aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Vectorize/VPlanPatternMatch.h
blob: d133610ef4f75ecb03978946a89fb13415572786 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
//===- VPlanPatternMatch.h - Match on VPValues and recipes ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides a simple and efficient mechanism for performing general
// tree-based pattern matches on the VPlan values and recipes, based on
// LLVM's IR pattern matchers.
//
// Currently it provides generic matchers for unary and binary VPInstructions,
// and specialized matchers like m_Not, m_ActiveLaneMask, m_BranchOnCond,
// m_BranchOnCount to match specific VPInstructions.
// TODO: Add missing matchers for additional opcodes and recipes as needed.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H
#define LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H

#include "VPlan.h"

namespace llvm {
namespace VPlanPatternMatch {

template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
  return P.match(V);
}

template <typename Pattern> bool match(VPUser *U, const Pattern &P) {
  auto *R = dyn_cast<VPRecipeBase>(U);
  return R && match(R, P);
}

template <typename Class> struct class_match {
  template <typename ITy> bool match(ITy *V) const { return isa<Class>(V); }
};

/// Match an arbitrary VPValue and ignore it.
inline class_match<VPValue> m_VPValue() { return class_match<VPValue>(); }

template <typename Class> struct bind_ty {
  Class *&VR;

  bind_ty(Class *&V) : VR(V) {}

  template <typename ITy> bool match(ITy *V) const {
    if (auto *CV = dyn_cast<Class>(V)) {
      VR = CV;
      return true;
    }
    return false;
  }
};

/// Match a specified VPValue.
struct specificval_ty {
  const VPValue *Val;

  specificval_ty(const VPValue *V) : Val(V) {}

  bool match(VPValue *VPV) const { return VPV == Val; }
};

inline specificval_ty m_Specific(const VPValue *VPV) { return VPV; }

/// Stores a reference to the VPValue *, not the VPValue * itself,
/// thus can be used in commutative matchers.
struct deferredval_ty {
  VPValue *const &Val;

  deferredval_ty(VPValue *const &V) : Val(V) {}

  bool match(VPValue *const V) const { return V == Val; }
};

/// Like m_Specific(), but works if the specific value to match is determined
/// as part of the same match() expression. For example:
/// m_Mul(m_VPValue(X), m_Specific(X)) is incorrect, because m_Specific() will
/// bind X before the pattern match starts.
/// m_Mul(m_VPValue(X), m_Deferred(X)) is correct, and will check against
/// whichever value m_VPValue(X) populated.
inline deferredval_ty m_Deferred(VPValue *const &V) { return V; }

/// Match an integer constant or vector of constants if Pred::isValue returns
/// true for the APInt. \p BitWidth optionally specifies the bitwidth the
/// matched constant must have. If it is 0, the matched constant can have any
/// bitwidth.
template <typename Pred, unsigned BitWidth = 0> struct int_pred_ty {
  Pred P;

  int_pred_ty(Pred P) : P(std::move(P)) {}
  int_pred_ty() : P() {}

  bool match(VPValue *VPV) const {
    if (!VPV->isLiveIn())
      return false;
    Value *V = VPV->getLiveInIRValue();
    if (!V)
      return false;
    const auto *CI = dyn_cast<ConstantInt>(V);
    if (!CI && V->getType()->isVectorTy())
      if (const auto *C = dyn_cast<Constant>(V))
        CI = dyn_cast_or_null<ConstantInt>(
            C->getSplatValue(/*AllowPoison=*/false));
    if (!CI)
      return false;

    if (BitWidth != 0 && CI->getBitWidth() != BitWidth)
      return false;
    return P.isValue(CI->getValue());
  }
};

