1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
; RUN: opt -passes=dfa-jump-threading -dfa-cost-threshold=25 -pass-remarks-missed='dfa-jump-threading' -pass-remarks-output=%t -disable-output %s
; RUN: FileCheck --input-file %t --check-prefix=REMARK %s
; RUN: opt -S -passes=dfa-jump-threading %s | FileCheck %s
; This negative test case checks that the optimization doesn't trigger
; when the code size cost is too high.
define i32 @negative1(i32 %num) {
; REMARK: NotProfitable
; REMARK-NEXT: negative1
entry:
br label %for.body
for.body:
%count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
switch i32 %state, label %for.inc [
i32 1, label %case1
i32 2, label %case2
]
case1:
br label %for.inc
case2:
%cmp = icmp eq i32 %count, 50
%sel = select i1 %cmp, i32 1, i32 2
br label %for.inc
for.inc:
%state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
%add1 = add i32 %num, %num
%add2 = add i32 %add1, %add1
%add3 = add i32 %add2, %add2
%add4 = add i32 %add3, %add3
%add5 = add i32 %add4, %add4
%add6 = add i32 %add5, %add5
%add7 = add i32 %add6, %add6
%add8 = add i32 %add7, %add7
%add9 = add i32 %add8, %add8
%add10 = add i32 %add9, %add9
%add11 = add i32 %add10, %add10
%add12 = add i32 %add11, %add11
%add13 = add i32 %add12, %add12
%add14 = add i32 %add13, %add13
%add15 = add i32 %add14, %add14
%add16 = add i32 %add15, %add15
%add17 = add i32 %add16, %add16
%add18 = add i32 %add17, %add17
%add19 = add i32 %add18, %add18
%add20 = add i32 %add19, %add19
%add21 = add i32 %add20, %add20
%add22 = add i32 %add21, %add21
%inc = add nsw i32 %count, 1
%cmp.exit = icmp slt i32 %inc, %num
br i1 %cmp.exit, label %for.body, label %for.end
for.end:
ret i32 %add22
}
declare void @func()
define i32 @negative2(i32 %num) {
; REMARK: NonDuplicatableInst
; REMARK-NEXT: negative2
entry:
br label %for.body
for.body:
%count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
switch i32 %state, label %for.inc [
i32 1, label %case1
i32 2, label %case2
]
case1:
br label %for.inc
case2:
%cmp = icmp eq i32 %count, 50
%sel = select i1 %cmp, i32 1, i32 2
br label %for.inc
for.inc:
%state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
call void @func() noduplicate
%inc = add nsw i32 %count, 1
%cmp.exit = icmp slt i32 %inc, %num
br i1 %cmp.exit, label %for.body, label %for.end
for.end:
ret i32 0
}
define i32 @negative3(i32 %num) {
; REMARK: ConvergentInst
; REMARK-NEXT: negative3
entry:
br label %for.body
for.body:
%count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
switch i32 %state, label %for.inc [
i32 1, label %case1
i32 2, label %case2
]
case1:
br label %for.inc
case2:
%cmp = icmp eq i32 %count, 50
%sel = select i1 %cmp, i32 1, i32 2
br label %for.inc
for.inc:
%state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
call void @func() convergent
%inc = add nsw i32 %count, 1
%cmp.exit = icmp slt i32 %inc, %num
br i1 %cmp.exit, label %for.body, label %for.end
for.end:
ret i32 0
}
define i32 @negative4(i32 %num) {
; REMARK: SwitchNotPredictable
; REMARK-NEXT: negative4
entry:
br label %for.body
for.body:
%count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
switch i32 %state, label %for.inc [
i32 1, label %case1
i32 2, label %case2
]
case1:
br label %for.inc
case2:
%cmp = icmp eq i32 %count, 50
%sel = select i1 %cmp, i32 1, i32 2
br label %for.inc
for.inc:
; the switch variable is not predictable since the exit value for %case1
; is defined through a non-instruction (function argument).
%state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ %num, %case1 ]
%inc = add nsw i32 %count, 1
%cmp.exit = icmp slt i32 %inc, %num
br i1 %cmp.exit, label %for.body, label %for.end
for.end:
ret i32 0
}
; Do not optimize if marked minsize.
