aboutsummaryrefslogtreecommitdiff
path: root/llvm/tools/llvm-profgen/ProfiledBinary.cpp
blob: 4755f758a828b8a42b76dbc5e5519d8f73124f6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
//===-- ProfiledBinary.cpp - Binary decoder ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ProfiledBinary.h"
#include "ErrorHandling.h"
#include "MissingFrameInferrer.h"
#include "ProfileGenerator.h"
#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/TargetParser/Triple.h"
#include <optional>

#define DEBUG_TYPE "load-binary"

using namespace llvm;
using namespace sampleprof;

cl::opt<bool> ShowDisassemblyOnly("show-disassembly-only",
                                  cl::desc("Print disassembled code."));

cl::opt<bool> ShowSourceLocations("show-source-locations",
                                  cl::desc("Print source locations."));

static cl::opt<bool>
    ShowCanonicalFnName("show-canonical-fname",
                        cl::desc("Print canonical function name."));

static cl::opt<bool> ShowPseudoProbe(
    "show-pseudo-probe",
    cl::desc("Print pseudo probe section and disassembled info."));

static cl::opt<bool> UseDwarfCorrelation(
    "use-dwarf-correlation",
    cl::desc("Use dwarf for profile correlation even when binary contains "
             "pseudo probe."));

static cl::opt<std::string>
    DWPPath("dwp", cl::init(""),
            cl::desc("Path of .dwp file. When not specified, it will be "
                     "<binary>.dwp in the same directory as the main binary."));

static cl::list<std::string> DisassembleFunctions(
    "disassemble-functions", cl::CommaSeparated,
    cl::desc("List of functions to print disassembly for. Accept demangled "
             "names only. Only work with show-disassembly-only"));

extern cl::opt<bool> ShowDetailedWarning;
extern cl::opt<bool> InferMissingFrames;

namespace llvm {
namespace sampleprof {

static const Target *getTarget(const ObjectFile *Obj) {
  Triple TheTriple = Obj->makeTriple();
  std::string Error;
  std::string ArchName;
  const Target *TheTarget =
      TargetRegistry::lookupTarget(ArchName, TheTriple, Error);
  if (!TheTarget)
    exitWithError(Error, Obj->getFileName());
  return TheTarget;
}

void BinarySizeContextTracker::addInstructionForContext(
    const SampleContextFrameVector &Context, uint32_t InstrSize) {
  ContextTrieNode *CurNode = &RootContext;
  bool IsLeaf = true;
  for (const auto &Callsite : reverse(Context)) {
    StringRef CallerName = Callsite.FuncName;
    LineLocation CallsiteLoc = IsLeaf ? LineLocation(0, 0) : Callsite.Location;
    CurNode = CurNode->getOrCreateChildContext(CallsiteLoc, CallerName);
    IsLeaf = false;
  }

  CurNode->addFunctionSize(InstrSize);
}

uint32_t
BinarySizeContextTracker::getFuncSizeForContext(const ContextTrieNode *Node) {
  ContextTrieNode *CurrNode = &RootContext;
  ContextTrieNode *PrevNode = nullptr;

  std::optional<uint32_t> Size;

  // Start from top-level context-less function, traverse down the reverse
  // context trie to find the best/longest match for given context, then
  // retrieve the size.
  LineLocation CallSiteLoc(0, 0);
  while (CurrNode && Node->getParentContext() != nullptr) {
    PrevNode = CurrNode;
    CurrNode = CurrNode->getChildContext(CallSiteLoc, Node->getFuncName());
    if (CurrNode && CurrNode->getFunctionSize())
      Size = *CurrNode->getFunctionSize();
    CallSiteLoc = Node->getCallSiteLoc();
    Node = Node->getParentContext();
  }

  // If we traversed all nodes along the path of the context and haven't
  // found a size yet, pivot to look for size from sibling nodes, i.e size
  // of inlinee under different context.
  if (!Size) {
    if (!CurrNode)
      CurrNode = PrevNode;
    while (!Size && CurrNode && !CurrNode->getAllChildContext().empty()) {
      CurrNode = &CurrNode->getAllChildContext().begin()->second;
      if (CurrNode->getFunctionSize())
        Size = *CurrNode->getFunctionSize();
    }
  }

  assert(Size && "We should at least find one context size.");
  return *Size;
}

void BinarySizeContextTracker::trackInlineesOptimizedAway(
    MCPseudoProbeDecoder &ProbeDecoder) {
  ProbeFrameStack ProbeContext;
  for (const auto &Child : ProbeDecoder.getDummyInlineRoot().getChildren())
    trackInlineesOptimizedAway(ProbeDecoder, *Child.second.get(), ProbeContext);
}

void BinarySizeContextTracker::trackInlineesOptimizedAway(
    MCPseudoProbeDecoder &ProbeDecoder,
    MCDecodedPseudoProbeInlineTree &ProbeNode, ProbeFrameStack &ProbeContext) {
  StringRef FuncName =
      ProbeDecoder.getFuncDescForGUID(ProbeNode.Guid)->FuncName;
  ProbeContext.emplace_back(FuncName, 0);