/// Match a specified integer value or vector of all elements of that
/// value. \p BitWidth optionally specifies the bitwidth the matched constant
/// must have. If it is 0, the matched constant can have any bitwidth.
struct is_specific_int {
  APInt Val;

  is_specific_int(APInt Val) : Val(std::move(Val)) {}

  bool isValue(const APInt &C) const { return APInt::isSameValue(Val, C); }
};

template <unsigned Bitwidth = 0>
using specific_intval = int_pred_ty<is_specific_int, Bitwidth>;

inline specific_intval<0> m_SpecificInt(uint64_t V) {
  return specific_intval<0>(is_specific_int(APInt(64, V)));
}

inline specific_intval<1> m_False() {
  return specific_intval<1>(is_specific_int(APInt(64, 0)));
}

inline specific_intval<1> m_True() {
  return specific_intval<1>(is_specific_int(APInt(64, 1)));
}

struct is_all_ones {
  bool isValue(const APInt &C) const { return C.isAllOnes(); }
};

/// Match an integer or vector with all bits set.
/// For vectors, this includes constants with undefined elements.
inline int_pred_ty<is_all_ones> m_AllOnes() {
  return int_pred_ty<is_all_ones>();
}

/// Matching combinators
template <typename LTy, typename RTy> struct match_combine_or {
  LTy L;
  RTy R;

  match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}

  template <typename ITy> bool match(ITy *V) const {
    if (L.match(V))
      return true;
    if (R.match(V))
      return true;
    return false;
  }
};

template <typename LTy, typename RTy> struct match_combine_and {
  LTy L;
  RTy R;

  match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}

  template <typename ITy> bool match(ITy *V) const {
    return L.match(V) && R.match(V);
  }
};

/// Combine two pattern matchers matching L || R
template <typename LTy, typename RTy>
inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
  return match_combine_or<LTy, RTy>(L, R);
}

/// Combine two pattern matchers matching L && R
template <typename LTy, typename RTy>
inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
  return match_combine_and<LTy, RTy>(L, R);
}

/// Match a VPValue, capturing it if we match.
inline bind_ty<VPValue> m_VPValue(VPValue *&V) { return V; }

/// Match a VPInstruction, capturing if we match.
inline bind_ty<VPInstruction> m_VPInstruction(VPInstruction *&V) { return V; }

template <typename Ops_t, unsigned Opcode, bool Commutative,
          typename... RecipeTys>
struct Recipe_match {
  Ops_t Ops;

  Recipe_match() : Ops() {
    static_assert(std::tuple_size<Ops_t>::value == 0 &&
                  "constructor can only be used with zero operands");
  }
  Recipe_match(Ops_t Ops) : Ops(Ops) {}
  template <typename A_t, typename B_t>
  Recipe_match(A_t A, B_t B) : Ops({A, B}) {
    static_assert(std::tuple_size<Ops_t>::value == 2 &&
                  "constructor can only be used for binary matcher");
  }

  bool match(const VPValue *V) const {
    auto *DefR = V->getDefiningRecipe();
    return DefR && match(DefR);
  }

  bool match(const VPSingleDefRecipe *R) const {
    return match(static_cast<const VPRecipeBase *>(R));
  }

  bool match(const VPRecipeBase *R) const {
    if (std::tuple_size<Ops_t>::value == 0) {
      assert(Opcode == VPInstruction::BuildVector &&
             "can only match BuildVector with empty ops");
      auto *VPI = dyn_cast<VPInstruction>(R);
      return VPI && VPI->getOpcode() == VPInstruction::BuildVector;
    }

    if ((!matchRecipeAndOpcode<RecipeTys>(R) && ...))
      return false;

    assert(R->getNumOperands() == std::tuple_size<Ops_t>::value &&
           "recipe with matched opcode does not have the expected number of "
           "operands");

    auto IdxSeq = std::make_index_sequence<std::tuple_size<Ops_t>::value>();
    if (all_of_tuple_elements(IdxSeq, [R](auto Op, unsigned Idx) {
          return Op.match(R->getOperand(Idx));
        }))
      return true;

    return Commutative &&
           all_of_tuple_elements(IdxSeq, [R](auto Op, unsigned Idx) {
             return Op.match(R->getOperand(R->getNumOperands() - Idx - 1));
           });
  }

