aboutsummaryrefslogtreecommitdiff
path: root/llvm/test/Transforms/DFAJumpThreading/dfa-jump-threading-analysis.ll
blob: e7b7dffa516c64ba888ed128a86801f5a9a30536 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
; REQUIRES: asserts
; RUN: opt -S -passes=dfa-jump-threading -debug-only=dfa-jump-threading -disable-output %s 2>&1 | FileCheck %s

; This test checks that the analysis identifies all threadable paths in a
; simple CFG. A threadable path includes a list of basic blocks, the exit
; state, and the block that determines the next state.
; < path of BBs that form a cycle > [ state, determinator ]
define i32 @test1(i32 %num) {
; CHECK: < case2 for.inc for.body > [ 1, for.inc ]
; CHECK-NEXT: < for.inc for.body > [ 1, for.inc ]
; CHECK-NEXT: < case1 for.inc for.body > [ 2, for.inc ]
; CHECK-NEXT: < case2 sel.si.unfold.false for.inc for.body > [ 2, sel.si.unfold.false ]
entry:
  br label %for.body

for.body:
  %count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
  %state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
  switch i32 %state, label %for.inc [
    i32 1, label %case1
    i32 2, label %case2
  ]

case1:
  br label %for.inc

case2:
  %cmp = icmp eq i32 %count, 50
  %sel = select i1 %cmp, i32 1, i32 2
  br label %for.inc

for.inc:
  %state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
  %inc = add nsw i32 %count, 1
  %cmp.exit = icmp slt i32 %inc, %num
  br i1 %cmp.exit, label %for.body, label %for.end

for.end:
  ret i32 0
}

; This test checks that the analysis finds threadable paths in a more
; complicated CFG. Here the FSM is represented as a nested loop, with
; fallthrough cases.
define i32 @test2(i32 %init) {
; CHECK: < loop.1.backedge loop.1 loop.2 loop.3 > [ 1, loop.1 ]
; CHECK-NEXT: < case4 loop.1.backedge state.1.be2.si.unfold.false loop.1 loop.2 loop.3 > [ 2, loop.1.backedge ]
; CHECK-NEXT: < case2 loop.1.backedge state.1.be2.si.unfold.false loop.1 loop.2 loop.3 > [ 4, loop.1.backedge ]
; CHECK-NEXT: < case4 loop.2.backedge loop.2 loop.3 > [ 3, loop.2.backedge ]
; CHECK-NEXT: < case3 loop.2.backedge loop.2 loop.3 > [ 0, loop.2.backedge ]
; CHECK-NEXT: < case2 loop.3 > [ 3, loop.3 ]
entry:
  %cmp = icmp eq i32 %init, 0
  %sel = select i1 %cmp, i32 0, i32 2
  br label %loop.1

loop.1:
  %state.1 = phi i32 [ %sel, %entry ], [ %state.1.be2, %loop.1.backedge ]
  br label %loop.2

loop.2:
  %state.2 = phi i32 [ %state.1, %loop.1 ], [ %state.2.be, %loop.2.backedge ]
  br label %loop.3

loop.3:
  %state = phi i32 [ %state.2, %loop.2 ], [ 3, %case2 ]
  switch i32 %state, label %infloop.i [
    i32 2, label %case2
    i32 3, label %case3
    i32 4, label %case4
    i32 0, label %case0
    i32 1, label %case1
  ]

case2:
  br i1 %cmp, label %loop.3, label %loop.1.backedge

case3:
  br i1 %cmp, label %loop.2.backedge, label %case4

case4:
  br i1 %cmp, label %loop.2.backedge, label %loop.1.backedge

loop.1.backedge:
  %state.1.be = phi i32 [ 2, %case4 ], [ 4, %case2 ]
  %state.1.be2 = select i1 %cmp, i32 1, i32 %state.1.be
  br label %loop.1

loop.2.backedge:
  %state.2.be = phi i32 [ 3, %case4 ], [ 0, %case3 ]
  br label %loop.2

case0:
  br label %exit

case1:
  br label %exit

infloop.i:
  br label %infloop.i

exit:
  ret i32 0
}

declare void @baz()

; Do not jump-thread those paths where the determinator basic block does not
; precede the basic block that defines the switch condition.
;
; Otherwise, it is possible that the state defined in the determinator block
; defines the state for the next iteration of the loop, rather than for the
; current one.
define i32 @wrong_bb_order() {
; CHECK-LABEL: DFA Jump threading: wrong_bb_order
; CHECK-NOT: [ 77, bb43 ]
; CHECK-NOT: [ 77, bb43 ]
bb:
  %i = alloca [420 x i8], align 1
  %i2 = getelementptr inbounds [420 x i8], ptr %i, i64 0, i64 390
  br label %bb3

