aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Analysis/AliasAnalysis/LocalAliasAnalysis.cpp
blob: 6cece4630a0e53f32060e8154c131d0645deef91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
//===- LocalAliasAnalysis.cpp - Local stateless alias Analysis for MLIR ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/AliasAnalysis/LocalAliasAnalysis.h"

#include "mlir/Analysis/AliasAnalysis.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/Region.h"
#include "mlir/IR/Value.h"
#include "mlir/IR/ValueRange.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/FunctionInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Interfaces/ViewLikeInterface.h"
#include "mlir/Support/LLVM.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <optional>
#include <utility>

using namespace mlir;

//===----------------------------------------------------------------------===//
// Underlying Address Computation
//===----------------------------------------------------------------------===//

/// The maximum depth that will be searched when trying to find an underlying
/// value.
static constexpr unsigned maxUnderlyingValueSearchDepth = 10;

/// Given a value, collect all of the underlying values being addressed.
static void collectUnderlyingAddressValues(Value value, unsigned maxDepth,
                                           DenseSet<Value> &visited,
                                           SmallVectorImpl<Value> &output);

/// Given a successor (`region`) of a RegionBranchOpInterface, collect all of
/// the underlying values being addressed by one of the successor inputs. If the
/// provided `region` is null, as per `RegionBranchOpInterface` this represents
/// the parent operation.
static void collectUnderlyingAddressValues(RegionBranchOpInterface branch,
                                           Region *region, Value inputValue,
                                           unsigned inputIndex,
                                           unsigned maxDepth,
                                           DenseSet<Value> &visited,
                                           SmallVectorImpl<Value> &output) {
  // Given the index of a region of the branch (`predIndex`), or std::nullopt to
  // represent the parent operation, try to return the index into the outputs of
  // this region predecessor that correspond to the input values of `region`. If
  // an index could not be found, std::nullopt is returned instead.
  auto getOperandIndexIfPred =
      [&](RegionBranchPoint pred) -> std::optional<unsigned> {
    SmallVector<RegionSuccessor, 2> successors;
    branch.getSuccessorRegions(pred, successors);
    for (RegionSuccessor &successor : successors) {
      if (successor.getSuccessor() != region)
        continue;
      // Check that the successor inputs map to the given input value.
      ValueRange inputs = successor.getSuccessorInputs();
      if (inputs.empty()) {
        output.push_back(inputValue);
        break;
      }
      unsigned firstInputIndex, lastInputIndex;
      if (region) {
        firstInputIndex = cast<BlockArgument>(inputs[0]).getArgNumber();
        lastInputIndex = cast<BlockArgument>(inputs.back()).getArgNumber();
      } else {
        firstInputIndex = cast<OpResult>(inputs[0]).getResultNumber();
        lastInputIndex = cast<OpResult>(inputs.back()).getResultNumber();
      }
      if (firstInputIndex > inputIndex || lastInputIndex < inputIndex) {
        output.push_back(inputValue);
        break;
      }
      return inputIndex - firstInputIndex;
    }
    return std::nullopt;
  };

  // Check branches from the parent operation.
  auto branchPoint = RegionBranchPoint::parent();
  if (region)
    branchPoint = region;

  if (std::optional<unsigned> operandIndex =
          getOperandIndexIfPred(/*predIndex=*/RegionBranchPoint::parent())) {
    collectUnderlyingAddressValues(
        branch.getEntrySuccessorOperands(branchPoint)[*operandIndex], maxDepth,
        visited, output);
  }
  // Check branches from each child region.
  Operation *op = branch.getOperation();
  for (Region &region : op->getRegions()) {
    if (std::optional<unsigned> operandIndex = getOperandIndexIfPred(region)) {
      for (Block &block : region) {
        // Try to determine possible region-branch successor operands for the
        // current region.
        if (auto term = dyn_cast<RegionBranchTerminatorOpInterface>(
                block.getTerminator())) {
          collectUnderlyingAddressValues(
              term.getSuccessorOperands(branchPoint)[*operandIndex], maxDepth,
              visited, output);
        } else if (block.getNumSuccessors()) {
          // Otherwise, if this terminator may exit the region we can't make
          // any assumptions about which values get passed.
          output.push_back(inputValue);
          return;
        }
      }
    }
  }
}

