1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
|
//===-- VPlanUnroll.cpp - VPlan unroller ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements explicit unrolling for VPlans.
///
//===----------------------------------------------------------------------===//
#include "VPRecipeBuilder.h"
#include "VPlan.h"
#include "VPlanAnalysis.h"
#include "VPlanCFG.h"
#include "VPlanHelpers.h"
#include "VPlanPatternMatch.h"
#include "VPlanTransforms.h"
#include "VPlanUtils.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/IR/Intrinsics.h"
using namespace llvm;
using namespace llvm::VPlanPatternMatch;
namespace {
/// Helper to hold state needed for unrolling. It holds the Plan to unroll by
/// UF. It also holds copies of VPValues across UF-1 unroll parts to facilitate
/// the unrolling transformation, where the original VPValues are retained for
/// part zero.
class UnrollState {
/// Plan to unroll.
VPlan &Plan;
/// Unroll factor to unroll by.
const unsigned UF;
/// Analysis for types.
VPTypeAnalysis TypeInfo;
/// Unrolling may create recipes that should not be unrolled themselves.
/// Those are tracked in ToSkip.
SmallPtrSet<VPRecipeBase *, 8> ToSkip;
// Associate with each VPValue of part 0 its unrolled instances of parts 1,
// ..., UF-1.
DenseMap<VPValue *, SmallVector<VPValue *>> VPV2Parts;
/// Unroll replicate region \p VPR by cloning the region UF - 1 times.
void unrollReplicateRegionByUF(VPRegionBlock *VPR);
/// Unroll recipe \p R by cloning it UF - 1 times, unless it is uniform across
/// all parts.
void unrollRecipeByUF(VPRecipeBase &R);
/// Unroll header phi recipe \p R. How exactly the recipe gets unrolled
/// depends on the concrete header phi. Inserts newly created recipes at \p
/// InsertPtForPhi.
void unrollHeaderPHIByUF(VPHeaderPHIRecipe *R,
VPBasicBlock::iterator InsertPtForPhi);
/// Unroll a widen induction recipe \p IV. This introduces recipes to compute
/// the induction steps for each part.
void unrollWidenInductionByUF(VPWidenIntOrFpInductionRecipe *IV,
VPBasicBlock::iterator InsertPtForPhi);
VPValue *getConstantVPV(unsigned Part) {
Type *CanIVIntTy = Plan.getCanonicalIV()->getScalarType();
return Plan.getOrAddLiveIn(ConstantInt::get(CanIVIntTy, Part));
}
public:
UnrollState(VPlan &Plan, unsigned UF, LLVMContext &Ctx)
: Plan(Plan), UF(UF), TypeInfo(Plan.getCanonicalIV()->getScalarType()) {}
void unrollBlock(VPBlockBase *VPB);
VPValue *getValueForPart(VPValue *V, unsigned Part) {
if (Part == 0 || V->isLiveIn())
return V;
assert((VPV2Parts.contains(V) && VPV2Parts[V].size() >= Part) &&
"accessed value does not exist");
return VPV2Parts[V][Part - 1];
}
/// Given a single original recipe \p OrigR (of part zero), and its copy \p
/// CopyR for part \p Part, map every VPValue defined by \p OrigR to its
/// corresponding VPValue defined by \p CopyR.
void addRecipeForPart(VPRecipeBase *OrigR, VPRecipeBase *CopyR,
unsigned Part) {
for (const auto &[Idx, VPV] : enumerate(OrigR->definedValues())) {
auto Ins = VPV2Parts.insert({VPV, {}});
assert(Ins.first->second.size() == Part - 1 && "earlier parts not set");
Ins.first->second.push_back(CopyR->getVPValue(Idx));
}
}
/// Given a uniform recipe \p R, add it for all parts.
void addUniformForAllParts(VPSingleDefRecipe *R) {
auto Ins = VPV2Parts.insert({R, {}});
assert(Ins.second && "uniform value already added");
for (unsigned Part = 0; Part != UF; ++Part)
Ins.first->second.push_back(R);
}
bool contains(VPValue *VPV) const { return VPV2Parts.contains(VPV); }
/// Update \p R's operand at \p OpIdx with its corresponding VPValue for part
/// \p P.
void remapOperand(VPRecipeBase *R, unsigned OpIdx, unsigned Part) {
auto *Op = R->getOperand(OpIdx);
R->setOperand(OpIdx, getValueForPart(Op, Part));
}
/// Update \p R's operands with their corresponding VPValues for part \p P.
