1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
//===-- ComplexToLibm.cpp - conversion from Complex to libm calls ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ComplexToLibm/ComplexToLibm.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/PatternMatch.h"
#include <optional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTCOMPLEXTOLIBM
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
// Functor to resolve the function name corresponding to the given complex
// result type.
struct ComplexTypeResolver {
std::optional<bool> operator()(Type type) const {
auto complexType = cast<ComplexType>(type);
auto elementType = complexType.getElementType();
if (!isa<Float32Type, Float64Type>(elementType))
return {};
return elementType.getIntOrFloatBitWidth() == 64;
}
};
// Functor to resolve the function name corresponding to the given float result
// type.
struct FloatTypeResolver {
std::optional<bool> operator()(Type type) const {
auto elementType = cast<FloatType>(type);
if (!isa<Float32Type, Float64Type>(elementType))
return {};
return elementType.getIntOrFloatBitWidth() == 64;
}
};
// Pattern to convert scalar complex operations to calls to libm functions.
// Additionally the libm function signatures are declared.
// TypeResolver is a functor returning the libm function name according to the
// expected type double or float.
template <typename Op, typename TypeResolver = ComplexTypeResolver>
struct ScalarOpToLibmCall : public OpRewritePattern<Op> {
public:
using OpRewritePattern<Op>::OpRewritePattern;
ScalarOpToLibmCall(MLIRContext *context, StringRef floatFunc,
StringRef doubleFunc, PatternBenefit benefit)
: OpRewritePattern<Op>(context, benefit), floatFunc(floatFunc),
doubleFunc(doubleFunc){};
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
private:
std::string floatFunc, doubleFunc;
};
} // namespace
template <typename Op, typename TypeResolver>
LogicalResult ScalarOpToLibmCall<Op, TypeResolver>::matchAndRewrite(
Op op, PatternRewriter &rewriter) const {
auto module = SymbolTable::getNearestSymbolTable(op);
auto isDouble = TypeResolver()(op.getType());
if (!isDouble.has_value())
return failure();
auto name = *isDouble ? doubleFunc : floatFunc;
auto opFunc = dyn_cast_or_null<SymbolOpInterface>(
SymbolTable::lookupSymbolIn(module, name));
// Forward declare function if it hasn't already been
if (!opFunc) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&module->getRegion(0).front());
auto opFunctionTy = FunctionType::get(
rewriter.getContext(), op->getOperandTypes(), op->getResultTypes());
opFunc = func::FuncOp::create(rewriter, rewriter.getUnknownLoc(), name,
opFunctionTy);
opFunc.setPrivate();
}
assert(isa<FunctionOpInterface>(SymbolTable::lookupSymbolIn(module, name)));
rewriter.replaceOpWithNewOp<func::CallOp>(op, name, op.getType(),
op->getOperands());
return success();
}
void mlir::populateComplexToLibmConversionPatterns(RewritePatternSet &patterns,
PatternBenefit benefit) {
patterns.add<ScalarOpToLibmCall<complex::PowOp>>(patterns.getContext(),
"cpowf", "cpow", benefit);
patterns.add<ScalarOpToLibmCall<complex::SqrtOp>>(patterns.getContext(),
"csqrtf", "csqrt", benefit);
patterns.add<ScalarOpToLibmCall<complex::TanhOp>>(patterns.getContext(),
"ctanhf", "ctanh", benefit);
patterns.add<ScalarOpToLibmCall<complex::CosOp>>(patterns.getContext(),
"ccosf", "ccos", benefit);
patterns.add<ScalarOpToLibmCall<complex::SinOp>>(patterns.getContext(),
"csinf", "csin", benefit);
patterns.add<ScalarOpToLibmCall<complex::ConjOp>>(patterns.getContext(),
"conjf", "conj", benefit);
patterns.add<ScalarOpToLibmCall<complex::LogOp>>(patterns.getContext(),
"clogf", "clog", benefit);
patterns.add<ScalarOpToLibmCall<complex::AbsOp, FloatTypeResolver>>(
patterns.getContext(), "cabsf", "cabs", benefit);
patterns.add<ScalarOpToLibmCall<complex::AngleOp, FloatTypeResolver>>(
patterns.getContext(), "cargf", "carg", benefit);
patterns.add<ScalarOpToLibmCall<complex::TanOp>>(patterns.getContext(),
"ctanf", "ctan", benefit);
}
namespace {
struct ConvertComplexToLibmPass
: public impl::ConvertComplexToLibmBase<ConvertComplexToLibmPass> {
void runOnOperation() override;
};
} // namespace
void ConvertComplexToLibmPass::runOnOperation() {
auto module = getOperation();
RewritePatternSet patterns(&getContext());
populateComplexToLibmConversionPatterns(patterns, /*benefit=*/1);
ConversionTarget target(getContext());
target.addLegalDialect<func::FuncDialect>();
target.addIllegalOp<complex::PowOp, complex::SqrtOp, complex::TanhOp,
complex::CosOp, complex::SinOp, complex::ConjOp,
complex::LogOp, complex::AbsOp, complex::AngleOp,
complex::TanOp>();
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
|