1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
//===-- SnippetRepetitor.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SnippetRepetitor.h"
#include "Target.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
namespace llvm {
namespace exegesis {
namespace {
class DuplicateSnippetRepetitor : public SnippetRepetitor {
public:
using SnippetRepetitor::SnippetRepetitor;
// Repeats the snippet until there are at least MinInstructions in the
// resulting code.
FillFunction Repeat(ArrayRef<MCInst> Instructions, unsigned MinInstructions,
unsigned LoopBodySize,
bool CleanupMemory) const override {
return [this, Instructions, MinInstructions,
CleanupMemory](FunctionFiller &Filler) {
auto Entry = Filler.getEntry();
if (!Instructions.empty()) {
const unsigned NumRepetitions =
divideCeil(MinInstructions, Instructions.size());
for (unsigned I = 0; I < NumRepetitions; ++I) {
Entry.addInstructions(Instructions);
}
}
Entry.addReturn(State.getExegesisTarget(), CleanupMemory);
};
}
BitVector getReservedRegs() const override {
// We're using no additional registers.
return State.getRATC().emptyRegisters();
}
};
class LoopSnippetRepetitor : public SnippetRepetitor {
public:
explicit LoopSnippetRepetitor(const LLVMState &State, MCRegister LoopRegister)
: SnippetRepetitor(State), LoopCounter(LoopRegister) {}
// Loop over the snippet ceil(MinInstructions / Instructions.Size()) times.
FillFunction Repeat(ArrayRef<MCInst> Instructions, unsigned MinInstructions,
unsigned LoopBodySize,
bool CleanupMemory) const override {
return [this, Instructions, MinInstructions, LoopBodySize,
CleanupMemory](FunctionFiller &Filler) {
const auto &ET = State.getExegesisTarget();
auto Entry = Filler.getEntry();
// We can not use loop snippet repetitor for terminator instructions.
for (const MCInst &Inst : Instructions) {
const unsigned Opcode = Inst.getOpcode();
const MCInstrDesc &MCID = Filler.MCII->get(Opcode);
if (!MCID.isTerminator())
continue;
Entry.addReturn(State.getExegesisTarget(), CleanupMemory);
return;
}
auto Loop = Filler.addBasicBlock();
auto Exit = Filler.addBasicBlock();
// Align the loop machine basic block to a target-specific boundary
// to promote optimal instruction fetch/predecoding conditions.
Loop.MBB->setAlignment(
Filler.MF.getSubtarget().getTargetLowering()->getPrefLoopAlignment());
const unsigned LoopUnrollFactor =
LoopBodySize <= Instructions.size()
? 1
: divideCeil(LoopBodySize, Instructions.size());
assert(LoopUnrollFactor >= 1 && "Should end up with at least 1 snippet.");
// Set loop counter to the right value:
const APInt LoopCount(
32,
divideCeil(MinInstructions, LoopUnrollFactor * Instructions.size()));
assert(LoopCount.uge(1) && "Trip count should be at least 1.");
for (const MCInst &Inst :
ET.setRegTo(State.getSubtargetInfo(), LoopCounter, LoopCount))
Entry.addInstruction(Inst);
// Set up the loop basic block.
Entry.MBB->addSuccessor(Loop.MBB, BranchProbability::getOne());
Loop.MBB->addSuccessor(Loop.MBB, BranchProbability::getOne());
// If the snippet setup completed, then we can track liveness.
if (Loop.MF.getProperties().hasTracksLiveness()) {
// The live ins are: the loop counter, the registers that were setup by
// the entry block, and entry block live ins.
Loop.MBB->addLiveIn(LoopCounter);
for (MCRegister Reg : Filler.getRegistersSetUp())
Loop.MBB->addLiveIn(Reg);
for (const auto &LiveIn : Entry.MBB->liveins())
Loop.MBB->addLiveIn(LiveIn);
}
for (auto _ : seq(LoopUnrollFactor)) {
(void)_;
Loop.addInstructions(Instructions);
}
ET.decrementLoopCounterAndJump(*Loop.MBB, *Loop.MBB, State.getInstrInfo(),
LoopCounter);
// Set up the exit basic block.
Loop.MBB->addSuccessor(Exit.MBB, BranchProbability::getZero());
Exit.addReturn(State.getExegesisTarget(), CleanupMemory);
};
}
BitVector getReservedRegs() const override {
// We're using a single loop counter, but we have to reserve all aliasing
// registers.
return State.getRATC().getRegister(LoopCounter).aliasedBits();
}
private:
const MCRegister LoopCounter;
};
} // namespace
SnippetRepetitor::~SnippetRepetitor() {}
std::unique_ptr<const SnippetRepetitor>
SnippetRepetitor::Create(Benchmark::RepetitionModeE Mode,
const LLVMState &State, MCRegister LoopRegister) {
switch (Mode) {
case Benchmark::Duplicate:
case Benchmark::MiddleHalfDuplicate:
return std::make_unique<DuplicateSnippetRepetitor>(State);
case Benchmark::Loop:
case Benchmark::MiddleHalfLoop:
return std::make_unique<LoopSnippetRepetitor>(State, LoopRegister);
case Benchmark::AggregateMin:
break;
}
llvm_unreachable("Unknown RepetitionModeE enum");
}
} // namespace exegesis
} // namespace llvm
|