define i32 @negative5(i32 %num) minsize {
; CHECK-LABEL: @negative5(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[COUNT:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_INC:%.*]] ]
; CHECK-NEXT: [[STATE:%.*]] = phi i32 [ 1, [[ENTRY]] ], [ [[STATE_NEXT:%.*]], [[FOR_INC]] ]
; CHECK-NEXT: switch i32 [[STATE]], label [[FOR_INC]] [
; CHECK-NEXT: i32 1, label [[CASE1:%.*]]
; CHECK-NEXT: i32 2, label [[CASE2:%.*]]
; CHECK-NEXT: ]
; CHECK: case1:
; CHECK-NEXT: br label [[FOR_INC]]
; CHECK: case2:
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[COUNT]], 50
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP]], i32 1, i32 2
; CHECK-NEXT: br label [[FOR_INC]]
; CHECK: for.inc:
; CHECK-NEXT: [[STATE_NEXT]] = phi i32 [ [[SEL]], [[CASE2]] ], [ 1, [[FOR_BODY]] ], [ 2, [[CASE1]] ]
; CHECK-NEXT: [[INC]] = add nsw i32 [[COUNT]], 1
; CHECK-NEXT: [[CMP_EXIT:%.*]] = icmp slt i32 [[INC]], [[NUM:%.*]]
; CHECK-NEXT: br i1 [[CMP_EXIT]], label [[FOR_BODY]], label [[FOR_END:%.*]]
; CHECK: for.end:
; CHECK-NEXT: ret i32 0
;
entry:
br label %for.body
for.body:
%count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
switch i32 %state, label %for.inc [
i32 1, label %case1
i32 2, label %case2
]
case1:
br label %for.inc
case2:
%cmp = icmp eq i32 %count, 50
%sel = select i1 %cmp, i32 1, i32 2
br label %for.inc
for.inc:
%state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
%inc = add nsw i32 %count, 1
%cmp.exit = icmp slt i32 %inc, %num
br i1 %cmp.exit, label %for.body, label %for.end
for.end:
ret i32 0
}
declare i32 @arbitrary_function()
; Don't confuse %state.2 for the initial switch value.
; [ 3, %case2 ] can still be threaded.
define i32 @negative6(i32 %init) {
; CHECK-LABEL: define i32 @negative6(
; CHECK-SAME: i32 [[INIT:%.*]]) {
; CHECK-NEXT: [[ENTRY:.*:]]
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[INIT]], 0
; CHECK-NEXT: br label %[[LOOP_2:.*]]
; CHECK: [[LOOP_2]]:
; CHECK-NEXT: [[STATE_2:%.*]] = call i32 @arbitrary_function()
; CHECK-NEXT: br label %[[LOOP_3:.*]]
; CHECK: [[LOOP_3]]:
; CHECK-NEXT: [[STATE:%.*]] = phi i32 [ [[STATE_2]], %[[LOOP_2]] ]
; CHECK-NEXT: switch i32 [[STATE]], label %[[INFLOOP_I:.*]] [
; CHECK-NEXT: i32 2, label %[[CASE2:.*]]
; CHECK-NEXT: i32 3, label %[[CASE3:.*]]
; CHECK-NEXT: i32 4, label %[[CASE4:.*]]
; CHECK-NEXT: i32 0, label %[[CASE0:.*]]
; CHECK-NEXT: i32 1, label %[[CASE1:.*]]
; CHECK-NEXT: ]
; CHECK: [[LOOP_3_JT3:.*]]:
; CHECK-NEXT: [[STATE_JT3:%.*]] = phi i32 [ 3, %[[CASE2]] ]
; CHECK-NEXT: br label %[[CASE3]]
; CHECK: [[CASE2]]:
; CHECK-NEXT: br label %[[LOOP_3_JT3]]
; CHECK: [[CASE3]]:
; CHECK-NEXT: br i1 [[CMP]], label %[[LOOP_2_BACKEDGE:.*]], label %[[CASE4]]
; CHECK: [[CASE4]]:
; CHECK-NEXT: br label %[[LOOP_2_BACKEDGE]]
; CHECK: [[LOOP_2_BACKEDGE]]:
; CHECK-NEXT: br label %[[LOOP_2]]
; CHECK: [[CASE0]]:
; CHECK-NEXT: br label %[[EXIT:.*]]
; CHECK: [[CASE1]]:
; CHECK-NEXT: br label %[[EXIT]]
; CHECK: [[INFLOOP_I]]:
; CHECK-NEXT: br label %[[INFLOOP_I]]
; CHECK: [[EXIT]]:
; CHECK-NEXT: ret i32 0
;
entry:
%cmp = icmp eq i32 %init, 0
br label %loop.2
loop.2:
%state.2 = call i32 @arbitrary_function()
br label %loop.3
loop.3:
%state = phi i32 [ %state.2, %loop.2 ], [ 3, %case2 ]
switch i32 %state, label %infloop.i [
i32 2, label %case2
i32 3, label %case3
i32 4, label %case4
i32 0, label %case0
i32 1, label %case1
]
case2:
br label %loop.3
case3:
br i1 %cmp, label %loop.2.backedge, label %case4
case4:
br label %loop.2.backedge
loop.2.backedge:
br label %loop.2
case0:
br label %exit
case1:
br label %exit
infloop.i:
br label %infloop.i
exit:
ret i32 0
}
|