void remapOperands(VPRecipeBase *R, unsigned Part) {
for (const auto &[OpIdx, Op] : enumerate(R->operands()))
R->setOperand(OpIdx, getValueForPart(Op, Part));
}
};
} // namespace
void UnrollState::unrollReplicateRegionByUF(VPRegionBlock *VPR) {
VPBlockBase *InsertPt = VPR->getSingleSuccessor();
for (unsigned Part = 1; Part != UF; ++Part) {
auto *Copy = VPR->clone();
VPBlockUtils::insertBlockBefore(Copy, InsertPt);
auto PartI = vp_depth_first_shallow(Copy->getEntry());
auto Part0 = vp_depth_first_shallow(VPR->getEntry());
for (const auto &[PartIVPBB, Part0VPBB] :
zip(VPBlockUtils::blocksOnly<VPBasicBlock>(PartI),
VPBlockUtils::blocksOnly<VPBasicBlock>(Part0))) {
for (const auto &[PartIR, Part0R] : zip(*PartIVPBB, *Part0VPBB)) {
remapOperands(&PartIR, Part);
if (auto *ScalarIVSteps = dyn_cast<VPScalarIVStepsRecipe>(&PartIR)) {
ScalarIVSteps->addOperand(getConstantVPV(Part));
}
addRecipeForPart(&Part0R, &PartIR, Part);
}
}
}
}
void UnrollState::unrollWidenInductionByUF(
VPWidenIntOrFpInductionRecipe *IV, VPBasicBlock::iterator InsertPtForPhi) {
VPBasicBlock *PH = cast<VPBasicBlock>(
IV->getParent()->getEnclosingLoopRegion()->getSinglePredecessor());
Type *IVTy = TypeInfo.inferScalarType(IV);
auto &ID = IV->getInductionDescriptor();
VPIRFlags Flags;
if (isa_and_present<FPMathOperator>(ID.getInductionBinOp()))
Flags = ID.getInductionBinOp()->getFastMathFlags();
VPValue *ScalarStep = IV->getStepValue();
VPBuilder Builder(PH);
VPInstruction *VectorStep = Builder.createNaryOp(
VPInstruction::WideIVStep, {&Plan.getVF(), ScalarStep}, IVTy, Flags,
IV->getDebugLoc());
ToSkip.insert(VectorStep);
// Now create recipes to compute the induction steps for part 1 .. UF. Part 0
// remains the header phi. Parts > 0 are computed by adding Step to the
// previous part. The header phi recipe will get 2 new operands: the step
// value for a single part and the last part, used to compute the backedge
// value during VPWidenIntOrFpInductionRecipe::execute. %Part.0 =
// VPWidenIntOrFpInductionRecipe %Start, %ScalarStep, %VectorStep, %Part.3
// %Part.1 = %Part.0 + %VectorStep
// %Part.2 = %Part.1 + %VectorStep
// %Part.3 = %Part.2 + %VectorStep
//
// The newly added recipes are added to ToSkip to avoid interleaving them
// again.
VPValue *Prev = IV;
Builder.setInsertPoint(IV->getParent(), InsertPtForPhi);
unsigned AddOpc =
IVTy->isFloatingPointTy() ? ID.getInductionOpcode() : Instruction::Add;
for (unsigned Part = 1; Part != UF; ++Part) {
std::string Name =
Part > 1 ? "step.add." + std::to_string(Part) : "step.add";
VPInstruction *Add = Builder.createNaryOp(AddOpc,
{
Prev,
VectorStep,
},
Flags, IV->getDebugLoc(), Name);
ToSkip.insert(Add);
addRecipeForPart(IV, Add, Part);
Prev = Add;
}
IV->addOperand(VectorStep);
IV->addOperand(Prev);
}
void UnrollState::unrollHeaderPHIByUF(VPHeaderPHIRecipe *R,
VPBasicBlock::iterator InsertPtForPhi) {
// First-order recurrences pass a single vector or scalar through their header
// phis, irrespective of interleaving.
if (isa<VPFirstOrderRecurrencePHIRecipe>(R))
return;
// Generate step vectors for each unrolled part.
