1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the DAG Matcher optimizer.
//
//===----------------------------------------------------------------------===//
#include "Basic/SDNodeProperties.h"
#include "Common/CodeGenDAGPatterns.h"
#include "Common/DAGISelMatcher.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "isel-opt"
/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
/// into single compound nodes like RecordChild.
static void ContractNodes(std::unique_ptr<Matcher> &InputMatcherPtr,
const CodeGenDAGPatterns &CGP) {
std::unique_ptr<Matcher> *MatcherPtr = &InputMatcherPtr;
while (true) {
Matcher *N = MatcherPtr->get();
// If we have a scope node, walk down all of the children.
if (auto *Scope = dyn_cast<ScopeMatcher>(N)) {
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
std::unique_ptr<Matcher> Child(Scope->takeChild(i));
ContractNodes(Child, CGP);
Scope->resetChild(i, Child.release());
}
return;
}
// If we found a movechild node with a node that comes in a 'foochild' form,
// transform it.
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
Matcher *New = nullptr;
if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
if (MC->getChildNo() < 8) // Only have RecordChild0...7
New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
RM->getResultNo());
if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
if (MC->getChildNo() < 8 && // Only have CheckChildType0...7
CT->getResNo() == 0) // CheckChildType checks res #0
New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
if (MC->getChildNo() < 4) // Only have CheckChildSame0...3
New =
new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
if (CheckIntegerMatcher *CI =
dyn_cast<CheckIntegerMatcher>(MC->getNext()))
if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4
New = new CheckChildIntegerMatcher(MC->getChildNo(), CI->getValue());
if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(MC->getNext()))
if (MC->getChildNo() == 2) // Only have CheckChild2CondCode
New = new CheckChild2CondCodeMatcher(CCC->getCondCodeName());
if (New) {
// Insert the new node.
New->setNext(MatcherPtr->release());
MatcherPtr->reset(New);
// Remove the old one.
MC->setNext(MC->getNext()->takeNext());
continue;
}
}
// Turn MoveParent->MoveChild into MoveSibling.
if (auto *MP = dyn_cast<MoveParentMatcher>(N)) {
if (auto *MC = dyn_cast<MoveChildMatcher>(MP->getNext())) {
auto *MS = new MoveSiblingMatcher(MC->getChildNo());
MS->setNext(MC->takeNext());
MatcherPtr->reset(MS);
continue;
}
}
// Uncontract MoveSibling if it will help form other child operations.
if (auto *MS = dyn_cast<MoveSiblingMatcher>(N)) {
if (auto *RM = dyn_cast<RecordMatcher>(MS->getNext())) {
// Turn MoveSibling->Record->MoveParent into MoveParent->RecordChild.
if (auto *MP = dyn_cast<MoveParentMatcher>(RM->getNext())) {
if (MS->getSiblingNo() < 8) { // Only have RecordChild0...7
auto *NewMP = new MoveParentMatcher();
auto *NewRCM = new RecordChildMatcher(
MS->getSiblingNo(), RM->getWhatFor(), RM->getResultNo());
NewMP->setNext(NewRCM);
NewRCM->setNext(MP->takeNext());
MatcherPtr->reset(NewMP);
continue;
}
}
// Turn MoveSibling->Record->CheckType->MoveParent into
// MoveParent->RecordChild->CheckChildType.
if (auto *CT = dyn_cast<CheckTypeMatcher>(RM->getNext())) {
if (auto *MP = dyn_cast<MoveParentMatcher>(CT->getNext())) {
if (MS->getSiblingNo() < 8 && // Only have CheckChildType0...7
CT->getResNo() == 0) { // CheckChildType checks res #0
auto *NewMP = new MoveParentMatcher();
auto *NewRCM = new RecordChildMatcher(
MS->getSiblingNo(), RM->getWhatFor(), RM->getResultNo());
auto *NewCCT =
new CheckChildTypeMatcher(MS->getSiblingNo(), CT->getType());
NewMP->setNext(NewRCM);
NewRCM->setNext(NewCCT);
NewCCT->setNext(MP->takeNext());
MatcherPtr->reset(NewMP);
continue;
}
}
}
}
// Turn MoveSibling->CheckType->MoveParent into
// MoveParent->CheckChildType.