  // This ProbeContext has a probe, so it has code before inlining and
  // optimization. Make sure we mark its size as known.
  if (!ProbeNode.getProbes().empty()) {
    ContextTrieNode *SizeContext = &RootContext;
    for (auto &ProbeFrame : reverse(ProbeContext)) {
      StringRef CallerName = ProbeFrame.first;
      LineLocation CallsiteLoc(ProbeFrame.second, 0);
      SizeContext =
          SizeContext->getOrCreateChildContext(CallsiteLoc, CallerName);
    }
    // Add 0 size to make known.
    SizeContext->addFunctionSize(0);
  }

  // DFS down the probe inline tree
  for (const auto &ChildNode : ProbeNode.getChildren()) {
    InlineSite Location = ChildNode.first;
    ProbeContext.back().second = std::get<1>(Location);
    trackInlineesOptimizedAway(ProbeDecoder, *ChildNode.second.get(),
                               ProbeContext);
  }

  ProbeContext.pop_back();
}

ProfiledBinary::ProfiledBinary(const StringRef ExeBinPath,
                               const StringRef DebugBinPath)
    : Path(ExeBinPath), DebugBinaryPath(DebugBinPath),
      SymbolizerOpts(getSymbolizerOpts()), ProEpilogTracker(this),
      Symbolizer(std::make_unique<symbolize::LLVMSymbolizer>(SymbolizerOpts)),
      TrackFuncContextSize(EnableCSPreInliner && UseContextCostForPreInliner) {
  // Point to executable binary if debug info binary is not specified.
  SymbolizerPath = DebugBinPath.empty() ? ExeBinPath : DebugBinPath;
  if (InferMissingFrames)
    MissingContextInferrer = std::make_unique<MissingFrameInferrer>(this);
  load();
}

ProfiledBinary::~ProfiledBinary() {}

void ProfiledBinary::warnNoFuncEntry() {
  uint64_t NoFuncEntryNum = 0;
  for (auto &F : BinaryFunctions) {
    if (F.second.Ranges.empty())
      continue;
    bool hasFuncEntry = false;
    for (auto &R : F.second.Ranges) {
      if (FuncRange *FR = findFuncRangeForStartAddr(R.first)) {
        if (FR->IsFuncEntry) {
          hasFuncEntry = true;
          break;
        }
      }
    }

    if (!hasFuncEntry) {
      NoFuncEntryNum++;
      if (ShowDetailedWarning)
        WithColor::warning()
            << "Failed to determine function entry for " << F.first
            << " due to inconsistent name from symbol table and dwarf info.\n";
    }
  }
  emitWarningSummary(NoFuncEntryNum, BinaryFunctions.size(),
                     "of functions failed to determine function entry due to "
                     "inconsistent name from symbol table and dwarf info.");
}

void ProfiledBinary::load() {
  // Attempt to open the binary.
  OwningBinary<Binary> OBinary = unwrapOrError(createBinary(Path), Path);
  Binary &ExeBinary = *OBinary.getBinary();

  auto *Obj = dyn_cast<ELFObjectFileBase>(&ExeBinary);
  if (!Obj)
    exitWithError("not a valid Elf image", Path);

  TheTriple = Obj->makeTriple();

  LLVM_DEBUG(dbgs() << "Loading " << Path << "\n");

  // Find the preferred load address for text sections.
  setPreferredTextSegmentAddresses(Obj);

  // Load debug info of subprograms from DWARF section.
  // If path of debug info binary is specified, use the debug info from it,
  // otherwise use the debug info from the executable binary.
  if (!DebugBinaryPath.empty()) {
    OwningBinary<Binary> DebugPath =
        unwrapOrError(createBinary(DebugBinaryPath), DebugBinaryPath);
    loadSymbolsFromDWARF(*cast<ObjectFile>(DebugPath.getBinary()));
  } else {
    loadSymbolsFromDWARF(*cast<ObjectFile>(&ExeBinary));
  }

  DisassembleFunctionSet.insert(DisassembleFunctions.begin(),
                                DisassembleFunctions.end());

  checkPseudoProbe(Obj);

  if (UsePseudoProbes)
    populateElfSymbolAddressList(Obj);

  if (ShowDisassemblyOnly)
    decodePseudoProbe(Obj);

