aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Conversion/ArithToLLVM/ArithToLLVM.cpp
blob: 18e857c81af8d8a452fa1a9c67b2e15ea13d0b4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
//===- ArithToLLVM.cpp - Arithmetic to LLVM dialect conversion -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"

#include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h"
#include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/LLVMAttrs.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/TypeUtilities.h"
#include <type_traits>

namespace mlir {
#define GEN_PASS_DEF_ARITHTOLLVMCONVERSIONPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir

using namespace mlir;

namespace {

/// Operations whose conversion will depend on whether they are passed a
/// rounding mode attribute or not.
///
/// `SourceOp` is the source operation; `TargetOp`, the operation it will lower
/// to; `AttrConvert` is the attribute conversion to convert the rounding mode
/// attribute.
template <typename SourceOp, typename TargetOp, bool Constrained,
          template <typename, typename> typename AttrConvert =
              AttrConvertPassThrough>
struct ConstrainedVectorConvertToLLVMPattern
    : public VectorConvertToLLVMPattern<SourceOp, TargetOp, AttrConvert> {
  using VectorConvertToLLVMPattern<SourceOp, TargetOp,
                                   AttrConvert>::VectorConvertToLLVMPattern;

  LogicalResult
  matchAndRewrite(SourceOp op, typename SourceOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    if (Constrained != static_cast<bool>(op.getRoundingModeAttr()))
      return failure();
    return VectorConvertToLLVMPattern<SourceOp, TargetOp,
                                      AttrConvert>::matchAndRewrite(op, adaptor,
                                                                    rewriter);
  }
};

/// No-op bitcast. Propagate type input arg if converted source and dest types
/// are the same.
struct IdentityBitcastLowering final
    : public OpConversionPattern<arith::BitcastOp> {
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(arith::BitcastOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const final {
    Value src = adaptor.getIn();
    Type resultType = getTypeConverter()->convertType(op.getType());
    if (src.getType() != resultType)
      return rewriter.notifyMatchFailure(op, "Types are different");

    rewriter.replaceOp(op, src);
    return success();
  }
};

//===----------------------------------------------------------------------===//
// Straightforward Op Lowerings
//===----------------------------------------------------------------------===//