if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(R)) {
unrollWidenInductionByUF(IV, InsertPtForPhi);
return;
}
auto *RdxPhi = dyn_cast<VPReductionPHIRecipe>(R);
if (RdxPhi && RdxPhi->isOrdered())
return;
auto InsertPt = std::next(R->getIterator());
for (unsigned Part = 1; Part != UF; ++Part) {
VPRecipeBase *Copy = R->clone();
Copy->insertBefore(*R->getParent(), InsertPt);
addRecipeForPart(R, Copy, Part);
if (isa<VPWidenPointerInductionRecipe>(R)) {
Copy->addOperand(R);
Copy->addOperand(getConstantVPV(Part));
} else if (RdxPhi) {
// If the start value is a ReductionStartVector, use the identity value
// (second operand) for unrolled parts. If the scaling factor is > 1,
// create a new ReductionStartVector with the scale factor and both
// operands set to the identity value.
if (auto *VPI = dyn_cast<VPInstruction>(RdxPhi->getStartValue())) {
assert(VPI->getOpcode() == VPInstruction::ReductionStartVector &&
"unexpected start VPInstruction");
if (Part != 1)
continue;
VPValue *StartV;
if (match(VPI->getOperand(2), m_SpecificInt(1))) {
StartV = VPI->getOperand(1);
} else {
auto *C = VPI->clone();
C->setOperand(0, C->getOperand(1));
C->insertAfter(VPI);
StartV = C;
}
for (unsigned Part = 1; Part != UF; ++Part)
VPV2Parts[VPI][Part - 1] = StartV;
}
Copy->addOperand(getConstantVPV(Part));
} else {
assert(isa<VPActiveLaneMaskPHIRecipe>(R) &&
"unexpected header phi recipe not needing unrolled part");
}
}
}
/// Handle non-header-phi recipes.
void UnrollState::unrollRecipeByUF(VPRecipeBase &R) {
if (match(&R, m_BranchOnCond(m_VPValue())) ||
match(&R, m_BranchOnCount(m_VPValue(), m_VPValue())))
return;
if (auto *VPI = dyn_cast<VPInstruction>(&R)) {
if (vputils::onlyFirstPartUsed(VPI)) {
addUniformForAllParts(VPI);
return;
}
}
if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
if (isa<StoreInst>(RepR->getUnderlyingValue()) &&
RepR->getOperand(1)->isDefinedOutsideLoopRegions()) {
// Stores to an invariant address only need to store the last part.
remapOperands(&R, UF - 1);
return;
}
if (auto *II = dyn_cast<IntrinsicInst>(RepR->getUnderlyingValue())) {
if (II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl) {
addUniformForAllParts(RepR);
return;
}
}
}
// Unroll non-uniform recipes.
auto InsertPt = std::next(R.getIterator());
VPBasicBlock &VPBB = *R.getParent();
for (unsigned Part = 1; Part != UF; ++Part) {
VPRecipeBase *Copy = R.clone();
Copy->insertBefore(VPBB, InsertPt);
addRecipeForPart(&R, Copy, Part);
VPValue *Op;
if (match(&R, m_VPInstruction<VPInstruction::FirstOrderRecurrenceSplice>(
m_VPValue(), m_VPValue(Op)))) {
Copy->setOperand(0, getValueForPart(Op, Part - 1));
Copy->setOperand(1, getValueForPart(Op, Part));
continue;
}
if (auto *Red = dyn_cast<VPReductionRecipe>(&R)) {
auto *Phi = dyn_cast<VPReductionPHIRecipe>(R.getOperand(0));
if (Phi && Phi->isOrdered()) {
auto &Parts = VPV2Parts[Phi];
if (Part == 1) {
Parts.clear();
Parts.push_back(Red);
}
Parts.push_back(Copy->getVPSingleValue());
Phi->setOperand(1, Copy->getVPSingleValue());
}
}
remapOperands(Copy, Part);
// Add operand indicating the part to generate code for, to recipes still
// requiring it.
if (isa<VPScalarIVStepsRecipe, VPWidenCanonicalIVRecipe,
VPVectorPointerRecipe, VPVectorEndPointerRecipe>(Copy) ||
match(Copy, m_VPInstruction<VPInstruction::CanonicalIVIncrementForPart>(
m_VPValue())))
Copy->addOperand(getConstantVPV(Part));
if (isa<VPVectorPointerRecipe, VPVectorEndPointerRecipe>(R))
Copy->setOperand(0, R.getOperand(0));
}
}
void UnrollState::unrollBlock(VPBlockBase *VPB) {
auto *VPR = dyn_cast<VPRegionBlock>(VPB);
if (VPR) {
if (VPR->isReplicator())
return unrollReplicateRegionByUF(VPR);
// Traverse blocks in region in RPO to ensure defs are visited before uses
// across blocks.