  // Disassemble the text sections.
  disassemble(Obj);

  // Use function start and return address to infer prolog and epilog
  ProEpilogTracker.inferPrologAddresses(StartAddrToFuncRangeMap);
  ProEpilogTracker.inferEpilogAddresses(RetAddressSet);

  warnNoFuncEntry();

  // TODO: decode other sections.
}

bool ProfiledBinary::inlineContextEqual(uint64_t Address1, uint64_t Address2) {
  const SampleContextFrameVector &Context1 =
      getCachedFrameLocationStack(Address1);
  const SampleContextFrameVector &Context2 =
      getCachedFrameLocationStack(Address2);
  if (Context1.size() != Context2.size())
    return false;
  if (Context1.empty())
    return false;
  // The leaf frame contains location within the leaf, and it
  // needs to be remove that as it's not part of the calling context
  return std::equal(Context1.begin(), Context1.begin() + Context1.size() - 1,
                    Context2.begin(), Context2.begin() + Context2.size() - 1);
}

SampleContextFrameVector
ProfiledBinary::getExpandedContext(const SmallVectorImpl<uint64_t> &Stack,
                                   bool &WasLeafInlined) {
  SampleContextFrameVector ContextVec;
  if (Stack.empty())
    return ContextVec;
  // Process from frame root to leaf
  for (auto Address : Stack) {
    const SampleContextFrameVector &ExpandedContext =
        getCachedFrameLocationStack(Address);
    // An instruction without a valid debug line will be ignored by sample
    // processing
    if (ExpandedContext.empty())
      return SampleContextFrameVector();
    // Set WasLeafInlined to the size of inlined frame count for the last
    // address which is leaf
    WasLeafInlined = (ExpandedContext.size() > 1);
    ContextVec.append(ExpandedContext);
  }

  // Replace with decoded base discriminator
  for (auto &Frame : ContextVec) {
    Frame.Location.Discriminator = ProfileGeneratorBase::getBaseDiscriminator(
        Frame.Location.Discriminator, UseFSDiscriminator);
  }

  assert(ContextVec.size() && "Context length should be at least 1");

  // Compress the context string except for the leaf frame
  auto LeafFrame = ContextVec.back();
  LeafFrame.Location = LineLocation(0, 0);
  ContextVec.pop_back();
  CSProfileGenerator::compressRecursionContext(ContextVec);
  CSProfileGenerator::trimContext(ContextVec);
  ContextVec.push_back(LeafFrame);
  return ContextVec;
}

template <class ELFT>
void ProfiledBinary::setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj,
                                                      StringRef FileName) {
  const auto &PhdrRange = unwrapOrError(Obj.program_headers(), FileName);
  // FIXME: This should be the page size of the system running profiling.
  // However such info isn't available at post-processing time, assuming
  // 4K page now. Note that we don't use EXEC_PAGESIZE from <linux/param.h>
  // because we may build the tools on non-linux.
  uint32_t PageSize = 0x1000;
  for (const typename ELFT::Phdr &Phdr : PhdrRange) {
    if (Phdr.p_type == ELF::PT_LOAD) {
      if (!FirstLoadableAddress)
        FirstLoadableAddress = Phdr.p_vaddr & ~(PageSize - 1U);
      if (Phdr.p_flags & ELF::PF_X) {
        // Segments will always be loaded at a page boundary.
        PreferredTextSegmentAddresses.push_back(Phdr.p_vaddr &
                                                ~(PageSize - 1U));
        TextSegmentOffsets.push_back(Phdr.p_offset & ~(PageSize - 1U));
      }
    }
  }

  if (PreferredTextSegmentAddresses.empty())
    exitWithError("no executable segment found", FileName);
}

void ProfiledBinary::setPreferredTextSegmentAddresses(
    const ELFObjectFileBase *Obj) {
  if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
    setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
  else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
    setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
  else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
    setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
  else if (const auto *ELFObj = cast<ELF64BEObjectFile>(Obj))
    setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
  else
    llvm_unreachable("invalid ELF object format");
}

void ProfiledBinary::checkPseudoProbe(const ELFObjectFileBase *Obj) {
  if (UseDwarfCorrelation)
    return;

  bool HasProbeDescSection = false;
  bool HasPseudoProbeSection = false;

  StringRef FileName = Obj->getFileName();
  for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
       SI != SE; ++SI) {
    const SectionRef &Section = *SI;
    StringRef SectionName = unwrapOrError(Section.getName(), FileName);
    if (SectionName == ".pseudo_probe_desc") {
      HasProbeDescSection = true;
    } else if (SectionName == ".pseudo_probe") {
      HasPseudoProbeSection = true;
    }
  }

