1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
//===--- AliasAnalysisTest.cpp - Mixed TBAA unit tests --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
// Set up some test passes.
namespace llvm {
void initializeAATestPassPass(PassRegistry&);
void initializeTestCustomAAWrapperPassPass(PassRegistry&);
}
namespace {
struct AATestPass : FunctionPass {
static char ID;
AATestPass() : FunctionPass(ID) {
initializeAATestPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AAResultsWrapperPass>();
AU.setPreservesAll();
}
bool runOnFunction(Function &F) override {
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
SetVector<Value *> Pointers;
for (Argument &A : F.args())
if (A.getType()->isPointerTy())
Pointers.insert(&A);
for (Instruction &I : instructions(F))
if (I.getType()->isPointerTy())
Pointers.insert(&I);
for (Value *P1 : Pointers)
for (Value *P2 : Pointers)
(void)AA.alias(P1, LocationSize::beforeOrAfterPointer(), P2,
LocationSize::beforeOrAfterPointer());
return false;
}
};
}
char AATestPass::ID = 0;
INITIALIZE_PASS_BEGIN(AATestPass, "aa-test-pas", "Alias Analysis Test Pass",
false, true)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(AATestPass, "aa-test-pass", "Alias Analysis Test Pass",
false, true)
namespace {
/// A test customizable AA result. It merely accepts a callback to run whenever
/// it receives an alias query. Useful for testing that a particular AA result
/// is reached.
struct TestCustomAAResult : AAResultBase {
std::function<void()> CB;
explicit TestCustomAAResult(std::function<void()> CB)
: AAResultBase(), CB(std::move(CB)) {}
TestCustomAAResult(TestCustomAAResult &&Arg)
: AAResultBase(std::move(Arg)), CB(std::move(Arg.CB)) {}
bool invalidate(Function &, const PreservedAnalyses &) { return false; }
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
AAQueryInfo &AAQI, const Instruction *) {
CB();
return AliasResult::MayAlias;
}
};
}
namespace {
/// A wrapper pass for the legacy pass manager to use with the above custom AA
/// result.
class TestCustomAAWrapperPass : public ImmutablePass {
std::function<void()> CB;
std::unique_ptr<TestCustomAAResult> Result;
public:
static char ID;
explicit TestCustomAAWrapperPass(
std::function<void()> CB = std::function<void()>())
: ImmutablePass(ID), CB(std::move(CB)) {
initializeTestCustomAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
bool doInitialization(Module &M) override {
Result.reset(new TestCustomAAResult(std::move(CB)));
return true;
}
bool doFinalization(Module &M) override {
Result.reset();
return true;
}
TestCustomAAResult &getResult() { return *Result; }
const TestCustomAAResult &getResult() const { return *Result; }
};
}
char TestCustomAAWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(TestCustomAAWrapperPass, "test-custom-aa",
"Test Custom AA Wrapper Pass", false, true)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(TestCustomAAWrapperPass, "test-custom-aa",
"Test Custom AA Wrapper Pass", false, true)
namespace {
class AliasAnalysisTest : public testing::Test {
protected:
LLVMContext C;
Module M;
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI;
std::unique_ptr<AssumptionCache> AC;
std::unique_ptr<BasicAAResult> BAR;
std::unique_ptr<AAResults> AAR;
AliasAnalysisTest()
: M("AliasAnalysisTest", C), TLII(M.getTargetTriple()), TLI(TLII) {}
AAResults &getAAResults(Function &F) {
// Reset the Function AA results first to clear out any references.
AAR.reset(new AAResults(TLI));
// Build the various AA results and register them.
AC.reset(new AssumptionCache(F));
BAR.reset(new BasicAAResult(M.getDataLayout(), F, TLI, *AC));
AAR->addAAResult(*BAR);
return *AAR;
}
};
TEST_F(AliasAnalysisTest, getModRefInfo) {
// Setup function.