/// Given a result, collect all of the underlying values being addressed.
static void collectUnderlyingAddressValues(OpResult result, unsigned maxDepth,
                                           DenseSet<Value> &visited,
                                           SmallVectorImpl<Value> &output) {
  Operation *op = result.getOwner();

  // If this is a view, unwrap to the source.
  if (ViewLikeOpInterface view = dyn_cast<ViewLikeOpInterface>(op))
    return collectUnderlyingAddressValues(view.getViewSource(), maxDepth,
                                          visited, output);
  // Check to see if we can reason about the control flow of this op.
  if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
    return collectUnderlyingAddressValues(branch, /*region=*/nullptr, result,
                                          result.getResultNumber(), maxDepth,
                                          visited, output);
  }

  output.push_back(result);
}

/// Given a block argument, collect all of the underlying values being
/// addressed.
static void collectUnderlyingAddressValues(BlockArgument arg, unsigned maxDepth,
                                           DenseSet<Value> &visited,
                                           SmallVectorImpl<Value> &output) {
  Block *block = arg.getOwner();
  unsigned argNumber = arg.getArgNumber();

  // Handle the case of a non-entry block.
  if (!block->isEntryBlock()) {
    for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
      auto branch = dyn_cast<BranchOpInterface>((*it)->getTerminator());
      if (!branch) {
        // We can't analyze the control flow, so bail out early.
        output.push_back(arg);
        return;
      }

      // Try to get the operand passed for this argument.
      unsigned index = it.getSuccessorIndex();
      Value operand = branch.getSuccessorOperands(index)[argNumber];
      if (!operand) {
        // We can't analyze the control flow, so bail out early.
        output.push_back(arg);
        return;
      }
      collectUnderlyingAddressValues(operand, maxDepth, visited, output);
    }
    return;
  }

  // Otherwise, check to see if we can reason about the control flow of this op.
  Region *region = block->getParent();
  Operation *op = region->getParentOp();
  if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
    return collectUnderlyingAddressValues(branch, region, arg, argNumber,
                                          maxDepth, visited, output);
  }

  // We can't reason about the underlying address of this argument.
  output.push_back(arg);
}

/// Given a value, collect all of the underlying values being addressed.
static void collectUnderlyingAddressValues(Value value, unsigned maxDepth,
                                           DenseSet<Value> &visited,
                                           SmallVectorImpl<Value> &output) {
  // Check that we don't infinitely recurse.
  if (!visited.insert(value).second)
    return;
  if (maxDepth == 0) {
    output.push_back(value);
    return;
  }
  --maxDepth;

  if (BlockArgument arg = dyn_cast<BlockArgument>(value))
    return collectUnderlyingAddressValues(arg, maxDepth, visited, output);
  collectUnderlyingAddressValues(cast<OpResult>(value), maxDepth, visited,
                                 output);
}

/// Given a value, collect all of the underlying values being addressed.
static void collectUnderlyingAddressValues(Value value,
                                           SmallVectorImpl<Value> &output) {
  DenseSet<Value> visited;
  collectUnderlyingAddressValues(value, maxUnderlyingValueSearchDepth, visited,
                                 output);
}

//===----------------------------------------------------------------------===//
// LocalAliasAnalysis: alias
//===----------------------------------------------------------------------===//