  // set UsePseudoProbes flag, used for PerfReader
  UsePseudoProbes = HasProbeDescSection && HasPseudoProbeSection;
}

void ProfiledBinary::decodePseudoProbe(const ELFObjectFileBase *Obj) {
  if (!UsePseudoProbes)
    return;

  MCPseudoProbeDecoder::Uint64Set GuidFilter;
  MCPseudoProbeDecoder::Uint64Map FuncStartAddresses;
  if (ShowDisassemblyOnly) {
    if (DisassembleFunctionSet.empty()) {
      FuncStartAddresses = SymbolStartAddrs;
    } else {
      for (auto &F : DisassembleFunctionSet) {
        auto GUID = Function::getGUID(F.first());
        if (auto StartAddr = SymbolStartAddrs.lookup(GUID)) {
          FuncStartAddresses[GUID] = StartAddr;
          FuncRange &Range = StartAddrToFuncRangeMap[StartAddr];
          GuidFilter.insert(Function::getGUID(Range.getFuncName()));
        }
      }
    }
  } else {
    for (auto *F : ProfiledFunctions) {
      GuidFilter.insert(Function::getGUID(F->FuncName));
      for (auto &Range : F->Ranges) {
        auto GUIDs = StartAddrToSymMap.equal_range(Range.first);
        for (auto I = GUIDs.first; I != GUIDs.second; ++I)
          FuncStartAddresses[I->second] = I->first;
      }
    }
  }

  StringRef FileName = Obj->getFileName();
  for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
       SI != SE; ++SI) {
    const SectionRef &Section = *SI;
    StringRef SectionName = unwrapOrError(Section.getName(), FileName);

    if (SectionName == ".pseudo_probe_desc") {
      StringRef Contents = unwrapOrError(Section.getContents(), FileName);
      if (!ProbeDecoder.buildGUID2FuncDescMap(
              reinterpret_cast<const uint8_t *>(Contents.data()),
              Contents.size()))
        exitWithError(
            "Pseudo Probe decoder fail in .pseudo_probe_desc section");
    } else if (SectionName == ".pseudo_probe") {
      StringRef Contents = unwrapOrError(Section.getContents(), FileName);
      if (!ProbeDecoder.buildAddress2ProbeMap(
              reinterpret_cast<const uint8_t *>(Contents.data()),
              Contents.size(), GuidFilter, FuncStartAddresses))
        exitWithError("Pseudo Probe decoder fail in .pseudo_probe section");
    }
  }

  // Build TopLevelProbeFrameMap to track size for optimized inlinees when probe
  // is available
  if (TrackFuncContextSize) {
    for (const auto &Child : ProbeDecoder.getDummyInlineRoot().getChildren()) {
      auto *Frame = Child.second.get();
      StringRef FuncName =
          ProbeDecoder.getFuncDescForGUID(Frame->Guid)->FuncName;
      TopLevelProbeFrameMap[FuncName] = Frame;
    }
  }

  if (ShowPseudoProbe)
    ProbeDecoder.printGUID2FuncDescMap(outs());
}

void ProfiledBinary::decodePseudoProbe() {
  OwningBinary<Binary> OBinary = unwrapOrError(createBinary(Path), Path);
  Binary &ExeBinary = *OBinary.getBinary();
  auto *Obj = dyn_cast<ELFObjectFileBase>(&ExeBinary);
  decodePseudoProbe(Obj);
}

void ProfiledBinary::setIsFuncEntry(FuncRange *FuncRange,
                                    StringRef RangeSymName) {
  // Skip external function symbol.
  if (!FuncRange)
    return;

  // Set IsFuncEntry to ture if there is only one range in the function or the
  // RangeSymName from ELF is equal to its DWARF-based function name.
  if (FuncRange->Func->Ranges.size() == 1 ||
      (!FuncRange->IsFuncEntry && FuncRange->getFuncName() == RangeSymName))
    FuncRange->IsFuncEntry = true;
}

bool ProfiledBinary::dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
                                        SectionSymbolsTy &Symbols,
                                        const SectionRef &Section) {
  std::size_t SE = Symbols.size();
  uint64_t SectionAddress = Section.getAddress();
  uint64_t SectSize = Section.getSize();
  uint64_t StartAddress = Symbols[SI].Addr;
  uint64_t NextStartAddress =
      (SI + 1 < SE) ? Symbols[SI + 1].Addr : SectionAddress + SectSize;
  FuncRange *FRange = findFuncRange(StartAddress);
  setIsFuncEntry(FRange, FunctionSamples::getCanonicalFnName(Symbols[SI].Name));
  StringRef SymbolName =
      ShowCanonicalFnName
          ? FunctionSamples::getCanonicalFnName(Symbols[SI].Name)
          : Symbols[SI].Name;
  bool ShowDisassembly =
      ShowDisassemblyOnly && (DisassembleFunctionSet.empty() ||
                              DisassembleFunctionSet.count(SymbolName));
  if (ShowDisassembly)
    outs() << '<' << SymbolName << ">:\n";