using AddFOpLowering =
    VectorConvertToLLVMPattern<arith::AddFOp, LLVM::FAddOp,
                               arith::AttrConvertFastMathToLLVM>;
using AddIOpLowering =
    VectorConvertToLLVMPattern<arith::AddIOp, LLVM::AddOp,
                               arith::AttrConvertOverflowToLLVM>;
using AndIOpLowering = VectorConvertToLLVMPattern<arith::AndIOp, LLVM::AndOp>;
using BitcastOpLowering =
    VectorConvertToLLVMPattern<arith::BitcastOp, LLVM::BitcastOp>;
using DivFOpLowering =
    VectorConvertToLLVMPattern<arith::DivFOp, LLVM::FDivOp,
                               arith::AttrConvertFastMathToLLVM>;
using DivSIOpLowering =
    VectorConvertToLLVMPattern<arith::DivSIOp, LLVM::SDivOp>;
using DivUIOpLowering =
    VectorConvertToLLVMPattern<arith::DivUIOp, LLVM::UDivOp>;
using ExtFOpLowering = VectorConvertToLLVMPattern<arith::ExtFOp, LLVM::FPExtOp>;
using ExtSIOpLowering =
    VectorConvertToLLVMPattern<arith::ExtSIOp, LLVM::SExtOp>;
using ExtUIOpLowering =
    VectorConvertToLLVMPattern<arith::ExtUIOp, LLVM::ZExtOp>;
using FPToSIOpLowering =
    VectorConvertToLLVMPattern<arith::FPToSIOp, LLVM::FPToSIOp>;
using FPToUIOpLowering =
    VectorConvertToLLVMPattern<arith::FPToUIOp, LLVM::FPToUIOp>;
using MaximumFOpLowering =
    VectorConvertToLLVMPattern<arith::MaximumFOp, LLVM::MaximumOp,
                               arith::AttrConvertFastMathToLLVM>;
using MaxNumFOpLowering =
    VectorConvertToLLVMPattern<arith::MaxNumFOp, LLVM::MaxNumOp,
                               arith::AttrConvertFastMathToLLVM>;
using MaxSIOpLowering =
    VectorConvertToLLVMPattern<arith::MaxSIOp, LLVM::SMaxOp>;
using MaxUIOpLowering =
    VectorConvertToLLVMPattern<arith::MaxUIOp, LLVM::UMaxOp>;
using MinimumFOpLowering =
    VectorConvertToLLVMPattern<arith::MinimumFOp, LLVM::MinimumOp,
                               arith::AttrConvertFastMathToLLVM>;
using MinNumFOpLowering =
    VectorConvertToLLVMPattern<arith::MinNumFOp, LLVM::MinNumOp,
                               arith::AttrConvertFastMathToLLVM>;
using MinSIOpLowering =
    VectorConvertToLLVMPattern<arith::MinSIOp, LLVM::SMinOp>;
using MinUIOpLowering =
    VectorConvertToLLVMPattern<arith::MinUIOp, LLVM::UMinOp>;
using MulFOpLowering =
    VectorConvertToLLVMPattern<arith::MulFOp, LLVM::FMulOp,
                               arith::AttrConvertFastMathToLLVM>;
using MulIOpLowering =
    VectorConvertToLLVMPattern<arith::MulIOp, LLVM::MulOp,
                               arith::AttrConvertOverflowToLLVM>;
using NegFOpLowering =
    VectorConvertToLLVMPattern<arith::NegFOp, LLVM::FNegOp,
                               arith::AttrConvertFastMathToLLVM>;
using OrIOpLowering = VectorConvertToLLVMPattern<arith::OrIOp, LLVM::OrOp>;
using RemFOpLowering =
    VectorConvertToLLVMPattern<arith::RemFOp, LLVM::FRemOp,
                               arith::AttrConvertFastMathToLLVM>;
using RemSIOpLowering =
    VectorConvertToLLVMPattern<arith::RemSIOp, LLVM::SRemOp>;
using RemUIOpLowering =
    VectorConvertToLLVMPattern<arith::RemUIOp, LLVM::URemOp>;
using SelectOpLowering =
    VectorConvertToLLVMPattern<arith::SelectOp, LLVM::SelectOp>;
using ShLIOpLowering =
    VectorConvertToLLVMPattern<arith::ShLIOp, LLVM::ShlOp,
                               arith::AttrConvertOverflowToLLVM>;
using ShRSIOpLowering =
    VectorConvertToLLVMPattern<arith::ShRSIOp, LLVM::AShrOp>;
using ShRUIOpLowering =
    VectorConvertToLLVMPattern<arith::ShRUIOp, LLVM::LShrOp>;
using SIToFPOpLowering =
    VectorConvertToLLVMPattern<arith::SIToFPOp, LLVM::SIToFPOp>;
using SubFOpLowering =
    VectorConvertToLLVMPattern<arith::SubFOp, LLVM::FSubOp,
                               arith::AttrConvertFastMathToLLVM>;
using SubIOpLowering =
    VectorConvertToLLVMPattern<arith::SubIOp, LLVM::SubOp,
                               arith::AttrConvertOverflowToLLVM>;
using TruncFOpLowering =
    ConstrainedVectorConvertToLLVMPattern<arith::TruncFOp, LLVM::FPTruncOp,
                                          false>;
using ConstrainedTruncFOpLowering = ConstrainedVectorConvertToLLVMPattern<
    arith::TruncFOp, LLVM::ConstrainedFPTruncIntr, true,
    arith::AttrConverterConstrainedFPToLLVM>;
using TruncIOpLowering =
    VectorConvertToLLVMPattern<arith::TruncIOp, LLVM::TruncOp,
                               arith::AttrConvertOverflowToLLVM>;
using UIToFPOpLowering =
    VectorConvertToLLVMPattern<arith::UIToFPOp, LLVM::UIToFPOp>;
using XOrIOpLowering = VectorConvertToLLVMPattern<arith::XOrIOp, LLVM::XOrOp>;

//===----------------------------------------------------------------------===//
// Op Lowering Patterns
//===----------------------------------------------------------------------===//