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
RPOT(VPR->getEntry());
for (VPBlockBase *VPB : RPOT)
unrollBlock(VPB);
return;
}
// VPB is a VPBasicBlock; unroll it, i.e., unroll its recipes.
auto *VPBB = cast<VPBasicBlock>(VPB);
auto InsertPtForPhi = VPBB->getFirstNonPhi();
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
if (ToSkip.contains(&R) || isa<VPIRInstruction>(&R))
continue;
// Add all VPValues for all parts to AnyOf, FirstActiveLaneMask and
// Compute*Result which combine all parts to compute the final value.
VPValue *Op1;
if (match(&R, m_VPInstruction<VPInstruction::AnyOf>(m_VPValue(Op1))) ||
match(&R, m_VPInstruction<VPInstruction::FirstActiveLane>(
m_VPValue(Op1))) ||
match(&R, m_VPInstruction<VPInstruction::ComputeAnyOfResult>(
m_VPValue(), m_VPValue(), m_VPValue(Op1))) ||
match(&R, m_VPInstruction<VPInstruction::ComputeReductionResult>(
m_VPValue(), m_VPValue(Op1))) ||
match(&R, m_VPInstruction<VPInstruction::ComputeFindIVResult>(
m_VPValue(), m_VPValue(), m_VPValue(), m_VPValue(Op1)))) {
addUniformForAllParts(cast<VPInstruction>(&R));
for (unsigned Part = 1; Part != UF; ++Part)
R.addOperand(getValueForPart(Op1, Part));
continue;
}
VPValue *Op0;
if (match(&R, m_VPInstruction<VPInstruction::ExtractLastElement>(
m_VPValue(Op0))) ||
match(&R, m_VPInstruction<VPInstruction::ExtractPenultimateElement>(
m_VPValue(Op0)))) {
addUniformForAllParts(cast<VPSingleDefRecipe>(&R));
if (Plan.hasScalarVFOnly()) {
auto *I = cast<VPInstruction>(&R);
// Extracting from end with VF = 1 implies retrieving the last or
// penultimate scalar part (UF-1 or UF-2).
unsigned Offset =
I->getOpcode() == VPInstruction::ExtractLastElement ? 1 : 2;
I->replaceAllUsesWith(getValueForPart(Op0, UF - Offset));
R.eraseFromParent();
} else {
// Otherwise we extract from the last part.
remapOperands(&R, UF - 1);
}
continue;
}
auto *SingleDef = dyn_cast<VPSingleDefRecipe>(&R);
if (SingleDef && vputils::isUniformAcrossVFsAndUFs(SingleDef)) {
addUniformForAllParts(SingleDef);
continue;
}
if (auto *H = dyn_cast<VPHeaderPHIRecipe>(&R)) {
unrollHeaderPHIByUF(H, InsertPtForPhi);
continue;
}
unrollRecipeByUF(R);
}
}
void VPlanTransforms::unrollByUF(VPlan &Plan, unsigned UF, LLVMContext &Ctx) {
assert(UF > 0 && "Unroll factor must be positive");
Plan.setUF(UF);
auto Cleanup = make_scope_exit([&Plan]() {
auto Iter = vp_depth_first_deep(Plan.getEntry());
// Remove recipes that are redundant after unrolling.
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
auto *VPI = dyn_cast<VPInstruction>(&R);
if (VPI &&
VPI->getOpcode() == VPInstruction::CanonicalIVIncrementForPart &&
VPI->getNumOperands() == 1) {
VPI->replaceAllUsesWith(VPI->getOperand(0));
VPI->eraseFromParent();
}
}
}
});
if (UF == 1) {
return;
}
UnrollState Unroller(Plan, UF, Ctx);
// Iterate over all blocks in the plan starting from Entry, and unroll
// recipes inside them. This includes the vector preheader and middle blocks,
// which may set up or post-process per-part values.
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
Plan.getEntry());
for (VPBlockBase *VPB : RPOT)
Unroller.unrollBlock(VPB);
unsigned Part = 1;
// Remap operands of cloned header phis to update backedge values. The header
// phis cloned during unrolling are just after the header phi for part 0.