  auto WarnInvalidInsts = [](uint64_t Start, uint64_t End) {
    WithColor::warning() << "Invalid instructions at "
                         << format("%8" PRIx64, Start) << " - "
                         << format("%8" PRIx64, End) << "\n";
  };

  uint64_t Address = StartAddress;
  // Size of a consecutive invalid instruction range starting from Address -1
  // backwards.
  uint64_t InvalidInstLength = 0;
  while (Address < NextStartAddress) {
    MCInst Inst;
    uint64_t Size;
    // Disassemble an instruction.
    bool Disassembled = DisAsm->getInstruction(
        Inst, Size, Bytes.slice(Address - SectionAddress), Address, nulls());
    if (Size == 0)
      Size = 1;

    if (ShowDisassembly) {
      if (ShowPseudoProbe) {
        ProbeDecoder.printProbeForAddress(outs(), Address);
      }
      outs() << format("%8" PRIx64 ":", Address);
      size_t Start = outs().tell();
      if (Disassembled)
        IPrinter->printInst(&Inst, Address + Size, "", *STI.get(), outs());
      else
        outs() << "\t<unknown>";
      if (ShowSourceLocations) {
        unsigned Cur = outs().tell() - Start;
        if (Cur < 40)
          outs().indent(40 - Cur);
        InstructionPointer IP(this, Address);
        outs() << getReversedLocWithContext(
            symbolize(IP, ShowCanonicalFnName, ShowPseudoProbe));
      }
      outs() << "\n";
    }

    if (Disassembled) {
      const MCInstrDesc &MCDesc = MII->get(Inst.getOpcode());

      // Record instruction size.
      AddressToInstSizeMap[Address] = Size;

      // Populate address maps.
      CodeAddressVec.push_back(Address);
      if (MCDesc.isCall()) {
        CallAddressSet.insert(Address);
        UncondBranchAddrSet.insert(Address);
      } else if (MCDesc.isReturn()) {
        RetAddressSet.insert(Address);
        UncondBranchAddrSet.insert(Address);
      } else if (MCDesc.isBranch()) {
        if (MCDesc.isUnconditionalBranch())
          UncondBranchAddrSet.insert(Address);
        BranchAddressSet.insert(Address);
      }

      // Record potential call targets for tail frame inference later-on.
      if (InferMissingFrames && FRange) {
        uint64_t Target = 0;
        MIA->evaluateBranch(Inst, Address, Size, Target);
        if (MCDesc.isCall()) {
          // Indirect call targets are unknown at this point. Recording the
          // unknown target (zero) for further LBR-based refinement.
          MissingContextInferrer->CallEdges[Address].insert(Target);
        } else if (MCDesc.isUnconditionalBranch()) {
          assert(Target &&
                 "target should be known for unconditional direct branch");
          // Any inter-function unconditional jump is considered tail call at
          // this point. This is not 100% accurate and could further be
          // optimized based on some source annotation.
          FuncRange *ToFRange = findFuncRange(Target);
          if (ToFRange && ToFRange->Func != FRange->Func)
            MissingContextInferrer->TailCallEdges[Address].insert(Target);
          LLVM_DEBUG({
            dbgs() << "Direct Tail call: " << format("%8" PRIx64 ":", Address);
            IPrinter->printInst(&Inst, Address + Size, "", *STI.get(), dbgs());
            dbgs() << "\n";
          });
        } else if (MCDesc.isIndirectBranch() && MCDesc.isBarrier()) {
          // This is an indirect branch but not necessarily an indirect tail
          // call. The isBarrier check is to filter out conditional branch.
          // Similar with indirect call targets, recording the unknown target
          // (zero) for further LBR-based refinement.
          MissingContextInferrer->TailCallEdges[Address].insert(Target);
          LLVM_DEBUG({
            dbgs() << "Indirect Tail call: "
                   << format("%8" PRIx64 ":", Address);
            IPrinter->printInst(&Inst, Address + Size, "", *STI.get(), dbgs());
            dbgs() << "\n";
          });
        }
      }

      if (InvalidInstLength) {
        WarnInvalidInsts(Address - InvalidInstLength, Address - 1);
        InvalidInstLength = 0;
      }
    } else {
      InvalidInstLength += Size;
    }