/// Given a value, try to get an allocation effect attached to it. If
/// successful, `allocEffect` is populated with the effect. If an effect was
/// found, `allocScopeOp` is also specified if a parent operation of `value`
/// could be identified that bounds the scope of the allocated value; i.e. if
/// non-null it specifies the parent operation that the allocation does not
/// escape. If no scope is found, `allocScopeOp` is set to nullptr.
static LogicalResult
getAllocEffectFor(Value value,
                  std::optional<MemoryEffects::EffectInstance> &effect,
                  Operation *&allocScopeOp) {
  // Try to get a memory effect interface for the parent operation.
  Operation *op;
  if (BlockArgument arg = dyn_cast<BlockArgument>(value))
    op = arg.getOwner()->getParentOp();
  else
    op = cast<OpResult>(value).getOwner();
  MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op);
  if (!interface)
    return failure();

  // Try to find an allocation effect on the resource.
  if (!(effect = interface.getEffectOnValue<MemoryEffects::Allocate>(value)))
    return failure();

  // If we found an allocation effect, try to find a scope for the allocation.
  // If the resource of this allocation is automatically scoped, find the parent
  // operation that bounds the allocation scope.
  if (llvm::isa<SideEffects::AutomaticAllocationScopeResource>(
          effect->getResource())) {
    allocScopeOp = op->getParentWithTrait<OpTrait::AutomaticAllocationScope>();
    return success();
  }

  // TODO: Here we could look at the users to see if the resource is either
  // freed on all paths within the region, or is just not captured by anything.
  // For now assume allocation scope to the function scope (we don't care if
  // pointer escape outside function).
  allocScopeOp = op->getParentOfType<FunctionOpInterface>();
  return success();
}

/// Given the two values, return their aliasing behavior.
AliasResult LocalAliasAnalysis::aliasImpl(Value lhs, Value rhs) {
  if (lhs == rhs)
    return AliasResult::MustAlias;
  Operation *lhsAllocScope = nullptr, *rhsAllocScope = nullptr;
  std::optional<MemoryEffects::EffectInstance> lhsAlloc, rhsAlloc;

  // Handle the case where lhs is a constant.
  Attribute lhsAttr, rhsAttr;
  if (matchPattern(lhs, m_Constant(&lhsAttr))) {
    // TODO: This is overly conservative. Two matching constants don't
    // necessarily map to the same address. For example, if the two values
    // correspond to different symbols that both represent a definition.
    if (matchPattern(rhs, m_Constant(&rhsAttr)))
      return AliasResult::MayAlias;

    // Try to find an alloc effect on rhs. If an effect was found we can't
    // alias, otherwise we might.
    return succeeded(getAllocEffectFor(rhs, rhsAlloc, rhsAllocScope))
               ? AliasResult::NoAlias
               : AliasResult::MayAlias;
  }
  // Handle the case where rhs is a constant.
  if (matchPattern(rhs, m_Constant(&rhsAttr))) {
    // Try to find an alloc effect on lhs. If an effect was found we can't
    // alias, otherwise we might.
    return succeeded(getAllocEffectFor(lhs, lhsAlloc, lhsAllocScope))
               ? AliasResult::NoAlias
               : AliasResult::MayAlias;
  }

  // Otherwise, neither of the values are constant so check to see if either has
  // an allocation effect.
  bool lhsHasAlloc = succeeded(getAllocEffectFor(lhs, lhsAlloc, lhsAllocScope));
  bool rhsHasAlloc = succeeded(getAllocEffectFor(rhs, rhsAlloc, rhsAllocScope));
  if (lhsHasAlloc == rhsHasAlloc) {
    // If both values have an allocation effect we know they don't alias, and if
    // neither have an effect we can't make an assumptions.
    return lhsHasAlloc ? AliasResult::NoAlias : AliasResult::MayAlias;
  }

  // When we reach this point we have one value with a known allocation effect,
  // and one without. Move the one with the effect to the lhs to make the next
  // checks simpler.
  if (rhsHasAlloc) {
    std::swap(lhs, rhs);
    lhsAlloc = rhsAlloc;
    lhsAllocScope = rhsAllocScope;
  }