if (auto *CT = dyn_cast<CheckTypeMatcher>(MS->getNext())) {
if (auto *MP = dyn_cast<MoveParentMatcher>(CT->getNext())) {
if (MS->getSiblingNo() < 8 && // Only have CheckChildType0...7
CT->getResNo() == 0) { // CheckChildType checks res #0
auto *NewMP = new MoveParentMatcher();
auto *NewCCT =
new CheckChildTypeMatcher(MS->getSiblingNo(), CT->getType());
NewMP->setNext(NewCCT);
NewCCT->setNext(MP->takeNext());
MatcherPtr->reset(NewMP);
continue;
}
}
}
// Turn MoveSibling->CheckInteger->MoveParent into
// MoveParent->CheckChildInteger.
if (auto *CI = dyn_cast<CheckIntegerMatcher>(MS->getNext())) {
if (auto *MP = dyn_cast<MoveParentMatcher>(CI->getNext())) {
if (MS->getSiblingNo() < 5) { // Only have CheckChildInteger0...4
auto *NewMP = new MoveParentMatcher();
auto *NewCCI = new CheckChildIntegerMatcher(MS->getSiblingNo(),
CI->getValue());
NewMP->setNext(NewCCI);
NewCCI->setNext(MP->takeNext());
MatcherPtr->reset(NewMP);
continue;
}
}
// Turn MoveSibling->CheckInteger->CheckType->MoveParent into
// MoveParent->CheckChildInteger->CheckType.
if (auto *CT = dyn_cast<CheckTypeMatcher>(CI->getNext())) {
if (auto *MP = dyn_cast<MoveParentMatcher>(CT->getNext())) {
if (MS->getSiblingNo() < 5 && // Only have CheckChildInteger0...4
CT->getResNo() == 0) { // CheckChildType checks res #0
auto *NewMP = new MoveParentMatcher();
auto *NewCCI = new CheckChildIntegerMatcher(MS->getSiblingNo(),
CI->getValue());
auto *NewCCT =
new CheckChildTypeMatcher(MS->getSiblingNo(), CT->getType());
NewMP->setNext(NewCCI);
NewCCI->setNext(NewCCT);
NewCCT->setNext(MP->takeNext());
MatcherPtr->reset(NewMP);
continue;
}
}
}
}
// Turn MoveSibling->CheckCondCode->MoveParent into
// MoveParent->CheckChild2CondCode.
if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(MS->getNext())) {
if (auto *MP = dyn_cast<MoveParentMatcher>(CCC->getNext())) {
if (MS->getSiblingNo() == 2) { // Only have CheckChild2CondCode
auto *NewMP = new MoveParentMatcher();
auto *NewCCCC =
new CheckChild2CondCodeMatcher(CCC->getCondCodeName());
NewMP->setNext(NewCCCC);
NewCCCC->setNext(MP->takeNext());
MatcherPtr->reset(NewMP);
continue;
}
}
}
// Turn MoveSibling->CheckSame->MoveParent into
// MoveParent->CheckChildSame.
if (auto *CS = dyn_cast<CheckSameMatcher>(MS->getNext())) {
if (auto *MP = dyn_cast<MoveParentMatcher>(CS->getNext())) {
if (MS->getSiblingNo() < 4) { // Only have CheckChildSame0...3
auto *NewMP = new MoveParentMatcher();
auto *NewCCS = new CheckChildSameMatcher(MS->getSiblingNo(),
CS->getMatchNumber());
NewMP->setNext(NewCCS);
NewCCS->setNext(MP->takeNext());
MatcherPtr->reset(NewMP);
continue;
}
}
// Turn MoveSibling->CheckSame->CheckType->MoveParent into
// MoveParent->CheckChildSame->CheckChildType.
if (auto *CT = dyn_cast<CheckTypeMatcher>(CS->getNext())) {
if (auto *MP = dyn_cast<MoveParentMatcher>(CT->getNext())) {
if (MS->getSiblingNo() < 4 && // Only have CheckChildSame0...3
CT->getResNo() == 0) { // CheckChildType checks res #0
auto *NewMP = new MoveParentMatcher();
auto *NewCCS = new CheckChildSameMatcher(MS->getSiblingNo(),
CS->getMatchNumber());
auto *NewCCT =
new CheckChildTypeMatcher(MS->getSiblingNo(), CT->getType());
NewMP->setNext(NewCCS);
NewCCS->setNext(NewCCT);
NewCCT->setNext(MP->takeNext());
MatcherPtr->reset(NewMP);
continue;
}
}
}
}
// Turn MoveSibling->MoveParent into MoveParent.
if (isa<MoveParentMatcher>(MS->getNext())) {
MatcherPtr->reset(MS->takeNext());
continue;
}
}
// Zap movechild -> moveparent.