    Address += Size;
  }

  if (InvalidInstLength)
    WarnInvalidInsts(Address - InvalidInstLength, Address - 1);

  if (ShowDisassembly)
    outs() << "\n";

  return true;
}

void ProfiledBinary::setUpDisassembler(const ELFObjectFileBase *Obj) {
  const Target *TheTarget = getTarget(Obj);
  std::string TripleName = TheTriple.getTriple();
  StringRef FileName = Obj->getFileName();

  MRI.reset(TheTarget->createMCRegInfo(TripleName));
  if (!MRI)
    exitWithError("no register info for target " + TripleName, FileName);

  MCTargetOptions MCOptions;
  AsmInfo.reset(TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
  if (!AsmInfo)
    exitWithError("no assembly info for target " + TripleName, FileName);

  Expected<SubtargetFeatures> Features = Obj->getFeatures();
  if (!Features)
    exitWithError(Features.takeError(), FileName);
  STI.reset(
      TheTarget->createMCSubtargetInfo(TripleName, "", Features->getString()));
  if (!STI)
    exitWithError("no subtarget info for target " + TripleName, FileName);

  MII.reset(TheTarget->createMCInstrInfo());
  if (!MII)
    exitWithError("no instruction info for target " + TripleName, FileName);

  MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
  std::unique_ptr<MCObjectFileInfo> MOFI(
      TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
  Ctx.setObjectFileInfo(MOFI.get());
  DisAsm.reset(TheTarget->createMCDisassembler(*STI, Ctx));
  if (!DisAsm)
    exitWithError("no disassembler for target " + TripleName, FileName);

  MIA.reset(TheTarget->createMCInstrAnalysis(MII.get()));

  int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
  IPrinter.reset(TheTarget->createMCInstPrinter(
      Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
  IPrinter->setPrintBranchImmAsAddress(true);
}

void ProfiledBinary::disassemble(const ELFObjectFileBase *Obj) {
  // Set up disassembler and related components.
  setUpDisassembler(Obj);

  // Create a mapping from virtual address to symbol name. The symbols in text
  // sections are the candidates to dissassemble.
  std::map<SectionRef, SectionSymbolsTy> AllSymbols;
  StringRef FileName = Obj->getFileName();
  for (const SymbolRef &Symbol : Obj->symbols()) {
    const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
    const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
    section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
    if (SecI != Obj->section_end())
      AllSymbols[*SecI].push_back(SymbolInfoTy(Addr, Name, ELF::STT_NOTYPE));
  }

  // Sort all the symbols. Use a stable sort to stabilize the output.
  for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
    stable_sort(SecSyms.second);

  assert((DisassembleFunctionSet.empty() || ShowDisassemblyOnly) &&
         "Functions to disassemble should be only specified together with "
         "--show-disassembly-only");

  if (ShowDisassemblyOnly)
    outs() << "\nDisassembly of " << FileName << ":\n";

  // Dissassemble a text section.
  for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
       SI != SE; ++SI) {
    const SectionRef &Section = *SI;
    if (!Section.isText())
      continue;

    uint64_t ImageLoadAddr = getPreferredBaseAddress();
    uint64_t SectionAddress = Section.getAddress() - ImageLoadAddr;
    uint64_t SectSize = Section.getSize();
    if (!SectSize)
      continue;

    // Register the text section.
    TextSections.insert({SectionAddress, SectSize});

    StringRef SectionName = unwrapOrError(Section.getName(), FileName);

    if (ShowDisassemblyOnly) {
      outs() << "\nDisassembly of section " << SectionName;
      outs() << " [" << format("0x%" PRIx64, Section.getAddress()) << ", "
             << format("0x%" PRIx64, Section.getAddress() + SectSize)
             << "]:\n\n";
    }

    if (SectionName == ".plt")
      continue;

    // Get the section data.
    ArrayRef<uint8_t> Bytes =
        arrayRefFromStringRef(unwrapOrError(Section.getContents(), FileName));

    // Get the list of all the symbols in this section.
    SectionSymbolsTy &Symbols = AllSymbols[Section];

    // Disassemble symbol by symbol.
    for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
      if (!dissassembleSymbol(SI, Bytes, Symbols, Section))
        exitWithError("disassembling error", FileName);
    }
  }