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(C), std::vector<Type *>(), false);
auto *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
auto *BB = BasicBlock::Create(C, "entry", F);
auto IntType = Type::getInt32Ty(C);
auto PtrType = PointerType::get(C, 0);
auto *Value = ConstantInt::get(IntType, 42);
auto *Addr = ConstantPointerNull::get(PtrType);
auto Alignment = Align(IntType->getBitWidth() / 8);
auto *Store1 = new StoreInst(Value, Addr, BB);
auto *Load1 = new LoadInst(IntType, Addr, "load", BB);
auto *Add1 = BinaryOperator::CreateAdd(Value, Value, "add", BB);
auto *VAArg1 = new VAArgInst(Addr, PtrType, "vaarg", BB);
auto *CmpXChg1 = new AtomicCmpXchgInst(
Addr, ConstantInt::get(IntType, 0), ConstantInt::get(IntType, 1),
Alignment, AtomicOrdering::Monotonic, AtomicOrdering::Monotonic,
SyncScope::System, BB);
auto *AtomicRMW = new AtomicRMWInst(
AtomicRMWInst::Xchg, Addr, ConstantInt::get(IntType, 1), Alignment,
AtomicOrdering::Monotonic, SyncScope::System, BB);
FunctionType *FooBarTy = FunctionType::get(Type::getVoidTy(C), {}, false);
Function::Create(FooBarTy, Function::ExternalLinkage, "foo", &M);
auto *BarF = Function::Create(FooBarTy, Function::ExternalLinkage, "bar", &M);
BarF->setDoesNotAccessMemory();
const Instruction *Foo = CallInst::Create(M.getFunction("foo"), {}, BB);
const Instruction *Bar = CallInst::Create(M.getFunction("bar"), {}, BB);
ReturnInst::Create(C, nullptr, BB);
auto &AA = getAAResults(*F);
// Check basic results
EXPECT_EQ(AA.getModRefInfo(Store1, MemoryLocation()), ModRefInfo::Mod);
EXPECT_EQ(AA.getModRefInfo(Store1, std::nullopt), ModRefInfo::Mod);
EXPECT_EQ(AA.getModRefInfo(Load1, MemoryLocation()), ModRefInfo::Ref);
EXPECT_EQ(AA.getModRefInfo(Load1, std::nullopt), ModRefInfo::Ref);
EXPECT_EQ(AA.getModRefInfo(Add1, MemoryLocation()), ModRefInfo::NoModRef);
EXPECT_EQ(AA.getModRefInfo(Add1, std::nullopt), ModRefInfo::NoModRef);
EXPECT_EQ(AA.getModRefInfo(VAArg1, MemoryLocation()), ModRefInfo::ModRef);
EXPECT_EQ(AA.getModRefInfo(VAArg1, std::nullopt), ModRefInfo::ModRef);
EXPECT_EQ(AA.getModRefInfo(CmpXChg1, MemoryLocation()), ModRefInfo::ModRef);
EXPECT_EQ(AA.getModRefInfo(CmpXChg1, std::nullopt), ModRefInfo::ModRef);
EXPECT_EQ(AA.getModRefInfo(AtomicRMW, MemoryLocation()), ModRefInfo::ModRef);
EXPECT_EQ(AA.getModRefInfo(AtomicRMW, std::nullopt), ModRefInfo::ModRef);
EXPECT_EQ(AA.getModRefInfo(Store1, Load1), ModRefInfo::ModRef);
EXPECT_EQ(AA.getModRefInfo(Store1, Store1), ModRefInfo::ModRef);
EXPECT_EQ(AA.getModRefInfo(Store1, Add1), ModRefInfo::NoModRef);
EXPECT_EQ(AA.getModRefInfo(Store1, Foo), ModRefInfo::ModRef);
EXPECT_EQ(AA.getModRefInfo(Store1, Bar), ModRefInfo::NoModRef);
EXPECT_EQ(AA.getModRefInfo(Foo, Bar), ModRefInfo::NoModRef);
EXPECT_EQ(AA.getModRefInfo(Foo, Foo), ModRefInfo::ModRef);
}
static Instruction *getInstructionByName(Function &F, StringRef Name) {
for (auto &I : instructions(F))
if (I.getName() == Name)
return &I;
llvm_unreachable("Expected to find instruction!");
}