// Reset Part to 1 when reaching the first (part 0) recipe of a block.
for (VPRecipeBase &H :
Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
// The second operand of Fixed Order Recurrence phi's, feeding the spliced
// value across the backedge, needs to remap to the last part of the spliced
// value.
if (isa<VPFirstOrderRecurrencePHIRecipe>(&H)) {
Unroller.remapOperand(&H, 1, UF - 1);
continue;
}
if (Unroller.contains(H.getVPSingleValue()) ||
isa<VPWidenPointerInductionRecipe>(&H)) {
Part = 1;
continue;
}
Unroller.remapOperands(&H, Part);
Part++;
}
VPlanTransforms::removeDeadRecipes(Plan);
}
/// Create a single-scalar clone of \p RepR for lane \p Lane.
static VPReplicateRecipe *cloneForLane(VPlan &Plan, VPBuilder &Builder,
Type *IdxTy, VPReplicateRecipe *RepR,
VPLane Lane) {
// Collect the operands at Lane, creating extracts as needed.
SmallVector<VPValue *> NewOps;
for (VPValue *Op : RepR->operands()) {
if (vputils::isSingleScalar(Op)) {
NewOps.push_back(Op);
continue;
}
if (Lane.getKind() == VPLane::Kind::ScalableLast) {
NewOps.push_back(
Builder.createNaryOp(VPInstruction::ExtractLastElement, {Op}));
continue;
}
// Look through buildvector to avoid unnecessary extracts.
if (match(Op, m_BuildVector())) {
NewOps.push_back(
cast<VPInstruction>(Op)->getOperand(Lane.getKnownLane()));
continue;
}
VPValue *Idx =
Plan.getOrAddLiveIn(ConstantInt::get(IdxTy, Lane.getKnownLane()));
VPValue *Ext = Builder.createNaryOp(Instruction::ExtractElement, {Op, Idx});
NewOps.push_back(Ext);
}
auto *New =
new VPReplicateRecipe(RepR->getUnderlyingInstr(), NewOps,
/*IsSingleScalar=*/true, /*Mask=*/nullptr, *RepR);
New->transferFlags(*RepR);
New->insertBefore(RepR);
return New;
}
void VPlanTransforms::replicateByVF(VPlan &Plan, ElementCount VF) {
Type *IdxTy = IntegerType::get(
Plan.getScalarHeader()->getIRBasicBlock()->getContext(), 32);
// Visit all VPBBs outside the loop region and directly inside the top-level
// loop region.
auto VPBBsOutsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_shallow(Plan.getEntry()));
auto VPBBsInsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_shallow(Plan.getVectorLoopRegion()->getEntry()));
auto VPBBsToUnroll =
concat<VPBasicBlock *>(VPBBsOutsideLoopRegion, VPBBsInsideLoopRegion);
for (VPBasicBlock *VPBB : VPBBsToUnroll) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
if (!RepR || RepR->isSingleScalar())
continue;
VPBuilder Builder(RepR);
if (RepR->getNumUsers() == 0) {
if (isa<StoreInst>(RepR->getUnderlyingInstr()) &&
vputils::isSingleScalar(RepR->getOperand(1))) {
// Stores to invariant addresses need to store the last lane only.
cloneForLane(Plan, Builder, IdxTy, RepR,
VPLane::getLastLaneForVF(VF));
} else {
// Create single-scalar version of RepR for all lanes.
for (unsigned I = 0; I != VF.getKnownMinValue(); ++I)
cloneForLane(Plan, Builder, IdxTy, RepR, VPLane(I));
}
RepR->eraseFromParent();
continue;
}
/// Create single-scalar version of RepR for all lanes.
SmallVector<VPValue *> LaneDefs;
for (unsigned I = 0; I != VF.getKnownMinValue(); ++I)
LaneDefs.push_back(cloneForLane(Plan, Builder, IdxTy, RepR, VPLane(I)));
/// Users that only demand the first lane can use the definition for lane
/// 0.
RepR->replaceUsesWithIf(LaneDefs[0], [RepR](VPUser &U, unsigned) {
return U.onlyFirstLaneUsed(RepR);
});
// If needed, create a Build(Struct)Vector recipe to insert the scalar
// lane values into a vector.
Type *ResTy = RepR->getUnderlyingInstr()->getType();
VPValue *VecRes = Builder.createNaryOp(
ResTy->isStructTy() ? VPInstruction::BuildStructVector
: VPInstruction::BuildVector,
LaneDefs);
RepR->replaceAllUsesWith(VecRes);
RepR->eraseFromParent();
}
}
}
|