/// Directly lower to LLVM op.
struct ConstantOpLowering : public ConvertOpToLLVMPattern<arith::ConstantOp> {
  using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(arith::ConstantOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

/// The lowering of index_cast becomes an integer conversion since index
/// becomes an integer.  If the bit width of the source and target integer
/// types is the same, just erase the cast.  If the target type is wider,
/// sign-extend the value, otherwise truncate it.
template <typename OpTy, typename ExtCastTy>
struct IndexCastOpLowering : public ConvertOpToLLVMPattern<OpTy> {
  using ConvertOpToLLVMPattern<OpTy>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(OpTy op, typename OpTy::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

using IndexCastOpSILowering =
    IndexCastOpLowering<arith::IndexCastOp, LLVM::SExtOp>;
using IndexCastOpUILowering =
    IndexCastOpLowering<arith::IndexCastUIOp, LLVM::ZExtOp>;

struct AddUIExtendedOpLowering
    : public ConvertOpToLLVMPattern<arith::AddUIExtendedOp> {
  using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(arith::AddUIExtendedOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

template <typename ArithMulOp, bool IsSigned>
struct MulIExtendedOpLowering : public ConvertOpToLLVMPattern<ArithMulOp> {
  using ConvertOpToLLVMPattern<ArithMulOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(ArithMulOp op, typename ArithMulOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

using MulSIExtendedOpLowering =
    MulIExtendedOpLowering<arith::MulSIExtendedOp, true>;
using MulUIExtendedOpLowering =
    MulIExtendedOpLowering<arith::MulUIExtendedOp, false>;

struct CmpIOpLowering : public ConvertOpToLLVMPattern<arith::CmpIOp> {
  using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(arith::CmpIOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

struct CmpFOpLowering : public ConvertOpToLLVMPattern<arith::CmpFOp> {
  using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(arith::CmpFOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override;
};

} // namespace

//===----------------------------------------------------------------------===//
// ConstantOpLowering
//===----------------------------------------------------------------------===//

LogicalResult
ConstantOpLowering::matchAndRewrite(arith::ConstantOp op, OpAdaptor adaptor,
                                    ConversionPatternRewriter &rewriter) const {
  return LLVM::detail::oneToOneRewrite(op, LLVM::ConstantOp::getOperationName(),
                                       adaptor.getOperands(), op->getAttrs(),
                                       *getTypeConverter(), rewriter);
}

//===----------------------------------------------------------------------===//
// IndexCastOpLowering
//===----------------------------------------------------------------------===//

template <typename OpTy, typename ExtCastTy>
LogicalResult IndexCastOpLowering<OpTy, ExtCastTy>::matchAndRewrite(
    OpTy op, typename OpTy::Adaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  Type resultType = op.getResult().getType();
  Type targetElementType =
      this->typeConverter->convertType(getElementTypeOrSelf(resultType));
  Type sourceElementType =
      this->typeConverter->convertType(getElementTypeOrSelf(op.getIn()));
  unsigned targetBits = targetElementType.getIntOrFloatBitWidth();
  unsigned sourceBits = sourceElementType.getIntOrFloatBitWidth();

  if (targetBits == sourceBits) {
    rewriter.replaceOp(op, adaptor.getIn());
    return success();
  }

  // Handle the scalar and 1D vector cases.
  Type operandType = adaptor.getIn().getType();
  if (!isa<LLVM::LLVMArrayType>(operandType)) {
    Type targetType = this->typeConverter->convertType(resultType);
    if (targetBits < sourceBits)
      rewriter.replaceOpWithNewOp<LLVM::TruncOp>(op, targetType,
                                                 adaptor.getIn());
    else
      rewriter.replaceOpWithNewOp<ExtCastTy>(op, targetType, adaptor.getIn());
    return success();
  }

  if (!isa<VectorType>(resultType))
    return rewriter.notifyMatchFailure(op, "expected vector result type");

  return LLVM::detail::handleMultidimensionalVectors(
      op.getOperation(), adaptor.getOperands(), *(this->getTypeConverter()),
      [&](Type llvm1DVectorTy, ValueRange operands) -> Value {
        typename OpTy::Adaptor adaptor(operands);
        if (targetBits < sourceBits) {
          return LLVM::TruncOp::create(rewriter, op.getLoc(), llvm1DVectorTy,
                                       adaptor.getIn());
        }
        return ExtCastTy::create(rewriter, op.getLoc(), llvm1DVectorTy,
                                 adaptor.getIn());
      },
      rewriter);
}