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
if (MoveParentMatcher *MP = dyn_cast<MoveParentMatcher>(MC->getNext())) {
MatcherPtr->reset(MP->takeNext());
continue;
}
// Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N)) {
if (CompleteMatchMatcher *CM =
dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
// We can only use MorphNodeTo if the result values match up.
unsigned RootResultFirst = EN->getFirstResultSlot();
bool ResultsMatch = true;
for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
if (CM->getResult(i) != RootResultFirst + i)
ResultsMatch = false;
// If the selected node defines a subset of the glue/chain results, we
// can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
// matched pattern has a chain but the root node doesn't.
const PatternToMatch &Pattern = CM->getPattern();
if (!EN->hasChain() &&
Pattern.getSrcPattern().NodeHasProperty(SDNPHasChain, CGP))
ResultsMatch = false;
// If the matched node has glue and the output root doesn't, we can't
// use MorphNodeTo.
//
// NOTE: Strictly speaking, we don't have to check for glue here
// because the code in the pattern generator doesn't handle it right. We
// do it anyway for thoroughness.
if (!EN->hasOutGlue() &&
Pattern.getSrcPattern().NodeHasProperty(SDNPOutGlue, CGP))
ResultsMatch = false;
#if 0
// If the root result node defines more results than the source root
// node *and* has a chain or glue input, then we can't match it because
// it would end up replacing the extra result with the chain/glue.
if ((EN->hasGlue() || EN->hasChain()) &&
EN->getNumNonChainGlueVTs() > ...need to get no results reliably...)
ResultMatch = false;
#endif
if (ResultsMatch) {
ArrayRef<MVT::SimpleValueType> VTs = EN->getVTList();
ArrayRef<unsigned> Operands = EN->getOperandList();
MatcherPtr->reset(new MorphNodeToMatcher(
EN->getInstruction(), VTs, Operands, EN->hasChain(),
EN->hasInGlue(), EN->hasOutGlue(), EN->hasMemRefs(),
EN->getNumFixedArityOperands(), Pattern));
return;
}
}
}
// If we have a Record node followed by a CheckOpcode, invert the two nodes.
// We prefer to do structural checks before type checks, as this opens
// opportunities for factoring on targets like X86 where many operations are
// valid on multiple types.
if (isa<RecordMatcher>(N) && isa<CheckOpcodeMatcher>(N->getNext())) {
// Unlink the two nodes from the list.
Matcher *CheckType = MatcherPtr->release();
Matcher *CheckOpcode = CheckType->takeNext();
Matcher *Tail = CheckOpcode->takeNext();
// Relink them.
MatcherPtr->reset(CheckOpcode);
CheckOpcode->setNext(CheckType);
CheckType->setNext(Tail);
continue;
}
// No contractions were performed, go to next node.
MatcherPtr = &(MatcherPtr->get()->getNextPtr());
// If we reached the end of the chain, we're done.
if (!*MatcherPtr)
return;
}
}
/// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
/// specified kind. Return null if we didn't find one otherwise return the
/// matcher.
static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
for (; M; M = M->getNext())
if (M->getKind() == Kind)
return M;
return nullptr;
}
static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr);
/// Turn matches like this:
/// Scope
/// OPC_CheckType i32
/// ABC
/// OPC_CheckType i32
/// XYZ
/// into:
/// OPC_CheckType i32
/// Scope
/// ABC
/// XYZ
///
static void FactorScope(std::unique_ptr<Matcher> &MatcherPtr) {
ScopeMatcher *Scope = cast<ScopeMatcher>(MatcherPtr.get());
// Okay, pull together the children of the scope node into a vector so we can
// inspect it more easily.
SmallVector<Matcher *, 32> OptionsToMatch;
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
// Factor the subexpression.
std::unique_ptr<Matcher> Child(Scope->takeChild(i));
FactorNodes(Child);
// If the child is a ScopeMatcher we can just merge its contents.
if (auto *SM = dyn_cast<ScopeMatcher>(Child.get())) {
for (unsigned j = 0, e = SM->getNumChildren(); j != e; ++j)
OptionsToMatch.push_back(SM->takeChild(j));
} else {
OptionsToMatch.push_back(Child.release());
}
}
// Loop over options to match, merging neighboring patterns with identical
// starting nodes into a shared matcher.
auto E = OptionsToMatch.end();
for (auto I = OptionsToMatch.begin(); I != E; ++I) {
// If there are no other matchers left, there's nothing to merge with.
auto J = std::next(I);
if (J == E)
break;
// Remember where we started. We'll use this to move non-equal elements.
auto K = J;
// Find the set of matchers that start with this node.