  // Dissassemble rodata section to check if FS discriminator symbol exists.
  checkUseFSDiscriminator(Obj, AllSymbols);
}

void ProfiledBinary::checkUseFSDiscriminator(
    const ELFObjectFileBase *Obj,
    std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
  const char *FSDiscriminatorVar = "__llvm_fs_discriminator__";
  for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
       SI != SE; ++SI) {
    const SectionRef &Section = *SI;
    if (!Section.isData() || Section.getSize() == 0)
      continue;
    SectionSymbolsTy &Symbols = AllSymbols[Section];

    for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
      if (Symbols[SI].Name == FSDiscriminatorVar) {
        UseFSDiscriminator = true;
        return;
      }
    }
  }
}

void ProfiledBinary::populateElfSymbolAddressList(
    const ELFObjectFileBase *Obj) {
  // Create a mapping from virtual address to symbol GUID and the other way
  // around.
  StringRef FileName = Obj->getFileName();
  for (const SymbolRef &Symbol : Obj->symbols()) {
    const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
    const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
    uint64_t GUID = Function::getGUID(Name);
    SymbolStartAddrs[GUID] = Addr;
    StartAddrToSymMap.emplace(Addr, GUID);
  }
}

void ProfiledBinary::loadSymbolsFromDWARFUnit(DWARFUnit &CompilationUnit) {
  for (const auto &DieInfo : CompilationUnit.dies()) {
    llvm::DWARFDie Die(&CompilationUnit, &DieInfo);

    if (!Die.isSubprogramDIE())
      continue;
    auto Name = Die.getName(llvm::DINameKind::LinkageName);
    if (!Name)
      Name = Die.getName(llvm::DINameKind::ShortName);
    if (!Name)
      continue;

    auto RangesOrError = Die.getAddressRanges();
    if (!RangesOrError)
      continue;
    const DWARFAddressRangesVector &Ranges = RangesOrError.get();

    if (Ranges.empty())
      continue;

    // Different DWARF symbols can have same function name, search or create
    // BinaryFunction indexed by the name.
    auto Ret = BinaryFunctions.emplace(Name, BinaryFunction());
    auto &Func = Ret.first->second;
    if (Ret.second)
      Func.FuncName = Ret.first->first;

    for (const auto &Range : Ranges) {
      uint64_t StartAddress = Range.LowPC;
      uint64_t EndAddress = Range.HighPC;

      if (EndAddress <= StartAddress ||
          StartAddress < getPreferredBaseAddress())
        continue;

      // We may want to know all ranges for one function. Here group the
      // ranges and store them into BinaryFunction.
      Func.Ranges.emplace_back(StartAddress, EndAddress);

      auto R = StartAddrToFuncRangeMap.emplace(StartAddress, FuncRange());
      if (R.second) {
        FuncRange &FRange = R.first->second;
        FRange.Func = &Func;
        FRange.StartAddress = StartAddress;
        FRange.EndAddress = EndAddress;
      } else {
        WithColor::warning()
            << "Duplicated symbol start address at "
            << format("%8" PRIx64, StartAddress) << " "
            << R.first->second.getFuncName() << " and " << Name << "\n";
      }
    }
  }
}

void ProfiledBinary::loadSymbolsFromDWARF(ObjectFile &Obj) {
  auto DebugContext = llvm::DWARFContext::create(
      Obj, DWARFContext::ProcessDebugRelocations::Process, nullptr, DWPPath);
  if (!DebugContext)
    exitWithError("Error creating the debug info context", Path);

  for (const auto &CompilationUnit : DebugContext->compile_units())
    loadSymbolsFromDWARFUnit(*CompilationUnit.get());

  // Handles DWO sections that can either be in .o, .dwo or .dwp files.
  for (const auto &CompilationUnit : DebugContext->compile_units()) {
    DWARFUnit *const DwarfUnit = CompilationUnit.get();
    if (std::optional<uint64_t> DWOId = DwarfUnit->getDWOId()) {
      DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(false).getDwarfUnit();
      if (!DWOCU->isDWOUnit()) {
        std::string DWOName = dwarf::toString(
            DwarfUnit->getUnitDIE().find(
                {dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}),
            "");
        WithColor::warning()
            << "DWO debug information for " << DWOName
            << " was not loaded. Please check the .o, .dwo or .dwp path.\n";
        continue;
      }
      loadSymbolsFromDWARFUnit(*DWOCU);
    }
  }

  if (BinaryFunctions.empty())
    WithColor::warning() << "Loading of DWARF info completed, but no binary "
                            "functions have been retrieved.\n";
}

void ProfiledBinary::populateSymbolListFromDWARF(
    ProfileSymbolList &SymbolList) {
  for (auto &I : StartAddrToFuncRangeMap)
    SymbolList.add(I.second.getFuncName());
}

symbolize::LLVMSymbolizer::Options ProfiledBinary::getSymbolizerOpts() const {
  symbolize::LLVMSymbolizer::Options SymbolizerOpts;
  SymbolizerOpts.PrintFunctions =
      DILineInfoSpecifier::FunctionNameKind::LinkageName;
  SymbolizerOpts.Demangle = false;
  SymbolizerOpts.DefaultArch = TheTriple.getArchName().str();
  SymbolizerOpts.UseSymbolTable = false;
  SymbolizerOpts.RelativeAddresses = false;
  SymbolizerOpts.DWPName = DWPPath;
  return SymbolizerOpts;
}