//===----------------------------------------------------------------------===//
// AddUIExtendedOpLowering
//===----------------------------------------------------------------------===//

LogicalResult AddUIExtendedOpLowering::matchAndRewrite(
    arith::AddUIExtendedOp op, OpAdaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  Type operandType = adaptor.getLhs().getType();
  Type sumResultType = op.getSum().getType();
  Type overflowResultType = op.getOverflow().getType();

  if (!LLVM::isCompatibleType(operandType))
    return failure();

  MLIRContext *ctx = rewriter.getContext();
  Location loc = op.getLoc();

  // Handle the scalar and 1D vector cases.
  if (!isa<LLVM::LLVMArrayType>(operandType)) {
    Type newOverflowType = typeConverter->convertType(overflowResultType);
    Type structType =
        LLVM::LLVMStructType::getLiteral(ctx, {sumResultType, newOverflowType});
    Value addOverflow = LLVM::UAddWithOverflowOp::create(
        rewriter, loc, structType, adaptor.getLhs(), adaptor.getRhs());
    Value sumExtracted =
        LLVM::ExtractValueOp::create(rewriter, loc, addOverflow, 0);
    Value overflowExtracted =
        LLVM::ExtractValueOp::create(rewriter, loc, addOverflow, 1);
    rewriter.replaceOp(op, {sumExtracted, overflowExtracted});
    return success();
  }

  if (!isa<VectorType>(sumResultType))
    return rewriter.notifyMatchFailure(loc, "expected vector result types");

  return rewriter.notifyMatchFailure(loc,
                                     "ND vector types are not supported yet");
}

//===----------------------------------------------------------------------===//
// MulIExtendedOpLowering
//===----------------------------------------------------------------------===//

template <typename ArithMulOp, bool IsSigned>
LogicalResult MulIExtendedOpLowering<ArithMulOp, IsSigned>::matchAndRewrite(
    ArithMulOp op, typename ArithMulOp::Adaptor adaptor,
    ConversionPatternRewriter &rewriter) const {
  Type resultType = adaptor.getLhs().getType();

  if (!LLVM::isCompatibleType(resultType))
    return failure();

  Location loc = op.getLoc();

  // Handle the scalar and 1D vector cases. Because LLVM does not have a
  // matching extended multiplication intrinsic, perform regular multiplication
  // on operands zero-extended to i(2*N) bits, and truncate the results back to
  // iN types.
  if (!isa<LLVM::LLVMArrayType>(resultType)) {
    // Shift amount necessary to extract the high bits from widened result.
    TypedAttr shiftValAttr;

    if (auto intTy = dyn_cast<IntegerType>(resultType)) {
      unsigned resultBitwidth = intTy.getWidth();
      auto attrTy = rewriter.getIntegerType(resultBitwidth * 2);
      shiftValAttr = rewriter.getIntegerAttr(attrTy, resultBitwidth);
    } else {
      auto vecTy = cast<VectorType>(resultType);
      unsigned resultBitwidth = vecTy.getElementTypeBitWidth();
      auto attrTy = VectorType::get(
          vecTy.getShape(), rewriter.getIntegerType(resultBitwidth * 2));
      shiftValAttr = SplatElementsAttr::get(
          attrTy, APInt(resultBitwidth * 2, resultBitwidth));
    }
    Type wideType = shiftValAttr.getType();
    assert(LLVM::isCompatibleType(wideType) &&
           "LLVM dialect should support all signless integer types");

    using LLVMExtOp = std::conditional_t<IsSigned, LLVM::SExtOp, LLVM::ZExtOp>;
    Value lhsExt = LLVMExtOp::create(rewriter, loc, wideType, adaptor.getLhs());
    Value rhsExt = LLVMExtOp::create(rewriter, loc, wideType, adaptor.getRhs());
    Value mulExt = LLVM::MulOp::create(rewriter, loc, wideType, lhsExt, rhsExt);

