1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
//===- DenseAnalysis.cpp - Dense data-flow analysis -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/DenseAnalysis.h"
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/Region.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include <cassert>
#include <optional>
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// AbstractDenseForwardDataFlowAnalysis
//===----------------------------------------------------------------------===//
void AbstractDenseForwardDataFlowAnalysis::initializeEquivalentLatticeAnchor(
Operation *top) {
top->walk([&](Operation *op) {
if (isa<RegionBranchOpInterface, CallOpInterface>(op))
return;
buildOperationEquivalentLatticeAnchor(op);
});
}
LogicalResult AbstractDenseForwardDataFlowAnalysis::initialize(Operation *top) {
// Visit every operation and block.
if (failed(processOperation(top)))
return failure();
for (Region ®ion : top->getRegions()) {
for (Block &block : region) {
visitBlock(&block);
for (Operation &op : block)
if (failed(initialize(&op)))
return failure();
}
}
return success();
}
LogicalResult AbstractDenseForwardDataFlowAnalysis::visit(ProgramPoint *point) {
if (!point->isBlockStart())
return processOperation(point->getPrevOp());
visitBlock(point->getBlock());
return success();
}
void AbstractDenseForwardDataFlowAnalysis::visitCallOperation(
CallOpInterface call, const AbstractDenseLattice &before,
AbstractDenseLattice *after) {
// Allow for customizing the behavior of calls to external symbols, including
// when the analysis is explicitly marked as non-interprocedural.
auto callable =
dyn_cast_if_present<CallableOpInterface>(call.resolveCallable());
if (!getSolverConfig().isInterprocedural() ||
(callable && !callable.getCallableRegion())) {
return visitCallControlFlowTransfer(
call, CallControlFlowAction::ExternalCallee, before, after);
}
const auto *predecessors = getOrCreateFor<PredecessorState>(
getProgramPointAfter(call.getOperation()), getProgramPointAfter(call));
// Otherwise, if not all return sites are known, then conservatively assume we
// can't reason about the data-flow.
if (!predecessors->allPredecessorsKnown())
return setToEntryState(after);
for (Operation *predecessor : predecessors->getKnownPredecessors()) {
// Get the lattices at callee return:
//
// func.func @callee() {
// ...
// return // predecessor
// // latticeAtCalleeReturn
// }
// func.func @caller() {
// ...
// call @callee
// // latticeAfterCall
// ...
// }
AbstractDenseLattice *latticeAfterCall = after;
const AbstractDenseLattice *latticeAtCalleeReturn =
getLatticeFor(getProgramPointAfter(call.getOperation()),
getProgramPointAfter(predecessor));
visitCallControlFlowTransfer(call, CallControlFlowAction::ExitCallee,
*latticeAtCalleeReturn, latticeAfterCall);
}
}
LogicalResult
AbstractDenseForwardDataFlowAnalysis::processOperation(Operation *op) {
ProgramPoint *point = getProgramPointAfter(op);
// If the containing block is not executable, bail out.
if (op->getBlock() != nullptr &&
!getOrCreateFor<Executable>(point, getProgramPointBefore(op->getBlock()))
->isLive())
return success();
// Get the dense lattice to update.
AbstractDenseLattice *after = getLattice(point);
// Get the dense state before the execution of the op.
const AbstractDenseLattice *before =
getLatticeFor(point, getProgramPointBefore(op));
// If this op implements region control-flow, then control-flow dictates its
// transfer function.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
visitRegionBranchOperation(point, branch, after);
return success();
}
// If this is a call operation, then join its lattices across known return
// sites.
if (auto call = dyn_cast<CallOpInterface>(op)) {
visitCallOperation(call, *before, after);
return success();
}
// Invoke the operation transfer function.
return visitOperationImpl(op, *before, after);
}
void AbstractDenseForwardDataFlowAnalysis::visitBlock(Block *block) {
// If the block is not executable, bail out.
ProgramPoint *point = getProgramPointBefore(block);
if (!getOrCreateFor<Executable>(point, point)->isLive())
return;
// Get the dense lattice to update.
AbstractDenseLattice *after = getLattice(point);
// The dense lattices of entry blocks are set by region control-flow or the
// callgraph.
if (block->isEntryBlock()) {
// Check if this block is the entry block of a callable region.
auto callable = dyn_cast<CallableOpInterface>(block->getParentOp());
if (callable && callable.getCallableRegion() == block->getParent()) {
const auto *callsites = getOrCreateFor<PredecessorState>(
point, getProgramPointAfter(callable));
// If not all callsites are known, conservatively mark all lattices as
// having reached their pessimistic fixpoints. Do the same if
// interprocedural analysis is not enabled.
if (!callsites->allPredecessorsKnown() ||
!getSolverConfig().isInterprocedural())
return setToEntryState(after);
for (Operation *callsite : callsites->getKnownPredecessors()) {
// Get the dense lattice before the callsite.
const AbstractDenseLattice *before;
before = getLatticeFor(point, getProgramPointBefore(callsite));
visitCallControlFlowTransfer(cast<CallOpInterface>(callsite),
CallControlFlowAction::EnterCallee,
*before, after);
}
return;
}
// Check if we can reason about the control-flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp()))
return visitRegionBranchOperation(point, branch, after);
// Otherwise, we can't reason about the data-flow.
return setToEntryState(after);
}
// Join the state with the state after the block's predecessors.
for (Block::pred_iterator it = block->pred_begin(), e = block->pred_end();
it != e; ++it) {
// Skip control edges that aren't executable.
