1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
//===- TrieRawHashMapTest.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/TrieRawHashMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/SHA1.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace llvm {
class TrieRawHashMapTestHelper {
public:
TrieRawHashMapTestHelper() = default;
void setTrie(ThreadSafeTrieRawHashMapBase *T) { Trie = T; }
ThreadSafeTrieRawHashMapBase::PointerBase getRoot() const {
return Trie->getRoot();
}
unsigned getStartBit(ThreadSafeTrieRawHashMapBase::PointerBase P) const {
return Trie->getStartBit(P);
}
unsigned getNumBits(ThreadSafeTrieRawHashMapBase::PointerBase P) const {
return Trie->getNumBits(P);
}
unsigned getNumSlotUsed(ThreadSafeTrieRawHashMapBase::PointerBase P) const {
return Trie->getNumSlotUsed(P);
}
unsigned getNumTries() const { return Trie->getNumTries(); }
std::string
getTriePrefixAsString(ThreadSafeTrieRawHashMapBase::PointerBase P) const {
return Trie->getTriePrefixAsString(P);
}
ThreadSafeTrieRawHashMapBase::PointerBase
getNextTrie(ThreadSafeTrieRawHashMapBase::PointerBase P) const {
return Trie->getNextTrie(P);
}
private:
ThreadSafeTrieRawHashMapBase *Trie = nullptr;
};
} // namespace llvm
namespace {
template <typename DataType, size_t HashSize = sizeof(uint64_t)>
class SimpleTrieHashMapTest : public TrieRawHashMapTestHelper,
public ::testing::Test {
public:
using NumType = DataType;
using HashType = std::array<uint8_t, HashSize>;
using TrieType = ThreadSafeTrieRawHashMap<DataType, sizeof(HashType)>;
TrieType &createTrie(size_t RootBits, size_t SubtrieBits) {
auto &Ret = Trie.emplace(RootBits, SubtrieBits);
TrieRawHashMapTestHelper::setTrie(&Ret);
return Ret;
}
void destroyTrie() { Trie.reset(); }
~SimpleTrieHashMapTest() { destroyTrie(); }
// Use the number itself as hash to test the pathological case.
static HashType hash(uint64_t Num) {
uint64_t HashN =
llvm::support::endian::byte_swap(Num, llvm::endianness::big);
HashType Hash;
memcpy(&Hash[0], &HashN, sizeof(HashType));
return Hash;
};
private:
std::optional<TrieType> Trie;
};
using SmallNodeTrieTest = SimpleTrieHashMapTest<uint64_t>;
TEST_F(SmallNodeTrieTest, TrieAllocation) {
NumType Numbers[] = {
0x0, std::numeric_limits<NumType>::max(), 0x1, 0x2,
0x3, std::numeric_limits<NumType>::max() - 1u,
};
unsigned ExpectedTries[] = {
1, // Allocate Root.
1, // Both on the root.
64, // 0 and 1 sinks all the way down.
64, // no new allocation needed.
65, // need a new node between 2 and 3.
65 + 63, // 63 new allocation to sink two big numbers all the way.
};
const char *ExpectedPrefix[] = {
"", // Root.
"", // Root.
"00000000000000[0000000]",
"00000000000000[0000000]",
"00000000000000[0000001]",
"ffffffffffffff[1111111]",
};
// Use root and subtrie sizes of 1 so this gets sunk quite deep.
auto &Trie = createTrie(/*RootBits=*/1, /*SubtrieBits=*/1);
for (unsigned I = 0; I < 6; ++I) {
// Lookup first to exercise hint code for deep tries.
TrieType::pointer Lookup = Trie.find(hash(Numbers[I]));
EXPECT_FALSE(Lookup);
Trie.insert(Lookup, TrieType::value_type(hash(Numbers[I]), Numbers[I]));
EXPECT_EQ(getNumTries(), ExpectedTries[I]);
EXPECT_EQ(getTriePrefixAsString(getNextTrie(getRoot())), ExpectedPrefix[I]);
}
}
TEST_F(SmallNodeTrieTest, TrieStructure) {
NumType Numbers[] = {
// Three numbers that will nest deeply to test (1) sinking subtries and
// (2) deep, non-trivial hints.
std::numeric_limits<NumType>::max(),
std::numeric_limits<NumType>::max() - 2u,
std::numeric_limits<NumType>::max() - 3u,
// One number to stay at the top-level.