    // Split the 2*N-bit wide result into two N-bit values.
    Value low = LLVM::TruncOp::create(rewriter, loc, resultType, mulExt);
    Value shiftVal = LLVM::ConstantOp::create(rewriter, loc, shiftValAttr);
    Value highExt = LLVM::LShrOp::create(rewriter, loc, mulExt, shiftVal);
    Value high = LLVM::TruncOp::create(rewriter, loc, resultType, highExt);

    rewriter.replaceOp(op, {low, high});
    return success();
  }

  if (!isa<VectorType>(resultType))
    return rewriter.notifyMatchFailure(op, "expected vector result type");

  return rewriter.notifyMatchFailure(op,
                                     "ND vector types are not supported yet");
}

//===----------------------------------------------------------------------===//
// CmpIOpLowering
//===----------------------------------------------------------------------===//

// Convert arith.cmp predicate into the LLVM dialect CmpPredicate. The two enums
// share numerical values so just cast.
template <typename LLVMPredType, typename PredType>
static LLVMPredType convertCmpPredicate(PredType pred) {
  return static_cast<LLVMPredType>(pred);
}

LogicalResult
CmpIOpLowering::matchAndRewrite(arith::CmpIOp op, OpAdaptor adaptor,
                                ConversionPatternRewriter &rewriter) const {
  Type operandType = adaptor.getLhs().getType();
  Type resultType = op.getResult().getType();

  // Handle the scalar and 1D vector cases.
  if (!isa<LLVM::LLVMArrayType>(operandType)) {
    rewriter.replaceOpWithNewOp<LLVM::ICmpOp>(
        op, typeConverter->convertType(resultType),
        convertCmpPredicate<LLVM::ICmpPredicate>(op.getPredicate()),
        adaptor.getLhs(), adaptor.getRhs());
    return success();
  }

  if (!isa<VectorType>(resultType))
    return rewriter.notifyMatchFailure(op, "expected vector result type");

  return LLVM::detail::handleMultidimensionalVectors(
      op.getOperation(), adaptor.getOperands(), *getTypeConverter(),
      [&](Type llvm1DVectorTy, ValueRange operands) {
        OpAdaptor adaptor(operands);
        return LLVM::ICmpOp::create(
            rewriter, op.getLoc(), llvm1DVectorTy,
            convertCmpPredicate<LLVM::ICmpPredicate>(op.getPredicate()),
            adaptor.getLhs(), adaptor.getRhs());
      },
      rewriter);
}

//===----------------------------------------------------------------------===//
// CmpFOpLowering
//===----------------------------------------------------------------------===//

LogicalResult
CmpFOpLowering::matchAndRewrite(arith::CmpFOp op, OpAdaptor adaptor,
                                ConversionPatternRewriter &rewriter) const {
  Type operandType = adaptor.getLhs().getType();
  Type resultType = op.getResult().getType();
  LLVM::FastmathFlags fmf =
      arith::convertArithFastMathFlagsToLLVM(op.getFastmath());

  // Handle the scalar and 1D vector cases.
  if (!isa<LLVM::LLVMArrayType>(operandType)) {
    rewriter.replaceOpWithNewOp<LLVM::FCmpOp>(
        op, typeConverter->convertType(resultType),
        convertCmpPredicate<LLVM::FCmpPredicate>(op.getPredicate()),
        adaptor.getLhs(), adaptor.getRhs(), fmf);
    return success();
  }

  if (!isa<VectorType>(resultType))
    return rewriter.notifyMatchFailure(op, "expected vector result type");

  return LLVM::detail::handleMultidimensionalVectors(
      op.getOperation(), adaptor.getOperands(), *getTypeConverter(),
      [&](Type llvm1DVectorTy, ValueRange operands) {
        OpAdaptor adaptor(operands);
        return LLVM::FCmpOp::create(
            rewriter, op.getLoc(), llvm1DVectorTy,
            convertCmpPredicate<LLVM::FCmpPredicate>(op.getPredicate()),
            adaptor.getLhs(), adaptor.getRhs(), fmf);
      },
      rewriter);
}