Block *predecessor = *it;
if (!getOrCreateFor<Executable>(
point, getLatticeAnchor<CFGEdge>(predecessor, block))
->isLive())
continue;
// Merge in the state from the predecessor's terminator.
join(after, *getLatticeFor(
point, getProgramPointAfter(predecessor->getTerminator())));
}
}
void AbstractDenseForwardDataFlowAnalysis::visitRegionBranchOperation(
ProgramPoint *point, RegionBranchOpInterface branch,
AbstractDenseLattice *after) {
// Get the terminator predecessors.
const auto *predecessors = getOrCreateFor<PredecessorState>(point, point);
assert(predecessors->allPredecessorsKnown() &&
"unexpected unresolved region successors");
for (Operation *op : predecessors->getKnownPredecessors()) {
const AbstractDenseLattice *before;
// If the predecessor is the parent, get the state before the parent.
if (op == branch) {
before = getLatticeFor(point, getProgramPointBefore(op));
// Otherwise, get the state after the terminator.
} else {
before = getLatticeFor(point, getProgramPointAfter(op));
}
// This function is called in two cases:
// 1. when visiting the block (point = block start);
// 2. when visiting the parent operation (point = iter after parent op).
// In both cases, we are looking for predecessor operations of the point,
// 1. predecessor may be the terminator of another block from another
// region (assuming that the block does belong to another region via an
// assertion) or the parent (when parent can transfer control to this
// region);
// 2. predecessor may be the terminator of a block that exits the
// region (when region transfers control to the parent) or the operation
// before the parent.
// In the latter case, just perform the join as it isn't the control flow
// affected by the region.
std::optional<unsigned> regionFrom =
op == branch ? std::optional<unsigned>()
: op->getBlock()->getParent()->getRegionNumber();
if (point->isBlockStart()) {
unsigned regionTo = point->getBlock()->getParent()->getRegionNumber();
visitRegionBranchControlFlowTransfer(branch, regionFrom, regionTo,
*before, after);
} else {
assert(point->getPrevOp() == branch &&
"expected to be visiting the branch itself");
// Only need to call the arc transfer when the predecessor is the region
// or the op itself, not the previous op.
if (op->getParentOp() == branch || op == branch) {
visitRegionBranchControlFlowTransfer(
branch, regionFrom, /*regionTo=*/std::nullopt, *before, after);
} else {
join(after, *before);
}
}
}
}
//===----------------------------------------------------------------------===//
// AbstractDenseBackwardDataFlowAnalysis
//===----------------------------------------------------------------------===//
void AbstractDenseBackwardDataFlowAnalysis::initializeEquivalentLatticeAnchor(
Operation *top) {
top->walk([&](Operation *op) {
if (isa<RegionBranchOpInterface, CallOpInterface>(op))
return;
buildOperationEquivalentLatticeAnchor(op);
});
}
LogicalResult
AbstractDenseBackwardDataFlowAnalysis::initialize(Operation *top) {
// Visit every operation and block.
if (failed(processOperation(top)))
return failure();
for (Region ®ion : top->getRegions()) {
for (Block &block : region) {
visitBlock(&block);
for (Operation &op : llvm::reverse(block)) {
if (failed(initialize(&op)))
return failure();
}
}
}
return success();
}
LogicalResult
AbstractDenseBackwardDataFlowAnalysis::visit(ProgramPoint *point) {
if (!point->isBlockEnd())
return processOperation(point->getNextOp());
visitBlock(point->getBlock());
return success();
}
void AbstractDenseBackwardDataFlowAnalysis::visitCallOperation(
CallOpInterface call, const AbstractDenseLattice &after,
AbstractDenseLattice *before) {
// Find the callee.
Operation *callee = call.resolveCallableInTable(&symbolTable);
auto callable = dyn_cast_or_null<CallableOpInterface>(callee);
// No region means the callee is only declared in this module.
// If that is the case or if the solver is not interprocedural,
// let the hook handle it.
if (!getSolverConfig().isInterprocedural() ||
(callable && (!callable.getCallableRegion() ||
callable.getCallableRegion()->empty()))) {
return visitCallControlFlowTransfer(
call, CallControlFlowAction::ExternalCallee, after, before);
}
if (!callable)
return setToExitState(before);
Region *region = callable.getCallableRegion();
// Call-level control flow specifies the data flow here.
//
// func.func @callee() {
// ^calleeEntryBlock:
// // latticeAtCalleeEntry
// ...
// }
// func.func @caller() {
// ...
// // latticeBeforeCall
// call @callee
// ...