private:
  template <typename RecipeTy>
  static bool matchRecipeAndOpcode(const VPRecipeBase *R) {
    auto *DefR = dyn_cast<RecipeTy>(R);
    // Check for recipes that do not have opcodes.
    if constexpr (std::is_same<RecipeTy, VPScalarIVStepsRecipe>::value ||
                  std::is_same<RecipeTy, VPCanonicalIVPHIRecipe>::value ||
                  std::is_same<RecipeTy, VPWidenSelectRecipe>::value ||
                  std::is_same<RecipeTy, VPDerivedIVRecipe>::value ||
                  std::is_same<RecipeTy, VPWidenGEPRecipe>::value)
      return DefR;
    else
      return DefR && DefR->getOpcode() == Opcode;
  }

  /// Helper to check if predicate \p P holds on all tuple elements in Ops using
  /// the provided index sequence.
  template <typename Fn, std::size_t... Is>
  bool all_of_tuple_elements(std::index_sequence<Is...>, Fn P) const {
    return (P(std::get<Is>(Ops), Is) && ...);
  }
};

template <unsigned Opcode, typename... RecipeTys>
using ZeroOpRecipe_match =
    Recipe_match<std::tuple<>, Opcode, false, RecipeTys...>;

template <typename Op0_t, unsigned Opcode, typename... RecipeTys>
using UnaryRecipe_match =
    Recipe_match<std::tuple<Op0_t>, Opcode, false, RecipeTys...>;

template <typename Op0_t, unsigned Opcode>
using UnaryVPInstruction_match =
    UnaryRecipe_match<Op0_t, Opcode, VPInstruction>;

template <unsigned Opcode>
using ZeroOpVPInstruction_match = ZeroOpRecipe_match<Opcode, VPInstruction>;

template <typename Op0_t, unsigned Opcode>
using AllUnaryRecipe_match =
    UnaryRecipe_match<Op0_t, Opcode, VPWidenRecipe, VPReplicateRecipe,
                      VPWidenCastRecipe, VPInstruction>;

template <typename Op0_t, typename Op1_t, unsigned Opcode, bool Commutative,
          typename... RecipeTys>
using BinaryRecipe_match =
    Recipe_match<std::tuple<Op0_t, Op1_t>, Opcode, Commutative, RecipeTys...>;

template <typename Op0_t, typename Op1_t, unsigned Opcode>
using BinaryVPInstruction_match =
    BinaryRecipe_match<Op0_t, Op1_t, Opcode, /*Commutative*/ false,
                       VPInstruction>;

template <typename Op0_t, typename Op1_t, typename Op2_t, unsigned Opcode,
          bool Commutative, typename... RecipeTys>
using TernaryRecipe_match = Recipe_match<std::tuple<Op0_t, Op1_t, Op2_t>,
                                         Opcode, Commutative, RecipeTys...>;

template <typename Op0_t, typename Op1_t, typename Op2_t, unsigned Opcode>
using TernaryVPInstruction_match =
    TernaryRecipe_match<Op0_t, Op1_t, Op2_t, Opcode, /*Commutative*/ false,
                        VPInstruction>;

template <typename Op0_t, typename Op1_t, unsigned Opcode,
          bool Commutative = false>
using AllBinaryRecipe_match =
    BinaryRecipe_match<Op0_t, Op1_t, Opcode, Commutative, VPWidenRecipe,
                       VPReplicateRecipe, VPWidenCastRecipe, VPInstruction>;

