1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
//===- VTEmitter.cpp - Generate properties from ValueTypes.td -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cassert>
#include <map>
using namespace llvm;
namespace {
class VTEmitter {
private:
const RecordKeeper &Records;
public:
VTEmitter(const RecordKeeper &R) : Records(R) {}
void run(raw_ostream &OS);
};
} // End anonymous namespace.
static void vTtoGetLlvmTyString(raw_ostream &OS, const Record *VT) {
bool IsVector = VT->getValueAsBit("isVector");
bool IsRISCVVecTuple = VT->getValueAsBit("isRISCVVecTuple");
if (IsRISCVVecTuple) {
unsigned NElem = VT->getValueAsInt("nElem");
unsigned Sz = VT->getValueAsInt("Size");
OS << "TargetExtType::get(Context, \"riscv.vector.tuple\", "
"ScalableVectorType::get(Type::getInt8Ty(Context), "
<< (Sz / (NElem * 8)) << "), " << NElem << ")";
return;
}
if (IsVector)
OS << (VT->getValueAsBit("isScalable") ? "Scalable" : "Fixed")
<< "VectorType::get(";
auto OutputVT = IsVector ? VT->getValueAsDef("ElementType") : VT;
int64_t OutputVTSize = OutputVT->getValueAsInt("Size");
if (OutputVT->getValueAsBit("isFP")) {
StringRef FloatTy;
auto OutputVTName = OutputVT->getValueAsString("LLVMName");
switch (OutputVTSize) {
default:
llvm_unreachable("Unhandled case");
case 16:
FloatTy = (OutputVTName == "bf16") ? "BFloatTy" : "HalfTy";
break;
case 32:
FloatTy = "FloatTy";
break;
case 64:
FloatTy = "DoubleTy";
break;
case 80:
FloatTy = "X86_FP80Ty";
break;
case 128:
FloatTy = (OutputVTName == "ppcf128") ? "PPC_FP128Ty" : "FP128Ty";
break;
}
OS << "Type::get" << FloatTy << "(Context)";
} else if (OutputVT->getValueAsBit("isInteger")) {
// We only have Type::getInt1Ty, Int8, Int16, Int32, Int64, and Int128
if ((isPowerOf2_64(OutputVTSize) && OutputVTSize >= 8 &&
OutputVTSize <= 128) ||
OutputVTSize == 1)
OS << "Type::getInt" << OutputVTSize << "Ty(Context)";
else
OS << "Type::getIntNTy(Context, " << OutputVTSize << ")";
} else {
llvm_unreachable("Unhandled case");
}
if (IsVector)
OS << ", " << VT->getValueAsInt("nElem") << ")";
}
void VTEmitter::run(raw_ostream &OS) {
emitSourceFileHeader("ValueTypes Source Fragment", OS, Records);
std::vector<const Record *> VTsByNumber{512};
for (auto *VT : Records.getAllDerivedDefinitions("ValueType")) {
auto Number = VT->getValueAsInt("Value");
assert(0 <= Number && Number < (int)VTsByNumber.size() &&
"ValueType should be uint16_t");
assert(!VTsByNumber[Number] && "Duplicate ValueType");
VTsByNumber[Number] = VT;
}
struct VTRange {
StringRef First;
StringRef Last;
bool Closed;
};
std::map<StringRef, VTRange> VTRanges;
auto UpdateVTRange = [&VTRanges](const char *Key, StringRef Name,
bool Valid) {
if (Valid) {
auto [It, Inserted] = VTRanges.try_emplace(Key);
if (Inserted)
It->second.First = Name;
assert(!It->second.Closed && "Gap detected!");
It->second.Last = Name;
} else if (auto It = VTRanges.find(Key); It != VTRanges.end()) {
It->second.Closed = true;
}
};
OS << "#ifdef GET_VT_ATTR // (Ty, n, sz, Any, Int, FP, Vec, Sc, Tup, NF, "
"NElem, EltTy)\n";
for (const auto *VT : VTsByNumber) {
if (!VT)
continue;