  // If the effect has a scoped allocation region, check to see if the
  // non-effect value is defined above that scope.
  if (lhsAllocScope) {
    // If the parent operation of rhs is an ancestor of the allocation scope, or
    // if rhs is an entry block argument of the allocation scope we know the two
    // values can't alias.
    Operation *rhsParentOp = rhs.getParentRegion()->getParentOp();
    if (rhsParentOp->isProperAncestor(lhsAllocScope))
      return AliasResult::NoAlias;
    if (rhsParentOp == lhsAllocScope) {
      BlockArgument rhsArg = dyn_cast<BlockArgument>(rhs);
      if (rhsArg && rhs.getParentBlock()->isEntryBlock())
        return AliasResult::NoAlias;
    }
  }

  // If we couldn't reason about the relationship between the two values,
  // conservatively assume they might alias.
  return AliasResult::MayAlias;
}

/// Given the two values, return their aliasing behavior.
AliasResult LocalAliasAnalysis::alias(Value lhs, Value rhs) {
  if (lhs == rhs)
    return AliasResult::MustAlias;

  // Get the underlying values being addressed.
  SmallVector<Value, 8> lhsValues, rhsValues;
  collectUnderlyingAddressValues(lhs, lhsValues);
  collectUnderlyingAddressValues(rhs, rhsValues);

  // If we failed to collect for either of the values somehow, conservatively
  // assume they may alias.
  if (lhsValues.empty() || rhsValues.empty())
    return AliasResult::MayAlias;

  // Check the alias results against each of the underlying values.
  std::optional<AliasResult> result;
  for (Value lhsVal : lhsValues) {
    for (Value rhsVal : rhsValues) {
      AliasResult nextResult = aliasImpl(lhsVal, rhsVal);
      result = result ? result->merge(nextResult) : nextResult;
    }
  }

  // We should always have a valid result here.
  return *result;
}

//===----------------------------------------------------------------------===//
// LocalAliasAnalysis: getModRef
//===----------------------------------------------------------------------===//

ModRefResult LocalAliasAnalysis::getModRef(Operation *op, Value location) {
  // Check to see if this operation relies on nested side effects.
  if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) {
    // TODO: To check recursive operations we need to check all of the nested
    // operations, which can result in a quadratic number of queries. We should
    // introduce some caching of some kind to help alleviate this, especially as
    // this caching could be used in other areas of the codebase (e.g. when
    // checking `wouldOpBeTriviallyDead`).
    return ModRefResult::getModAndRef();
  }

  // Otherwise, check to see if this operation has a memory effect interface.
  MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op);
  if (!interface)
    return ModRefResult::getModAndRef();

  // Build a ModRefResult by merging the behavior of the effects of this
  // operation.
  SmallVector<MemoryEffects::EffectInstance> effects;
  interface.getEffects(effects);

  ModRefResult result = ModRefResult::getNoModRef();
  for (const MemoryEffects::EffectInstance &effect : effects) {
    if (isa<MemoryEffects::Allocate, MemoryEffects::Free>(effect.getEffect()))
      continue;

    // Check for an alias between the effect and our memory location.
    // TODO: Add support for checking an alias with a symbol reference.
    AliasResult aliasResult = AliasResult::MayAlias;
    if (Value effectValue = effect.getValue())
      aliasResult = alias(effectValue, location);

    // If we don't alias, ignore this effect.
    if (aliasResult.isNo())
      continue;

    // Merge in the corresponding mod or ref for this effect.
    if (isa<MemoryEffects::Read>(effect.getEffect())) {
      result = result.merge(ModRefResult::getRef());
    } else {
      assert(isa<MemoryEffects::Write>(effect.getEffect()));
      result = result.merge(ModRefResult::getMod());
    }
    if (result.isModAndRef())
      break;
  }
  return result;
}