/// BuildVector is matches only its opcode, w/o matching its operands as the
/// number of operands is not fixed.
inline ZeroOpVPInstruction_match<VPInstruction::BuildVector> m_BuildVector() {
  return ZeroOpVPInstruction_match<VPInstruction::BuildVector>();
}

template <unsigned Opcode, typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, Opcode>
m_VPInstruction(const Op0_t &Op0) {
  return UnaryVPInstruction_match<Op0_t, Opcode>(Op0);
}

template <unsigned Opcode, typename Op0_t, typename Op1_t>
inline BinaryVPInstruction_match<Op0_t, Op1_t, Opcode>
m_VPInstruction(const Op0_t &Op0, const Op1_t &Op1) {
  return BinaryVPInstruction_match<Op0_t, Op1_t, Opcode>(Op0, Op1);
}

template <unsigned Opcode, typename Op0_t, typename Op1_t, typename Op2_t>
inline TernaryVPInstruction_match<Op0_t, Op1_t, Op2_t, Opcode>
m_VPInstruction(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
  return TernaryVPInstruction_match<Op0_t, Op1_t, Op2_t, Opcode>(
      {Op0, Op1, Op2});
}

template <typename Op0_t, typename Op1_t, typename Op2_t, typename Op3_t,
          unsigned Opcode, bool Commutative, typename... RecipeTys>
using Recipe4Op_match = Recipe_match<std::tuple<Op0_t, Op1_t, Op2_t, Op3_t>,
                                     Opcode, Commutative, RecipeTys...>;

template <typename Op0_t, typename Op1_t, typename Op2_t, typename Op3_t,
          unsigned Opcode>
using VPInstruction4Op_match =
    Recipe4Op_match<Op0_t, Op1_t, Op2_t, Op3_t, Opcode, /*Commutative*/ false,
                    VPInstruction>;

template <unsigned Opcode, typename Op0_t, typename Op1_t, typename Op2_t,
          typename Op3_t>
inline VPInstruction4Op_match<Op0_t, Op1_t, Op2_t, Op3_t, Opcode>
m_VPInstruction(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2,
                const Op3_t &Op3) {
  return VPInstruction4Op_match<Op0_t, Op1_t, Op2_t, Op3_t, Opcode>(
      {Op0, Op1, Op2, Op3});
}
template <typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, Instruction::Freeze>
m_Freeze(const Op0_t &Op0) {
  return m_VPInstruction<Instruction::Freeze>(Op0);
}

template <typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, VPInstruction::BranchOnCond>
m_BranchOnCond(const Op0_t &Op0) {
  return m_VPInstruction<VPInstruction::BranchOnCond>(Op0);
}

template <typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, VPInstruction::Broadcast>
m_Broadcast(const Op0_t &Op0) {
  return m_VPInstruction<VPInstruction::Broadcast>(Op0);
}

template <typename Op0_t, typename Op1_t>
inline BinaryVPInstruction_match<Op0_t, Op1_t, VPInstruction::ActiveLaneMask>
m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1) {
  return m_VPInstruction<VPInstruction::ActiveLaneMask>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t>
inline BinaryVPInstruction_match<Op0_t, Op1_t, VPInstruction::BranchOnCount>
m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1) {
  return m_VPInstruction<VPInstruction::BranchOnCount>(Op0, Op1);
}

template <unsigned Opcode, typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Opcode> m_Unary(const Op0_t &Op0) {
  return AllUnaryRecipe_match<Op0_t, Opcode>(Op0);
}

template <typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Instruction::Trunc>
m_Trunc(const Op0_t &Op0) {
  return m_Unary<Instruction::Trunc, Op0_t>(Op0);
}

template <typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Instruction::ZExt> m_ZExt(const Op0_t &Op0) {
  return m_Unary<Instruction::ZExt, Op0_t>(Op0);
}

template <typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Instruction::SExt> m_SExt(const Op0_t &Op0) {
  return m_Unary<Instruction::SExt, Op0_t>(Op0);
}

template <typename Op0_t>
inline match_combine_or<AllUnaryRecipe_match<Op0_t, Instruction::ZExt>,
                        AllUnaryRecipe_match<Op0_t, Instruction::SExt>>
m_ZExtOrSExt(const Op0_t &Op0) {
  return m_CombineOr(m_ZExt(Op0), m_SExt(Op0));
}

template <unsigned Opcode, typename Op0_t, typename Op1_t,
          bool Commutative = false>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Opcode, Commutative>
m_Binary(const Op0_t &Op0, const Op1_t &Op1) {
  return AllBinaryRecipe_match<Op0_t, Op1_t, Opcode, Commutative>(Op0, Op1);
}