//===----------------------------------------------------------------------===//
// Pass Definition
//===----------------------------------------------------------------------===//

namespace {
struct ArithToLLVMConversionPass
    : public impl::ArithToLLVMConversionPassBase<ArithToLLVMConversionPass> {
  using Base::Base;

  void runOnOperation() override {
    LLVMConversionTarget target(getContext());
    RewritePatternSet patterns(&getContext());

    LowerToLLVMOptions options(&getContext());
    if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
      options.overrideIndexBitwidth(indexBitwidth);

    LLVMTypeConverter converter(&getContext(), options);
    arith::populateCeilFloorDivExpandOpsPatterns(patterns);
    arith::populateArithToLLVMConversionPatterns(converter, patterns);

    if (failed(applyPartialConversion(getOperation(), target,
                                      std::move(patterns))))
      signalPassFailure();
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// ConvertToLLVMPatternInterface implementation
//===----------------------------------------------------------------------===//

namespace {
/// Implement the interface to convert MemRef to LLVM.
struct ArithToLLVMDialectInterface : public ConvertToLLVMPatternInterface {
  using ConvertToLLVMPatternInterface::ConvertToLLVMPatternInterface;
  void loadDependentDialects(MLIRContext *context) const final {
    context->loadDialect<LLVM::LLVMDialect>();
  }

  /// Hook for derived dialect interface to provide conversion patterns
  /// and mark dialect legal for the conversion target.
  void populateConvertToLLVMConversionPatterns(
      ConversionTarget &target, LLVMTypeConverter &typeConverter,
      RewritePatternSet &patterns) const final {
    arith::populateCeilFloorDivExpandOpsPatterns(patterns);
    arith::populateArithToLLVMConversionPatterns(typeConverter, patterns);
  }
};
} // namespace

void mlir::arith::registerConvertArithToLLVMInterface(
    DialectRegistry &registry) {
  registry.addExtension(+[](MLIRContext *ctx, arith::ArithDialect *dialect) {
    dialect->addInterfaces<ArithToLLVMDialectInterface>();
  });
}

//===----------------------------------------------------------------------===//
// Pattern Population
//===----------------------------------------------------------------------===//

void mlir::arith::populateArithToLLVMConversionPatterns(
    const LLVMTypeConverter &converter, RewritePatternSet &patterns) {

  // Set a higher pattern benefit for IdentityBitcastLowering so it will run
  // before BitcastOpLowering.
  patterns.add<IdentityBitcastLowering>(converter, patterns.getContext(),
                                        /*patternBenefit*/ 10);

  // clang-format off
  patterns.add<
    AddFOpLowering,
    AddIOpLowering,
    AndIOpLowering,
    AddUIExtendedOpLowering,
    BitcastOpLowering,
    ConstantOpLowering,
    CmpFOpLowering,
    CmpIOpLowering,
    DivFOpLowering,
    DivSIOpLowering,
    DivUIOpLowering,
    ExtFOpLowering,
    ExtSIOpLowering,
    ExtUIOpLowering,
    FPToSIOpLowering,
    FPToUIOpLowering,
    IndexCastOpSILowering,
    IndexCastOpUILowering,
    MaximumFOpLowering,
    MaxNumFOpLowering,
    MaxSIOpLowering,
    MaxUIOpLowering,
    MinimumFOpLowering,
    MinNumFOpLowering,
    MinSIOpLowering,
    MinUIOpLowering,
    MulFOpLowering,
    MulIOpLowering,
    MulSIExtendedOpLowering,
    MulUIExtendedOpLowering,
    NegFOpLowering,
    OrIOpLowering,
    RemFOpLowering,
    RemSIOpLowering,
    RemUIOpLowering,
    SelectOpLowering,
    ShLIOpLowering,
    ShRSIOpLowering,
    ShRUIOpLowering,
    SIToFPOpLowering,
    SubFOpLowering,
    SubIOpLowering,
    TruncFOpLowering,
    ConstrainedTruncFOpLowering,
    TruncIOpLowering,
    UIToFPOpLowering,
    XOrIOpLowering
  >(converter);
  // clang-format on
}