aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/CAPI/Dialect/Linalg.cpp
blob: 21db18dfd47ed28031eddd225bacb77400d7c516 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
//===- Linalg.cpp - C Interface for Linalg dialect ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir-c/Dialect/Linalg.h"
#include "mlir/CAPI/Registration.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"

using namespace mlir;
using namespace mlir::linalg;

/// Apply the special region builder for the builtin named Linalg op.
/// Assert that `op` is a builtin named Linalg op.
void mlirLinalgFillBuiltinNamedOpRegion(MlirOperation mlirOp) {
  Operation *op = unwrap(mlirOp);
  auto linalgOp = cast<LinalgOp>(op);
  auto *dialect = static_cast<LinalgDialect *>(linalgOp->getDialect());
  LinalgDialect::RegionBuilderFunType fun =
      dialect->getRegionBuilder(op->getName().getStringRef());

  assert(fun && "Expected a builtin named Linalg op.");
  assert(op->getNumRegions() == 1 && "Expected Linalg op with 1 region");
  assert(op->getRegion(0).getBlocks().empty() &&
         "Expected Linalg op with 0 blocks");

  SmallVector<Type, 8> argTypes;
  SmallVector<Location, 8> argLocs;
  for (OpOperand &opOperand : linalgOp->getOpOperands()) {
    argTypes.push_back(getElementTypeOrSelf(opOperand.get().getType()));
    argLocs.push_back(opOperand.get().getLoc());
  }

  ImplicitLocOpBuilder b(op->getLoc(), op->getContext());
  Region &region = op->getRegion(0);
  Block *body = b.createBlock(&region, /*insertPt=*/{}, argTypes, argLocs);
  b.setInsertionPointToStart(body);
  fun(b, *body, op->getAttrs(), /*emitError=*/{});
}

MLIR_CAPI_EXPORTED bool mlirLinalgIsAContractionOp(MlirOperation op) {
  auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(op));
  // isaContractionOpInterface handles null linalgOp internally.
  return linalg::isaContractionOpInterface(linalgOp);
}

MLIR_CAPI_EXPORTED MlirLinalgContractionDimensions
mlirLinalgInferContractionDimensions(MlirOperation op) {
  MlirLinalgContractionDimensions result{};
  auto linalgOp = dyn_cast<linalg::LinalgOp>(unwrap(op));
  if (!linalgOp)
    return result;

  FailureOr<linalg::ContractionDimensions> maybeDims =
      linalg::inferContractionDims(linalgOp);
  if (failed(maybeDims))
    return result;

  linalg::ContractionDimensions contractionDims = *maybeDims;
  MLIRContext *ctx = linalgOp.getContext();

  auto toAttr = [&ctx](const SmallVector<unsigned, 2> &vals) -> MlirAttribute {
    return wrap(
        DenseI32ArrayAttr::get(ctx, llvm::to_vector_of<int32_t, 2>(vals)));
  };

  result.batch = toAttr(contractionDims.batch);
  result.m = toAttr(contractionDims.m);
  result.n = toAttr(contractionDims.n);
  result.k = toAttr(contractionDims.k);

  return result;
}

MLIR_CAPI_EXPORTED bool mlirLinalgIsAConvolutionOp(MlirOperation op) {
  auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(op));
  if (!linalgOp)
    return false;

  return linalg::isaConvolutionOpInterface(linalgOp);
}

MLIR_CAPI_EXPORTED MlirLinalgConvolutionDimensions
mlirLinalgInferConvolutionDimensions(MlirOperation op) {
  MlirLinalgConvolutionDimensions result{};
  auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(op));
  if (!linalgOp)
    return result;

  FailureOr<linalg::ConvolutionDimensions> maybeDims =
      linalg::inferConvolutionDims(linalgOp);
  if (failed(maybeDims))
    return result;

  linalg::ConvolutionDimensions dims = *maybeDims;
  MLIRContext *ctx = linalgOp.getContext();

  auto toI32Attr =
      [&ctx](const SmallVector<unsigned, 2> &vals) -> MlirAttribute {
    return wrap(DenseI32ArrayAttr::get(ctx, llvm::to_vector_of<int32_t>(vals)));
  };

  auto toI64Attr =
      [&ctx](const SmallVector<int64_t, 2> &vals) -> MlirAttribute {
    return wrap(DenseI64ArrayAttr::get(ctx, vals));
  };

  result.batch = toI32Attr(dims.batch);
  result.outputImage = toI32Attr(dims.outputImage);
  result.outputChannel = toI32Attr(dims.outputChannel);
  result.filterLoop = toI32Attr(dims.filterLoop);
  result.inputChannel = toI32Attr(dims.inputChannel);
  result.depth = toI32Attr(dims.depth);
  result.strides = toI64Attr(dims.strides);
  result.dilations = toI64Attr(dims.dilations);

  return result;
}

MLIR_CAPI_EXPORTED MlirAttribute
mlirLinalgGetIndexingMapsAttribute(MlirOperation op) {
  auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(op));
  if (!linalgOp)
    return MlirAttribute{nullptr};

  ArrayAttr attr = linalgOp.getIndexingMaps();
  return wrap(attr);
}

MLIR_DEFINE_CAPI_DIALECT_REGISTRATION(Linalg, linalg, LinalgDialect)