template <unsigned Opcode, typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Opcode, true>
m_c_Binary(const Op0_t &Op0, const Op1_t &Op1) {
  return AllBinaryRecipe_match<Op0_t, Op1_t, Opcode, true>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Mul>
m_Mul(const Op0_t &Op0, const Op1_t &Op1) {
  return m_Binary<Instruction::Mul, Op0_t, Op1_t>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Mul,
                             /* Commutative =*/true>
m_c_Mul(const Op0_t &Op0, const Op1_t &Op1) {
  return m_Binary<Instruction::Mul, Op0_t, Op1_t, true>(Op0, Op1);
}

/// Match a binary OR operation. Note that while conceptually the operands can
/// be matched commutatively, \p Commutative defaults to false in line with the
/// IR-based pattern matching infrastructure. Use m_c_BinaryOr for a commutative
/// version of the matcher.
template <typename Op0_t, typename Op1_t, bool Commutative = false>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Or, Commutative>
m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) {
  return m_Binary<Instruction::Or, Op0_t, Op1_t, Commutative>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Or,
                             /*Commutative*/ true>
m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) {
  return m_BinaryOr<Op0_t, Op1_t, /*Commutative*/ true>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t>
using GEPLikeRecipe_match =
    BinaryRecipe_match<Op0_t, Op1_t, Instruction::GetElementPtr, false,
                       VPWidenRecipe, VPReplicateRecipe, VPWidenGEPRecipe,
                       VPInstruction>;

template <typename Op0_t, typename Op1_t>
inline GEPLikeRecipe_match<Op0_t, Op1_t> m_GetElementPtr(const Op0_t &Op0,
                                                         const Op1_t &Op1) {
  return GEPLikeRecipe_match<Op0_t, Op1_t>(Op0, Op1);
}

template <typename Op0_t, typename Op1_t, typename Op2_t, unsigned Opcode>
using AllTernaryRecipe_match =
    Recipe_match<std::tuple<Op0_t, Op1_t, Op2_t>, Opcode, false,
                 VPReplicateRecipe, VPInstruction, VPWidenSelectRecipe>;

template <typename Op0_t, typename Op1_t, typename Op2_t>
inline AllTernaryRecipe_match<Op0_t, Op1_t, Op2_t, Instruction::Select>
m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
  return AllTernaryRecipe_match<Op0_t, Op1_t, Op2_t, Instruction::Select>(
      {Op0, Op1, Op2});
}

template <typename Op0_t>
inline match_combine_or<UnaryVPInstruction_match<Op0_t, VPInstruction::Not>,
                        AllBinaryRecipe_match<int_pred_ty<is_all_ones>, Op0_t,
                                              Instruction::Xor, true>>
m_Not(const Op0_t &Op0) {
  return m_CombineOr(m_VPInstruction<VPInstruction::Not>(Op0),
                     m_c_Binary<Instruction::Xor>(m_AllOnes(), Op0));
}

template <typename Op0_t, typename Op1_t>
inline match_combine_or<
    BinaryVPInstruction_match<Op0_t, Op1_t, VPInstruction::LogicalAnd>,
    AllTernaryRecipe_match<Op0_t, Op1_t, specific_intval<1>,
                           Instruction::Select>>
m_LogicalAnd(const Op0_t &Op0, const Op1_t &Op1) {
  return m_CombineOr(
      m_VPInstruction<VPInstruction::LogicalAnd, Op0_t, Op1_t>(Op0, Op1),
      m_Select(Op0, Op1, m_False()));
}

template <typename Op0_t, typename Op1_t>
inline AllTernaryRecipe_match<Op0_t, specific_intval<1>, Op1_t,
                              Instruction::Select>
m_LogicalOr(const Op0_t &Op0, const Op1_t &Op1) {
  return m_Select(Op0, m_True(), Op1);
}