Matcher *Optn = *I;
// See if the next option starts with the same matcher. If the two
// neighbors *do* start with the same matcher, we can factor the matcher out
// of at least these two patterns. See what the maximal set we can merge
// together is.
SmallVector<Matcher *, 8> EqualMatchers;
EqualMatchers.push_back(Optn);
// Factor all of the known-equal matchers after this one into the same
// group.
while (J != E && (*J)->isEqual(Optn))
EqualMatchers.push_back(*J++);
// If we found a non-equal matcher, see if it is contradictory with the
// current node. If so, we know that the ordering relation between the
// current sets of nodes and this node don't matter. Look past it to see if
// we can merge anything else into this matching group.
while (J != E) {
Matcher *ScanMatcher = *J;
// If we found an entry that matches out matcher, merge it into the set to
// handle.
if (Optn->isEqual(ScanMatcher)) {
// It is equal after all, add the option to EqualMatchers.
EqualMatchers.push_back(ScanMatcher);
++J;
continue;
}
// If the option we're checking for contradicts the start of the list,
// move it earlier in OptionsToMatch for the next iteration of the outer
// loop. Then continue searching for equal or contradictory matchers.
if (Optn->isContradictory(ScanMatcher)) {
*K++ = *J++;
continue;
}
// If we're scanning for a simple node, see if it occurs later in the
// sequence. If so, and if we can move it up, it might be contradictory
// or the same as what we're looking for. If so, reorder it.
if (Optn->isSimplePredicateOrRecordNode()) {
Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
if (M2 && M2 != ScanMatcher && M2->canMoveBefore(ScanMatcher) &&
(M2->isEqual(Optn) || M2->isContradictory(Optn))) {
Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
M2->setNext(MatcherWithoutM2);
*J = M2;
continue;
}
}
// Otherwise, we don't know how to handle this entry, we have to bail.
break;
}
if (J != E &&
// Don't print if it's obvious nothing extract could be merged anyway.
std::next(J) != E) {
LLVM_DEBUG(errs() << "Couldn't merge this:\n";
Optn->print(errs(), indent(4)); errs() << "into this:\n";
(*J)->print(errs(), indent(4));
(*std::next(J))->printOne(errs());
if (std::next(J, 2) != E)(*std::next(J, 2))->printOne(errs());
errs() << "\n");
}
// If we removed any equal matchers, we may need to slide the rest of the
// elements down for the next iteration of the outer loop.
if (J != K)
E = std::copy(J, E, K);
// If we only found one option starting with this matcher, no factoring is
// possible. Put the Matcher back in OptionsToMatch.
if (EqualMatchers.size() == 1) {
*I = EqualMatchers[0];
continue;
}
// Factor these checks by pulling the first node off each entry and
// discarding it. Take the first one off the first entry to reuse.
Matcher *Shared = Optn;
Optn = Optn->takeNext();
EqualMatchers[0] = Optn;
// Remove and delete the first node from the other matchers we're factoring.
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
Matcher *Tmp = EqualMatchers[i]->takeNext();
delete EqualMatchers[i];
EqualMatchers[i] = Tmp;
assert(!Optn == !Tmp && "Expected all to be null if any are null");
}
if (EqualMatchers[0]) {
Shared->setNext(new ScopeMatcher(std::move(EqualMatchers)));
// Recursively factor the newly created node.
FactorScope(Shared->getNextPtr());
}
// Put the new Matcher where we started in OptionsToMatch.
*I = Shared;
}
// Trim the array to match the updated end.
OptionsToMatch.erase(E, OptionsToMatch.end());
// If we're down to a single pattern to match, then we don't need this scope
// anymore.
if (OptionsToMatch.size() == 1) {
MatcherPtr.reset(OptionsToMatch[0]);
return;
}
if (OptionsToMatch.empty()) {
MatcherPtr.reset();
return;
}
// If our factoring failed (didn't achieve anything) see if we can simplify in
// other ways.
