOp>(
      dEqZero,
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, c, zero, fmf));
  Value cutoff3 = builder.create<arith::SelectOp>(
      builder.create<arith::AndIOp>(lhsEqInf, rhsGt0), complexInf, cutoff2);

  // Case 4:
  // inf^(c + 0*i) = 0 + 0*i, c < 0
  Value rhsLt0 = builder.create<arith::AndIOp>(
      dEqZero,
      builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, c, zero, fmf));
  Value cutoff4 = builder.create<arith::SelectOp>(
      builder.create<arith::AndIOp>(lhsEqInf, rhsLt0), complexZero, cutoff3);

  return cutoff4;
}

struct PowOpConversion : public OpConversionPattern<complex::PowOp> {
  using OpConversionPattern<complex::PowOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::PowOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    mlir::ImplicitLocOpBuilder builder(op.getLoc(), rewriter);
    auto type = cast<ComplexType>(adaptor.getLhs().getType());
    auto elementType = cast<FloatType>(type.getElementType());

    Value c = builder.create<complex::ReOp>(elementType, adaptor.getRhs());
    Value d = builder.create<complex::ImOp>(elementType, adaptor.getRhs());

    rewriter.replaceOp(op, {powOpConversionImpl(builder, type, adaptor.getLhs(),
                                                c, d, op.getFastmath())});
    return success();
  }
};

struct RsqrtOpConversion : public OpConversionPattern<complex::RsqrtOp> {
  using OpConversionPattern<complex::RsqrtOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::RsqrtOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
    auto type = cast<ComplexType>(adaptor.getComplex().getType());
    auto elementType = cast<FloatType>(type.getElementType());

    arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();

    auto cst = [&](APFloat v) {
      return b.create<arith::ConstantOp>(elementType,
                                         b.getFloatAttr(elementType, v));
    };
    const auto &floatSemantics = elementType.getFloatSemantics();
    Value zero = cst(APFloat::getZero(floatSemantics));
    Value inf = cst(APFloat::getInf(floatSemantics));
    Value negHalf = b.create<arith::ConstantOp>(
        elementType, b.getFloatAttr(elementType, -0.5));
    Value nan = cst(APFloat::getNaN(floatSemantics));

    Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
    Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
    Value absRsqrt = computeAbs(real, imag, fmf, b, AbsFn::rsqrt);
    Value argArg = b.create<math::Atan2Op>(imag, real, fmf);
    Value rsqrtArg = b.create<arith::MulFOp>(argArg, negHalf, fmf);
    Value cos = b.create<math::CosOp>(rsqrtArg, fmf);
    Value sin = b.create<math::SinOp>(rsqrtArg, fmf);

    Value resultReal = b.create<arith::MulFOp>(absRsqrt, cos, fmf);
    Value resultImag = b.create<arith::MulFOp>(absRsqrt, sin, fmf);

    if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan |
                                            arith::FastMathFlags::ninf)) {
      Value negOne = b.create<arith::ConstantOp>(
          elementType, b.getFloatAttr(elementType, -1));

      Value realSignedZero = b.create<math::CopySignOp>(zero, real, fmf);
      Value imagSignedZero = b.create<math::CopySignOp>(zero, imag, fmf);
      Value negImagSignedZero =
          b.create<arith::MulFOp>(negOne, imagSignedZero, fmf);

      Value absReal = b.create<math::AbsFOp>(real, fmf);
      Value absImag = b.create<math::AbsFOp>(imag, fmf);

      Value absImagIsInf =
          b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absImag, inf, fmf);
      Value realIsNan =
          b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, real, real, fmf);
      Value realIsInf =
          b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absReal, inf, fmf);
      Value inIsNanInf = b.create<arith::AndIOp>(absImagIsInf, realIsNan);

      Value resultIsZero = b.create<arith::OrIOp>(inIsNanInf, realIsInf);

      resultReal =
          b.create<arith::SelectOp>(resultIsZero, realSignedZero, resultReal);
      resultImag = b.create<arith::SelectOp>(resultIsZero, negImagSignedZero,
                                             resultImag);
    }

    Value isRealZero =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero, fmf);
    Value isImagZero =
        b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero, fmf);
    Value isZero = b.create<arith::AndIOp>(isRealZero, isImagZero);

    resultReal = b.create<arith::SelectOp>(isZero, inf, resultReal);
    resultImag = b.create<arith::SelectOp>(isZero, nan, resultImag);

    rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
                                                   resultImag);
    return success();
  }
};

struct AngleOpConversion : public OpConversionPattern<complex::AngleOp> {
  using OpConversionPattern<complex::AngleOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(complex::AngleOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    auto type = op.getType();
    arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

    Value real =
        rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex());
    Value imag =
        rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex());

    rewriter.replaceOpWithNewOp<math::Atan2Op>(op, imag, real, fmf);

    return success();
  }
};

} // namespace

void mlir::populateComplexToStandardConversionPatterns(
    RewritePatternSet &patterns) {
  // clang-format off
  patterns.add<
      AbsOpConversion,
      AngleOpConversion,
      Atan2OpConversion,
      BinaryComplexOpConversion<complex::AddOp, arith::AddFOp>,
      BinaryComplexOpConversion<complex::SubOp, arith::SubFOp>,
      ComparisonOpConversion<complex::EqualOp, arith::CmpFPredicate::OEQ>,
      ComparisonOpConversion<complex::NotEqualOp, arith::CmpFPredicate::UNE>,
      ConjOpConversion,
      CosOpConversion,
      DivOpConversion,
      ExpOpConversion,
      Expm1OpConversion,
      Log1pOpConversion,
      LogOpConversion,
      MulOpConversion,
      NegOpConversion,
      SignOpConversion,
      SinOpConversion,
      SqrtOpConversion,
      TanTanhOpConversion<complex::TanOp>,
      TanTanhOpConversion<complex::TanhOp>,
      PowOpConversion,
      RsqrtOpConversion
  >(patterns.getContext());
  // clang-format on
}

namespace {
struct ConvertComplexToStandardPass
    : public impl::ConvertComplexToStandardBase<ConvertComplexToStandardPass> {
  void runOnOperation() override;
};

void ConvertComplexToStandardPass::runOnOperation() {
  // Convert to the Standard dialect using the converter defined above.
  RewritePatternSet patterns(&getContext());
  populateComplexToStandardConversionPatterns(patterns);

  ConversionTarget target(getContext());
  target.addLegalDialect<arith::ArithDialect, math::MathDialect>();
  target.addLegalOp<complex::CreateOp, complex::ImOp, complex::ReOp>();
  if (failed(
          applyPartialConversion(getOperation(), target, std::move(patterns))))
    signalPassFailure();
}
} // namespace

std::unique_ptr<Pass> mlir::createConvertComplexToStandardPass() {
  return std::make_unique<ConvertComplexToStandardPass>();
}