auto Name = VT->getValueAsString("LLVMName");
auto Value = VT->getValueAsInt("Value");
bool IsInteger = VT->getValueAsBit("isInteger");
bool IsFP = VT->getValueAsBit("isFP");
bool IsVector = VT->getValueAsBit("isVector");
bool IsScalable = VT->getValueAsBit("isScalable");
bool IsRISCVVecTuple = VT->getValueAsBit("isRISCVVecTuple");
int64_t NF = VT->getValueAsInt("NF");
bool IsNormalValueType = VT->getValueAsBit("isNormalValueType");
int64_t NElem = IsVector ? VT->getValueAsInt("nElem") : 0;
StringRef EltName = IsVector ? VT->getValueAsDef("ElementType")->getName()
: "INVALID_SIMPLE_VALUE_TYPE";
UpdateVTRange("INTEGER_FIXEDLEN_VECTOR_VALUETYPE", Name,
IsInteger && IsVector && !IsScalable);
UpdateVTRange("INTEGER_SCALABLE_VECTOR_VALUETYPE", Name,
IsInteger && IsScalable);
UpdateVTRange("FP_FIXEDLEN_VECTOR_VALUETYPE", Name,
IsFP && IsVector && !IsScalable);
UpdateVTRange("FP_SCALABLE_VECTOR_VALUETYPE", Name, IsFP && IsScalable);
UpdateVTRange("FIXEDLEN_VECTOR_VALUETYPE", Name, IsVector && !IsScalable);
UpdateVTRange("SCALABLE_VECTOR_VALUETYPE", Name, IsScalable);
UpdateVTRange("RISCV_VECTOR_TUPLE_VALUETYPE", Name, IsRISCVVecTuple);
UpdateVTRange("VECTOR_VALUETYPE", Name, IsVector);
UpdateVTRange("INTEGER_VALUETYPE", Name, IsInteger && !IsVector);
UpdateVTRange("FP_VALUETYPE", Name, IsFP && !IsVector);
UpdateVTRange("VALUETYPE", Name, IsNormalValueType);
// clang-format off
OS << " GET_VT_ATTR("
<< Name << ", "
<< Value << ", "
<< VT->getValueAsInt("Size") << ", "
<< VT->getValueAsBit("isOverloaded") << ", "
<< (IsInteger ? Name[0] == 'i' ? 3 : 1 : 0) << ", "
<< (IsFP ? Name[0] == 'f' ? 3 : 1 : 0) << ", "
<< IsVector << ", "
<< IsScalable << ", "
<< IsRISCVVecTuple << ", "
<< NF << ", "
<< NElem << ", "
<< EltName << ")\n";
// clang-format on
}
OS << "#endif\n\n";
OS << "#ifdef GET_VT_RANGES\n";
for (const auto &KV : VTRanges) {
assert(KV.second.Closed);
OS << " FIRST_" << KV.first << " = " << KV.second.First << ",\n"
<< " LAST_" << KV.first << " = " << KV.second.Last << ",\n";
}
OS << "#endif\n\n";
OS << "#ifdef GET_VT_VECATTR // (Ty, Sc, Tup, nElem, ElTy)\n";
for (const auto *VT : VTsByNumber) {
if (!VT || !VT->getValueAsBit("isVector"))
continue;
const auto *ElTy = VT->getValueAsDef("ElementType");
assert(ElTy);
// clang-format off
OS << " GET_VT_VECATTR("
<< VT->getValueAsString("LLVMName") << ", "
<< VT->getValueAsBit("isScalable") << ", "
<< VT->getValueAsBit("isRISCVVecTuple") << ", "
<< VT->getValueAsInt("nElem") << ", "
<< ElTy->getName() << ")\n";
// clang-format on
}
OS << "#endif\n\n";
OS << "#ifdef GET_VT_EVT\n";
for (const auto *VT : VTsByNumber) {
if (!VT)
continue;
bool IsInteger = VT->getValueAsBit("isInteger");
bool IsVector = VT->getValueAsBit("isVector");
bool IsFP = VT->getValueAsBit("isFP");
bool IsRISCVVecTuple = VT->getValueAsBit("isRISCVVecTuple");
if (!IsInteger && !IsVector && !IsFP && !IsRISCVVecTuple)
continue;
OS << " GET_VT_EVT(" << VT->getValueAsString("LLVMName") << ", ";
vTtoGetLlvmTyString(OS, VT);
OS << ")\n";
}
OS << "#endif\n\n";
}
static TableGen::Emitter::OptClass<VTEmitter> X("gen-vt", "Generate ValueType");
|