SampleContextFrameVector ProfiledBinary::symbolize(const InstructionPointer &IP,
                                                   bool UseCanonicalFnName,
                                                   bool UseProbeDiscriminator) {
  assert(this == IP.Binary &&
         "Binary should only symbolize its own instruction");
  auto Addr = object::SectionedAddress{IP.Address,
                                       object::SectionedAddress::UndefSection};
  DIInliningInfo InlineStack = unwrapOrError(
      Symbolizer->symbolizeInlinedCode(SymbolizerPath.str(), Addr),
      SymbolizerPath);

  SampleContextFrameVector CallStack;
  for (int32_t I = InlineStack.getNumberOfFrames() - 1; I >= 0; I--) {
    const auto &CallerFrame = InlineStack.getFrame(I);
    if (CallerFrame.FunctionName == "<invalid>")
      break;

    StringRef FunctionName(CallerFrame.FunctionName);
    if (UseCanonicalFnName)
      FunctionName = FunctionSamples::getCanonicalFnName(FunctionName);

    uint32_t Discriminator = CallerFrame.Discriminator;
    uint32_t LineOffset = (CallerFrame.Line - CallerFrame.StartLine) & 0xffff;
    if (UseProbeDiscriminator) {
      LineOffset =
          PseudoProbeDwarfDiscriminator::extractProbeIndex(Discriminator);
      Discriminator = 0;
    }

    LineLocation Line(LineOffset, Discriminator);
    auto It = NameStrings.insert(FunctionName.str());
    CallStack.emplace_back(*It.first, Line);
  }

  return CallStack;
}

void ProfiledBinary::computeInlinedContextSizeForRange(uint64_t RangeBegin,
                                                       uint64_t RangeEnd) {
  InstructionPointer IP(this, RangeBegin, true);

  if (IP.Address != RangeBegin)
    WithColor::warning() << "Invalid start instruction at "
                         << format("%8" PRIx64, RangeBegin) << "\n";

  if (IP.Address >= RangeEnd)
    return;

  do {
    const SampleContextFrameVector SymbolizedCallStack =
        getFrameLocationStack(IP.Address, UsePseudoProbes);
    uint64_t Size = AddressToInstSizeMap[IP.Address];
    // Record instruction size for the corresponding context
    FuncSizeTracker.addInstructionForContext(SymbolizedCallStack, Size);

  } while (IP.advance() && IP.Address < RangeEnd);
}

void ProfiledBinary::computeInlinedContextSizeForFunc(
    const BinaryFunction *Func) {
  // Note that a function can be spilt into multiple ranges, so compute for all
  // ranges of the function.
  for (const auto &Range : Func->Ranges)
    computeInlinedContextSizeForRange(Range.first, Range.second);

  // Track optimized-away inlinee for probed binary. A function inlined and then
  // optimized away should still have their probes left over in places.
  if (usePseudoProbes()) {
    auto I = TopLevelProbeFrameMap.find(Func->FuncName);
    if (I != TopLevelProbeFrameMap.end()) {
      BinarySizeContextTracker::ProbeFrameStack ProbeContext;
      FuncSizeTracker.trackInlineesOptimizedAway(ProbeDecoder, *I->second,
                                                 ProbeContext);
    }
  }
}

void ProfiledBinary::inferMissingFrames(
    const SmallVectorImpl<uint64_t> &Context,
    SmallVectorImpl<uint64_t> &NewContext) {
  MissingContextInferrer->inferMissingFrames(Context, NewContext);
}

InstructionPointer::InstructionPointer(const ProfiledBinary *Binary,
                                       uint64_t Address, bool RoundToNext)
    : Binary(Binary), Address(Address) {
  Index = Binary->getIndexForAddr(Address);
  if (RoundToNext) {
    // we might get address which is not the code
    // it should round to the next valid address
    if (Index >= Binary->getCodeAddrVecSize())
      this->Address = UINT64_MAX;
    else
      this->Address = Binary->getAddressforIndex(Index);
  }
}

bool InstructionPointer::advance() {
  Index++;
  if (Index >= Binary->getCodeAddrVecSize()) {
    Address = UINT64_MAX;
    return false;
  }
  Address = Binary->getAddressforIndex(Index);
  return true;
}

bool InstructionPointer::backward() {
  if (Index == 0) {
    Address = 0;
    return false;
  }
  Index--;
  Address = Binary->getAddressforIndex(Index);
  return true;
}

void InstructionPointer::update(uint64_t Addr) {
  Address = Addr;
  Index = Binary->getIndexForAddr(Address);
}

} // end namespace sampleprof
} // end namespace llvm