// }
Block *calleeEntryBlock = ®ion->front();
ProgramPoint *calleeEntry = getProgramPointBefore(calleeEntryBlock);
const AbstractDenseLattice &latticeAtCalleeEntry =
*getLatticeFor(getProgramPointBefore(call.getOperation()), calleeEntry);
AbstractDenseLattice *latticeBeforeCall = before;
visitCallControlFlowTransfer(call, CallControlFlowAction::EnterCallee,
latticeAtCalleeEntry, latticeBeforeCall);
}
LogicalResult
AbstractDenseBackwardDataFlowAnalysis::processOperation(Operation *op) {
ProgramPoint *point = getProgramPointBefore(op);
// If the containing block is not executable, bail out.
if (op->getBlock() != nullptr &&
!getOrCreateFor<Executable>(point, getProgramPointBefore(op->getBlock()))
->isLive())
return success();
// Get the dense lattice to update.
AbstractDenseLattice *before = getLattice(point);
// Get the dense state after execution of this op.
const AbstractDenseLattice *after =
getLatticeFor(point, getProgramPointAfter(op));
// Special cases where control flow may dictate data flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
visitRegionBranchOperation(point, branch, RegionBranchPoint::parent(),
before);
return success();
}
if (auto call = dyn_cast<CallOpInterface>(op)) {
visitCallOperation(call, *after, before);
return success();
}
// Invoke the operation transfer function.
return visitOperationImpl(op, *after, before);
}
void AbstractDenseBackwardDataFlowAnalysis::visitBlock(Block *block) {
ProgramPoint *point = getProgramPointAfter(block);
// If the block is not executable, bail out.
if (!getOrCreateFor<Executable>(point, getProgramPointBefore(block))
->isLive())
return;
AbstractDenseLattice *before = getLattice(point);
// We need "exit" blocks, i.e. the blocks that may return control to the
// parent operation.
auto isExitBlock = [](Block *b) {
// Treat empty and terminator-less blocks as exit blocks.
if (b->empty() || !b->back().mightHaveTrait<OpTrait::IsTerminator>())
return true;
// There may be a weird case where a terminator may be transferring control
// either to the parent or to another block, so exit blocks and successors
// are not mutually exclusive.
return isa_and_nonnull<RegionBranchTerminatorOpInterface>(
b->getTerminator());
};
if (isExitBlock(block)) {
// If this block is exiting from a callable, the successors of exiting from
// a callable are the successors of all call sites. And the call sites
// themselves are predecessors of the callable.
auto callable = dyn_cast<CallableOpInterface>(block->getParentOp());
if (callable && callable.getCallableRegion() == block->getParent()) {
const auto *callsites = getOrCreateFor<PredecessorState>(
point, getProgramPointAfter(callable));
// If not all call sites are known, conservative mark all lattices as
// having reached their pessimistic fix points.
if (!callsites->allPredecessorsKnown() ||
!getSolverConfig().isInterprocedural()) {
return setToExitState(before);
}
for (Operation *callsite : callsites->getKnownPredecessors()) {
const AbstractDenseLattice *after =
getLatticeFor(point, getProgramPointAfter(callsite));
visitCallControlFlowTransfer(cast<CallOpInterface>(callsite),
CallControlFlowAction::ExitCallee, *after,
before);
}
return;
}
// If this block is exiting from an operation with region-based control
// flow, propagate the lattice back along the control flow edge.
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp())) {
visitRegionBranchOperation(point, branch, block->getParent(), before);
return;
}
// Cannot reason about successors of an exit block, set the pessimistic
// fixpoint.
return setToExitState(before);
}
// Meet the state with the state before block's successors.
for (Block *successor : block->getSuccessors()) {
if (!getOrCreateFor<Executable>(point,
getLatticeAnchor<CFGEdge>(block, successor))
->isLive())
continue;
// Merge in the state from the successor: either the first operation, or the
// block itself when empty.
meet(before, *getLatticeFor(point, getProgramPointBefore(successor)));
}
}
void AbstractDenseBackwardDataFlowAnalysis::visitRegionBranchOperation(
ProgramPoint *point, RegionBranchOpInterface branch,
RegionBranchPoint branchPoint, AbstractDenseLattice *before) {
// The successors of the operation may be either the first operation of the
// entry block of each possible successor region, or the next operation when
// the branch is a successor of itself.
SmallVector<RegionSuccessor> successors;
branch.getSuccessorRegions(branchPoint, successors);
for (const RegionSuccessor &successor : successors) {
const AbstractDenseLattice *after;
if (successor.isParent() || successor.getSuccessor()->empty()) {
after = getLatticeFor(point, getProgramPointAfter(branch));
} else {
Region *successorRegion = successor.getSuccessor();
assert(!successorRegion->empty() && "unexpected empty successor region");
Block *successorBlock = &successorRegion->front();
if (!getOrCreateFor<Executable>(point,
getProgramPointBefore(successorBlock))
->isLive())
continue;
after = getLatticeFor(point, getProgramPointBefore(successorBlock));
}
visitRegionBranchControlFlowTransfer(branch, branchPoint, successor, *after,
before);
}
}
|