// Check to see if all of the leading entries are now opcode checks. If so,
// we can convert this Scope to be a OpcodeSwitch instead.
bool AllOpcodeChecks = true, AllTypeChecks = true;
for (Matcher *Optn : OptionsToMatch) {
// Check to see if this breaks a series of CheckOpcodeMatchers.
if (AllOpcodeChecks && !isa<CheckOpcodeMatcher>(Optn)) {
#if 0
if (i > 3) {
errs() << "FAILING OPC #" << i << "\n";
Optn->dump();
}
#endif
AllOpcodeChecks = false;
}
// Check to see if this breaks a series of CheckTypeMatcher's.
if (AllTypeChecks) {
CheckTypeMatcher *CTM = cast_or_null<CheckTypeMatcher>(
FindNodeWithKind(Optn, Matcher::CheckType));
if (!CTM ||
// iPTR checks could alias any other case without us knowing, don't
// bother with them.
CTM->getType() == MVT::iPTR ||
// SwitchType only works for result #0.
CTM->getResNo() != 0 ||
// If the CheckType isn't at the start of the list, see if we can move
// it there.
!CTM->canMoveBefore(Optn)) {
#if 0
if (i > 3 && AllTypeChecks) {
errs() << "FAILING TYPE #" << i << "\n";
Optn->dump(); }
#endif
AllTypeChecks = false;
}
}
}
// If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
if (AllOpcodeChecks) {
StringSet<> Opcodes;
SmallVector<std::pair<const SDNodeInfo *, Matcher *>, 8> Cases;
for (Matcher *Optn : OptionsToMatch) {
CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(Optn);
assert(Opcodes.insert(COM->getOpcode().getEnumName()).second &&
"Duplicate opcodes not factored?");
Cases.emplace_back(&COM->getOpcode(), COM->takeNext());
delete COM;
}
MatcherPtr.reset(new SwitchOpcodeMatcher(std::move(Cases)));
return;
}
// If all the options are CheckType's, we can form the SwitchType, woot.
if (AllTypeChecks) {
DenseMap<unsigned, unsigned> TypeEntry;
SmallVector<std::pair<MVT::SimpleValueType, Matcher *>, 8> Cases;
for (Matcher *Optn : OptionsToMatch) {
Matcher *M = FindNodeWithKind(Optn, Matcher::CheckType);
assert(M && isa<CheckTypeMatcher>(M) && "Unknown Matcher type");
auto *CTM = cast<CheckTypeMatcher>(M);
Matcher *MatcherWithoutCTM = Optn->unlinkNode(CTM);
MVT::SimpleValueType CTMTy = CTM->getType();
delete CTM;
unsigned &Entry = TypeEntry[CTMTy];
if (Entry != 0) {
// If we have unfactored duplicate types, then we should factor them.
Matcher *PrevMatcher = Cases[Entry - 1].second;
if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
SM->setNumChildren(SM->getNumChildren() + 1);
SM->resetChild(SM->getNumChildren() - 1, MatcherWithoutCTM);
continue;
}
SmallVector<Matcher *, 2> Entries = {PrevMatcher, MatcherWithoutCTM};
Cases[Entry - 1].second = new ScopeMatcher(std::move(Entries));
continue;
}
Entry = Cases.size() + 1;
Cases.emplace_back(CTMTy, MatcherWithoutCTM);
}
// Make sure we recursively factor any scopes we may have created.
for (auto &M : Cases) {
if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(M.second)) {
std::unique_ptr<Matcher> Scope(SM);
FactorScope(Scope);
M.second = Scope.release();
assert(M.second && "null matcher");
}
}
if (Cases.size() != 1) {
MatcherPtr.reset(new SwitchTypeMatcher(std::move(Cases)));
} else {
// If we factored and ended up with one case, create it now.
MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
MatcherPtr->setNext(Cases[0].second);
}
return;
}
// Reassemble the Scope node with the adjusted children.
Scope->setNumChildren(OptionsToMatch.size());
for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i)
Scope->resetChild(i, OptionsToMatch[i]);
}
/// Search a ScopeMatcher to factor with FactorScope.
static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr) {
// Look for a scope matcher. Iterates instead of recurses to reduce stack
// usage.
std::unique_ptr<Matcher> *MatcherPtr = &InputMatcherPtr;
do {
if (isa<ScopeMatcher>(*MatcherPtr))
return FactorScope(*MatcherPtr);
// If this is not a scope matcher, go to the next node.
MatcherPtr = &(MatcherPtr->get()->getNextPtr());
} while (MatcherPtr->get());
}
void llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr,
const CodeGenDAGPatterns &CGP) {
ContractNodes(MatcherPtr, CGP);
FactorNodes(MatcherPtr);
}
|