bb3:                                              ; preds = %bb59, %bb
  %i4 = phi ptr [ %i2, %bb ], [ %i60, %bb59 ]
  %i5 = phi i8 [ 77, %bb ], [ %i64, %bb59 ]
  %i6 = phi i32 [ 2, %bb ], [ %i63, %bb59 ]
  %i7 = phi i32 [ 26, %bb ], [ %i62, %bb59 ]
  %i8 = phi i32 [ 25, %bb ], [ %i61, %bb59 ]
  %i9 = icmp sgt i32 %i7, 2
  %i10 = select i1 %i9, i32 %i7, i32 2
  %i11 = add i32 %i8, 2
  %i12 = sub i32 %i11, %i10
  %i13 = mul nsw i32 %i12, 3
  %i14 = add nsw i32 %i13, %i6
  %i15 = sext i32 %i14 to i64
  %i16 = getelementptr inbounds i8, ptr %i4, i64 %i15
  %i17 = load i8, ptr %i16, align 1
  %i18 = icmp sgt i8 %i17, 0
  br i1 %i18, label %bb21, label %bb31

bb21:                                             ; preds = %bb3
  br i1 true, label %bb59, label %bb43

bb59:                                             ; preds = %bb49, %bb43, %bb31, %bb21
  %i60 = phi ptr [ %i44, %bb49 ], [ %i44, %bb43 ], [ %i34, %bb31 ], [ %i4, %bb21 ]
  %i61 = phi i32 [ %i45, %bb49 ], [ %i45, %bb43 ], [ %i33, %bb31 ], [ %i8, %bb21 ]
  %i62 = phi i32 [ %i47, %bb49 ], [ %i47, %bb43 ], [ %i32, %bb31 ], [ %i7, %bb21 ]
  %i63 = phi i32 [ %i48, %bb49 ], [ %i48, %bb43 ], [ 2, %bb31 ], [ %i6, %bb21 ]
  %i64 = phi i8 [ %i46, %bb49 ], [ %i46, %bb43 ], [ 77, %bb31 ], [ %i5, %bb21 ]
  %i65 = icmp sgt i32 %i62, 0
  br i1 %i65, label %bb3, label %bb66

bb31:                                             ; preds = %bb3
  %i32 = add nsw i32 %i7, -1
  %i33 = add nsw i32 %i8, -1
  %i34 = getelementptr inbounds i8, ptr %i4, i64 -15
  %i35 = icmp eq i8 %i5, 77
  br i1 %i35, label %bb59, label %bb41

bb41:                                             ; preds = %bb31
  tail call void @baz()
  br label %bb43

bb43:                                             ; preds = %bb41, %bb21
  %i44 = phi ptr [ %i34, %bb41 ], [ %i4, %bb21 ]
  %i45 = phi i32 [ %i33, %bb41 ], [ %i8, %bb21 ]
  %i46 = phi i8 [ 77, %bb41 ], [ %i5, %bb21 ]
  %i47 = phi i32 [ %i32, %bb41 ], [ %i7, %bb21 ]
  %i48 = phi i32 [ 2, %bb41 ], [ %i6, %bb21 ]
  tail call void @baz()
  switch i8 %i5, label %bb59 [
    i8 68, label %bb49
    i8 73, label %bb49
  ]

bb49:                                             ; preds = %bb43, %bb43
  tail call void @baz()
  br label %bb59

bb66:                                             ; preds = %bb59
  ret i32 0
}

; Value %init is not predictable but it's okay since it is the value initial to the switch.
define i32 @initial.value.positive1(i32 %init) {
; CHECK: < loop.1.backedge loop.1 loop.2 loop.3 > [ 1, loop.1 ]
; CHECK-NEXT: < case4 loop.1.backedge state.1.be2.si.unfold.false loop.1 loop.2 loop.3 > [ 2, loop.1.backedge ]
; CHECK-NEXT: < case2 loop.1.backedge state.1.be2.si.unfold.false loop.1 loop.2 loop.3 > [ 4, loop.1.backedge ]
; CHECK-NEXT: < case4 loop.2.backedge loop.2 loop.3 > [ 3, loop.2.backedge ]
; CHECK-NEXT: < case3 loop.2.backedge loop.2 loop.3 > [ 0, loop.2.backedge ]
; CHECK-NEXT: < case2 loop.3 > [ 3, loop.3 ]
entry:
  %cmp = icmp eq i32 %init, 0
  br label %loop.1

loop.1:
  %state.1 = phi i32 [ %init, %entry ], [ %state.1.be2, %loop.1.backedge ]
  br label %loop.2

loop.2:
  %state.2 = phi i32 [ %state.1, %loop.1 ], [ %state.2.be, %loop.2.backedge ]
  br label %loop.3

loop.3:
  %state = phi i32 [ %state.2, %loop.2 ], [ 3, %case2 ]
  switch i32 %state, label %infloop.i [
    i32 2, label %case2
    i32 3, label %case3
    i32 4, label %case4
    i32 0, label %case0
    i32 1, label %case1
  ]

case2:
  br i1 %cmp, label %loop.3, label %loop.1.backedge

case3:
  br i1 %cmp, label %loop.2.backedge, label %case4

case4:
  br i1 %cmp, label %loop.2.backedge, label %loop.1.backedge

loop.1.backedge:
  %state.1.be = phi i32 [ 2, %case4 ], [ 4, %case2 ]
  %state.1.be2 = select i1 %cmp, i32 1, i32 %state.1.be
  br label %loop.1

loop.2.backedge:
  %state.2.be = phi i32 [ 3, %case4 ], [ 0, %case3 ]
  br label %loop.2

case0:
  br label %exit

case1:
  br label %exit

infloop.i:
  br label %infloop.i

exit:
  ret i32 0
}