TEST_F(AliasAnalysisTest, BatchAAPhiCycles) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(R"(
define void @f(i8* noalias %a, i1 %c) {
entry:
br label %loop
loop:
%phi = phi i8* [ null, %entry ], [ %a2, %loop ]
%offset1 = phi i64 [ 0, %entry ], [ %offset2, %loop]
%offset2 = add i64 %offset1, 1
%a1 = getelementptr i8, i8* %a, i64 %offset1
%a2 = getelementptr i8, i8* %a, i64 %offset2
%s1 = select i1 %c, i8* %a1, i8* %phi
%s2 = select i1 %c, i8* %a2, i8* %a1
br label %loop
}
)", Err, C);
Function *F = M->getFunction("f");
Instruction *Phi = getInstructionByName(*F, "phi");
Instruction *A1 = getInstructionByName(*F, "a1");
Instruction *A2 = getInstructionByName(*F, "a2");
Instruction *S1 = getInstructionByName(*F, "s1");
Instruction *S2 = getInstructionByName(*F, "s2");
MemoryLocation PhiLoc(Phi, LocationSize::precise(1));
MemoryLocation A1Loc(A1, LocationSize::precise(1));
MemoryLocation A2Loc(A2, LocationSize::precise(1));
MemoryLocation S1Loc(S1, LocationSize::precise(1));
MemoryLocation S2Loc(S2, LocationSize::precise(1));
auto &AA = getAAResults(*F);
EXPECT_EQ(AliasResult::NoAlias, AA.alias(A1Loc, A2Loc));
EXPECT_EQ(AliasResult::MayAlias, AA.alias(PhiLoc, A1Loc));
EXPECT_EQ(AliasResult::MayAlias, AA.alias(S1Loc, S2Loc));
BatchAAResults BatchAA(AA);
EXPECT_EQ(AliasResult::NoAlias, BatchAA.alias(A1Loc, A2Loc));
EXPECT_EQ(AliasResult::MayAlias, BatchAA.alias(PhiLoc, A1Loc));
EXPECT_EQ(AliasResult::MayAlias, BatchAA.alias(S1Loc, S2Loc));
BatchAAResults BatchAA2(AA);
EXPECT_EQ(AliasResult::NoAlias, BatchAA2.alias(A1Loc, A2Loc));
EXPECT_EQ(AliasResult::MayAlias, BatchAA2.alias(S1Loc, S2Loc));
EXPECT_EQ(AliasResult::MayAlias, BatchAA2.alias(PhiLoc, A1Loc));
}
TEST_F(AliasAnalysisTest, BatchAAPhiAssumption) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(R"(
define void @f(i8* %a.base, i8* %b.base, i1 %c) {
entry:
br label %loop
loop:
%a = phi i8* [ %a.next, %loop ], [ %a.base, %entry ]
%b = phi i8* [ %b.next, %loop ], [ %b.base, %entry ]
%a.next = getelementptr i8, i8* %a, i64 1
%b.next = getelementptr i8, i8* %b, i64 1
br label %loop
}
)", Err, C);
Function *F = M->getFunction("f");
Instruction *A = getInstructionByName(*F, "a");
Instruction *B = getInstructionByName(*F, "b");
Instruction *ANext = getInstructionByName(*F, "a.next");
Instruction *BNext = getInstructionByName(*F, "b.next");
MemoryLocation ALoc(A, LocationSize::precise(1));
MemoryLocation BLoc(B, LocationSize::precise(1));
MemoryLocation ANextLoc(ANext, LocationSize::precise(1));
MemoryLocation BNextLoc(BNext, LocationSize::precise(1));
auto &AA = getAAResults(*F);
EXPECT_EQ(AliasResult::MayAlias, AA.alias(ALoc, BLoc));
EXPECT_EQ(AliasResult::MayAlias, AA.alias(ANextLoc, BNextLoc));
BatchAAResults BatchAA(AA);
EXPECT_EQ(AliasResult::MayAlias, BatchAA.alias(ALoc, BLoc));
EXPECT_EQ(AliasResult::MayAlias, BatchAA.alias(ANextLoc, BNextLoc));
}
// Check that two aliased GEPs with non-constant offsets are correctly
// analyzed and their relative offset can be requested from AA.