template <typename Op0_t, typename Op1_t, typename Op2_t>
using VPScalarIVSteps_match =
    TernaryRecipe_match<Op0_t, Op1_t, Op2_t, 0, false, VPScalarIVStepsRecipe>;

template <typename Op0_t, typename Op1_t, typename Op2_t>
inline VPScalarIVSteps_match<Op0_t, Op1_t, Op2_t>
m_ScalarIVSteps(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
  return VPScalarIVSteps_match<Op0_t, Op1_t, Op2_t>({Op0, Op1, Op2});
}

template <typename Op0_t, typename Op1_t, typename Op2_t>
using VPDerivedIV_match =
    Recipe_match<std::tuple<Op0_t, Op1_t, Op2_t>, 0, false, VPDerivedIVRecipe>;

template <typename Op0_t, typename Op1_t, typename Op2_t>
inline VPDerivedIV_match<Op0_t, Op1_t, Op2_t>
m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
  return VPDerivedIV_match<Op0_t, Op1_t, Op2_t>({Op0, Op1, Op2});
}

/// Match a call argument at a given argument index.
template <typename Opnd_t> struct Argument_match {
  /// Call argument index to match.
  unsigned OpI;
  Opnd_t Val;

  Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}

  template <typename OpTy> bool match(OpTy *V) const {
    if (const auto *R = dyn_cast<VPWidenIntrinsicRecipe>(V))
      return Val.match(R->getOperand(OpI));
    if (const auto *R = dyn_cast<VPWidenCallRecipe>(V))
      return Val.match(R->getOperand(OpI));
    if (const auto *R = dyn_cast<VPReplicateRecipe>(V))
      if (isa<CallInst>(R->getUnderlyingInstr()))
        return Val.match(R->getOperand(OpI + 1));
    return false;
  }
};

/// Match a call argument.
template <unsigned OpI, typename Opnd_t>
inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
  return Argument_match<Opnd_t>(OpI, Op);
}

/// Intrinsic matchers.
struct IntrinsicID_match {
  unsigned ID;

  IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}

  template <typename OpTy> bool match(OpTy *V) const {
    if (const auto *R = dyn_cast<VPWidenIntrinsicRecipe>(V))
      return R->getVectorIntrinsicID() == ID;
    if (const auto *R = dyn_cast<VPWidenCallRecipe>(V))
      return R->getCalledScalarFunction()->getIntrinsicID() == ID;
    if (const auto *R = dyn_cast<VPReplicateRecipe>(V))
      if (const auto *CI = dyn_cast<CallInst>(R->getUnderlyingInstr()))
        if (const auto *F = CI->getCalledFunction())
          return F->getIntrinsicID() == ID;
    return false;
  }
};

/// Intrinsic matches are combinations of ID matchers, and argument
/// matchers. Higher arity matcher are defined recursively in terms of and-ing
/// them with lower arity matchers. Here's some convenient typedefs for up to
/// several arguments, and more can be added as needed
template <typename T0 = void, typename T1 = void, typename T2 = void,
          typename T3 = void>
struct m_Intrinsic_Ty;
template <typename T0> struct m_Intrinsic_Ty<T0> {
  using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
};
template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
  using Ty =
      match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
};
template <typename T0, typename T1, typename T2>
struct m_Intrinsic_Ty<T0, T1, T2> {
  using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
                               Argument_match<T2>>;
};
template <typename T0, typename T1, typename T2, typename T3>
struct m_Intrinsic_Ty {
  using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
                               Argument_match<T3>>;
};

/// Match intrinsic calls like this:
/// m_Intrinsic<Intrinsic::fabs>(m_VPValue(X), ...)
template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
  return IntrinsicID_match(IntrID);
}

template <Intrinsic::ID IntrID, typename T0>
inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
  return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
}

template <Intrinsic::ID IntrID, typename T0, typename T1>
inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
                                                       const T1 &Op1) {
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
}

template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
}

template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
          typename T3>
inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
}

} // namespace VPlanPatternMatch
} // namespace llvm

#endif