0x37,
};
// Use root and subtrie sizes of 1 so this gets sunk quite deep.
auto &Trie = createTrie(/*RootBits=*/1, /*SubtrieBits=*/1);
for (NumType N : Numbers) {
// Lookup first to exercise hint code for deep tries.
TrieType::pointer Lookup = Trie.find(hash(N));
EXPECT_FALSE(Lookup);
Trie.insert(Lookup, TrieType::value_type(hash(N), N));
}
for (NumType N : Numbers) {
TrieType::pointer Lookup = Trie.find(hash(N));
EXPECT_TRUE(Lookup);
if (!Lookup)
continue;
EXPECT_EQ(hash(N), Lookup->Hash);
EXPECT_EQ(N, Lookup->Data);
// Confirm a subsequent insertion fails to overwrite by trying to insert a
// bad value.
auto Result = Trie.insert(Lookup, TrieType::value_type(hash(N), N - 1));
EXPECT_EQ(N, Result->Data);
}
// Check the trie so we can confirm the structure is correct. Each subtrie
// should have 2 slots. The root's index=0 should have the content for
// 0x37 directly, and index=1 should be a linked-list of subtries, finally
// ending with content for (max-2) and (max-3).
//
// Note: This structure is not exhaustive (too expensive to update tests),
// but it does test that the dump format is somewhat readable and that the
// basic structure is correct.
//
// Note: This test requires that the trie reads bytes starting from index 0
// of the array of uint8_t, and then reads each byte's bits from high to low.
// Check the Trie.
// We should allocated a total of 64 SubTries for 64 bit hash.
ASSERT_EQ(getNumTries(), 64u);
// Check the root trie. Two slots and both are used.
ASSERT_EQ(getNumSlotUsed(getRoot()), 2u);
// Check last subtrie.
// Last allocated trie is the next node in the allocation chain.
auto LastAlloctedSubTrie = getNextTrie(getRoot());
ASSERT_EQ(getTriePrefixAsString(LastAlloctedSubTrie),
"ffffffffffffff[1111110]");
ASSERT_EQ(getStartBit(LastAlloctedSubTrie), 63u);
ASSERT_EQ(getNumBits(LastAlloctedSubTrie), 1u);
ASSERT_EQ(getNumSlotUsed(LastAlloctedSubTrie), 2u);
}
TEST_F(SmallNodeTrieTest, TrieStructureSmallFinalSubtrie) {
NumType Numbers[] = {
// Three numbers that will nest deeply to test (1) sinking subtries and
// (2) deep, non-trivial hints.
std::numeric_limits<NumType>::max(),
std::numeric_limits<NumType>::max() - 2u,
std::numeric_limits<NumType>::max() - 3u,
// One number to stay at the top-level.
0x37,
};
// Use subtrie size of 5 to avoid hitting 64 evenly, making the final subtrie
// small.
auto &Trie = createTrie(/*RootBits=*/8, /*SubtrieBits=*/5);
for (NumType N : Numbers) {
// Lookup first to exercise hint code for deep tries.
TrieType::pointer Lookup = Trie.find(hash(N));
EXPECT_FALSE(Lookup);
Trie.insert(Lookup, TrieType::value_type(hash(N), N));
}
for (NumType N : Numbers) {
TrieType::pointer Lookup = Trie.find(hash(N));
ASSERT_TRUE(Lookup);
EXPECT_EQ(hash(N), Lookup->Hash);
EXPECT_EQ(N, Lookup->Data);
// Confirm a subsequent insertion fails to overwrite by trying to insert a
// bad value.
auto Result = Trie.insert(Lookup, TrieType::value_type(hash(N), N - 1));
EXPECT_EQ(N, Result->Data);
}
// Check the trie so we can confirm the structure is correct. The root
// should have 2^8=256 slots, most subtries should have 2^5=32 slots, and the
// deepest subtrie should have 2^1=2 slots (since (64-8)mod(5)=1).
// should have 2 slots. The root's index=0 should have the content for
// 0x37 directly, and index=1 should be a linked-list of subtries, finally
// ending with content for (max-2) and (max-3).
//
// Note: This structure is not exhaustive (too expensive to update tests),
// but it does test that the dump format is somewhat readable and that the
// basic structure is correct.
//
// Note: This test requires that the trie reads bytes starting from index 0
// of the array of uint8_t, and then reads each byte's bits from high to low.
// Check the Trie.
// 64 bit hash = 8 + 5 * 11 + 1, so 1 root, 11 8bit subtrie and 1 last level
// subtrie, 13 total.