TEST_F(AliasAnalysisTest, PartialAliasOffset) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(R"(
define void @foo(float* %arg, i32 %i) {
bb:
%i2 = zext i32 %i to i64
%i3 = getelementptr inbounds float, float* %arg, i64 %i2
%i4 = bitcast float* %i3 to <2 x float>*
%L1 = load <2 x float>, <2 x float>* %i4, align 16
%i7 = add nuw nsw i32 %i, 1
%i8 = zext i32 %i7 to i64
%i9 = getelementptr inbounds float, float* %arg, i64 %i8
%L2 = load float, float* %i9, align 4
ret void
}
)",
Err, C);
if (!M)
Err.print("PartialAliasOffset", errs());
Function *F = M->getFunction("foo");
const auto Loc1 = MemoryLocation::get(getInstructionByName(*F, "L1"));
const auto Loc2 = MemoryLocation::get(getInstructionByName(*F, "L2"));
auto &AA = getAAResults(*F);
const auto AR = AA.alias(Loc1, Loc2);
EXPECT_EQ(AR, AliasResult::PartialAlias);
EXPECT_EQ(4, AR.getOffset());
}
// Check that swapping the order of parameters to `AA.alias()` changes offset
// sign and that the sign is such that FirstLoc + Offset == SecondLoc.
TEST_F(AliasAnalysisTest, PartialAliasOffsetSign) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(R"(
define void @f(i64* %p) {
%L1 = load i64, i64* %p
%p.i8 = bitcast i64* %p to i8*
%q = getelementptr i8, i8* %p.i8, i32 1
%L2 = load i8, i8* %q
ret void
}
)",
Err, C);
if (!M)
Err.print("PartialAliasOffsetSign", errs());
Function *F = M->getFunction("f");
const auto Loc1 = MemoryLocation::get(getInstructionByName(*F, "L1"));
const auto Loc2 = MemoryLocation::get(getInstructionByName(*F, "L2"));
auto &AA = getAAResults(*F);
auto AR = AA.alias(Loc1, Loc2);
EXPECT_EQ(AR, AliasResult::PartialAlias);
EXPECT_EQ(1, AR.getOffset());
AR = AA.alias(Loc2, Loc1);
EXPECT_EQ(AR, AliasResult::PartialAlias);
EXPECT_EQ(-1, AR.getOffset());
}
class AAPassInfraTest : public testing::Test {
protected:
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M;
public:
AAPassInfraTest()
: M(parseAssemblyString("define i32 @f(i32* %x, i32* %y) {\n"
"entry:\n"
" %lx = load i32, i32* %x\n"
" %ly = load i32, i32* %y\n"
" %sum = add i32 %lx, %ly\n"
" ret i32 %sum\n"
"}\n",
Err, C)) {
assert(M && "Failed to build the module!");
}
};
TEST_F(AAPassInfraTest, injectExternalAA) {
legacy::PassManager PM;
// Register our custom AA's wrapper pass manually.
bool IsCustomAAQueried = false;
PM.add(new TestCustomAAWrapperPass([&] { IsCustomAAQueried = true; }));
// Now add the external AA wrapper with a lambda which queries for the
// wrapper around our custom AA and adds it to the results.
PM.add(createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) {
if (auto *WrapperPass = P.getAnalysisIfAvailable<TestCustomAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
}));
// And run a pass that will make some alias queries. This will automatically
// trigger the rest of the alias analysis stack to be run. It is analagous to
// building a full pass pipeline with any of the existing pass manager
// builders.
PM.add(new AATestPass());
PM.run(*M);
// Finally, ensure that our custom AA was indeed queried.
EXPECT_TRUE(IsCustomAAQueried);
}
} // end anonymous namspace
|