ASSERT_EQ(getNumTries(), 13u);
// Check the root trie. Two slots and both are used.
ASSERT_EQ(getNumSlotUsed(getRoot()), 2u);
// Check last subtrie.
// Last allocated trie is the next node in the allocation chain.
auto LastAlloctedSubTrie = getNextTrie(getRoot());
ASSERT_EQ(getTriePrefixAsString(LastAlloctedSubTrie),
"ffffffffffffff[1111110]");
ASSERT_EQ(getStartBit(LastAlloctedSubTrie), 63u);
ASSERT_EQ(getNumBits(LastAlloctedSubTrie), 1u);
ASSERT_EQ(getNumSlotUsed(LastAlloctedSubTrie), 2u);
}
TEST_F(SmallNodeTrieTest, TrieDestructionLoop) {
// Test destroying large Trie. Make sure there is no recursion that can
// overflow the stack.
// Limit the tries to 2 slots (1 bit) to generate subtries at a higher rate.
auto &Trie = createTrie(/*NumRootBits=*/1, /*NumSubtrieBits=*/1);
// Fill them up. Pick a MaxN high enough to cause a stack overflow in debug
// builds.
static constexpr uint64_t MaxN = 100000;
for (uint64_t N = 0; N != MaxN; ++N) {
HashType Hash = hash(N);
Trie.insert(TrieType::pointer(), TrieType::value_type(Hash, NumType{N}));
}
// Destroy tries. If destruction is recursive and MaxN is high enough, these
// will both fail.
destroyTrie();
}
struct NumWithDestructorT {
uint64_t Num;
llvm::function_ref<void()> DestructorCallback;
~NumWithDestructorT() { DestructorCallback(); }
};
using NodeWithDestructorTrieTest = SimpleTrieHashMapTest<NumWithDestructorT>;
TEST_F(NodeWithDestructorTrieTest, TrieDestructionLoop) {
// Test destroying large Trie. Make sure there is no recursion that can
// overflow the stack.
// Limit the tries to 2 slots (1 bit) to generate subtries at a higher rate.
auto &Trie = createTrie(/*NumRootBits=*/1, /*NumSubtrieBits=*/1);
// Fill them up. Pick a MaxN high enough to cause a stack overflow in debug
// builds.
static constexpr uint64_t MaxN = 100000;
uint64_t DestructorCalled = 0;
auto DtorCallback = [&DestructorCalled]() { ++DestructorCalled; };
for (uint64_t N = 0; N != MaxN; ++N) {
HashType Hash = hash(N);
Trie.insert(TrieType::pointer(),
TrieType::value_type(Hash, NumType{N, DtorCallback}));
}
// Reset the count after all the temporaries get destroyed.
DestructorCalled = 0;
// Destroy tries. If destruction is recursive and MaxN is high enough, these
// will both fail.
destroyTrie();
// Count the number of destructor calls during `destroyTrie()`.
ASSERT_EQ(DestructorCalled, MaxN);
}
using NumStrNodeTrieTest = SimpleTrieHashMapTest<std::string>;
TEST_F(NumStrNodeTrieTest, TrieInsertLazy) {
for (unsigned RootBits : {2, 3, 6, 10}) {
for (unsigned SubtrieBits : {2, 3, 4}) {
auto &Trie = createTrie(RootBits, SubtrieBits);
for (int I = 0, E = 1000; I != E; ++I) {
TrieType::pointer Lookup;
HashType H = hash(I);
if (I & 1)
Lookup = Trie.find(H);
auto insertNum = [&](uint64_t Num) {
std::string S = Twine(I).str();
auto Hash = hash(Num);
return Trie.insertLazy(
Hash, [&](TrieType::LazyValueConstructor C) { C(std::move(S)); });
};
auto S1 = insertNum(I);
// The address of the Data should be the same.
EXPECT_EQ(&S1->Data, &insertNum(I)->Data);
auto insertStr = [&](std::string S) {
int Num = std::stoi(S);
return insertNum(Num);
};
std::string S2 = S1->Data;
// The address of the Data should be the same.
EXPECT_EQ(&S1->Data, &insertStr(S2)->Data);
}
for (int I = 0, E = 1000; I != E; ++I) {
std::string S = Twine(I).str();
TrieType::pointer Lookup = Trie.find(hash(I));
EXPECT_TRUE(Lookup);
if (!Lookup)
continue;
EXPECT_EQ(S, Lookup->Data);
}
}
}
}
} // end anonymous namespace
|