aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Vectorize/EVLIndVarSimplify.cpp
blob: 5dd689799b8285b1c3db63fb2381fb6a0d459d3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//===---- EVLIndVarSimplify.cpp - Optimize vectorized loops w/ EVL IV------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes a vectorized loop with canonical IV to using EVL-based
// IV if it was tail-folded by predicated EVL.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Vectorize/EVLIndVarSimplify.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/Local.h"

#define DEBUG_TYPE "evl-iv-simplify"

using namespace llvm;

STATISTIC(NumEliminatedCanonicalIV, "Number of canonical IVs we eliminated");

static cl::opt<bool> EnableEVLIndVarSimplify(
    "enable-evl-indvar-simplify",
    cl::desc("Enable EVL-based induction variable simplify Pass"), cl::Hidden,
    cl::init(true));

namespace {
struct EVLIndVarSimplifyImpl {
  ScalarEvolution &SE;
  OptimizationRemarkEmitter *ORE = nullptr;

  EVLIndVarSimplifyImpl(LoopStandardAnalysisResults &LAR,
                        OptimizationRemarkEmitter *ORE)
      : SE(LAR.SE), ORE(ORE) {}

  /// Returns true if modify the loop.
  bool run(Loop &L);
};
} // anonymous namespace

/// Returns the constant part of vectorization factor from the induction
/// variable's step value SCEV expression.
static uint32_t getVFFromIndVar(const SCEV *Step, const Function &F) {
  if (!Step)
    return 0U;

  // Looking for loops with IV step value in the form of `(<constant VF> x
  // vscale)`.
  if (const auto *Mul = dyn_cast<SCEVMulExpr>(Step)) {
    if (Mul->getNumOperands() == 2) {
      const SCEV *LHS = Mul->getOperand(0);
      const SCEV *RHS = Mul->getOperand(1);
      if (const auto *Const = dyn_cast<SCEVConstant>(LHS);
          Const && isa<SCEVVScale>(RHS)) {
        uint64_t V = Const->getAPInt().getLimitedValue();
        if (llvm::isUInt<32>(V))
          return V;
      }
    }
  }

  // If not, see if the vscale_range of the parent function is a fixed value,
  // which makes the step value to be replaced by a constant.
  if (F.hasFnAttribute(Attribute::VScaleRange))
    if (const auto *ConstStep = dyn_cast<SCEVConstant>(Step)) {
      APInt V = ConstStep->getAPInt().abs();
      ConstantRange CR = llvm::getVScaleRange(&F, 64);
      if (const APInt *Fixed = CR.getSingleElement()) {
        V = V.zextOrTrunc(Fixed->getBitWidth());
        uint64_t VF = V.udiv(*Fixed).getLimitedValue();
        if (VF && llvm::isUInt<32>(VF) &&
            // Make sure step is divisible by vscale.
            V.urem(*Fixed).isZero())
          return VF;
      }
    }

  return 0U;
}

bool EVLIndVarSimplifyImpl::run(Loop &L) {
  if (!EnableEVLIndVarSimplify)
    return false;

  if (!getBooleanLoopAttribute(&L, "llvm.loop.isvectorized"))
    return false;
  const MDOperand *EVLMD =
      findStringMetadataForLoop(&L, "llvm.loop.isvectorized.tailfoldingstyle")
          .value_or(nullptr);
  if (!EVLMD || !EVLMD->equalsStr("evl"))
    return false;

  BasicBlock *LatchBlock = L.getLoopLatch();
  ICmpInst *OrigLatchCmp = L.getLatchCmpInst();
  if (!LatchBlock || !OrigLatchCmp)
    return false;

  InductionDescriptor IVD;
  PHINode *IndVar = L.getInductionVariable(SE);
  if (!IndVar || !L.getInductionDescriptor(SE, IVD)) {
    const char *Reason = (IndVar ? "induction descriptor is not available"
                                 : "cannot recognize induction variable");
    LLVM_DEBUG(dbgs() << "Cannot retrieve IV from loop " << L.getName()
                      << " because" << Reason << "\n");
    if (ORE) {
      ORE->emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE, "UnrecognizedIndVar",
                                        L.getStartLoc(), L.getHeader())
               << "Cannot retrieve IV because " << ore::NV("Reason", Reason);
      });
    }
    return false;
  }

  BasicBlock *InitBlock, *BackEdgeBlock;
  if (!L.getIncomingAndBackEdge(InitBlock, BackEdgeBlock)) {
    LLVM_DEBUG(dbgs() << "Expect unique incoming and backedge in "
                      << L.getName() << "\n");
    if (ORE) {
      ORE->emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE, "UnrecognizedLoopStructure",
                                        L.getStartLoc(), L.getHeader())
               << "Does not have a unique incoming and backedge";
      });
    }
    return false;
  }

  // Retrieve the loop bounds.
  std::optional<Loop::LoopBounds> Bounds = L.getBounds(SE);
  if (!Bounds) {
    LLVM_DEBUG(dbgs() << "Could not obtain the bounds for loop " << L.getName()
                      << "\n");
    if (ORE) {
      ORE->emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE, "UnrecognizedLoopStructure",
                                        L.getStartLoc(), L.getHeader())
               << "Could not obtain the loop bounds";
      });
    }
    return false;
  }
  Value *CanonicalIVInit = &Bounds->getInitialIVValue();
  Value *CanonicalIVFinal = &Bounds->getFinalIVValue();

  const SCEV *StepV = IVD.getStep();
  uint32_t VF = getVFFromIndVar(StepV, *L.getHeader()->getParent());
  if (!VF) {
    LLVM_DEBUG(dbgs() << "Could not infer VF from IndVar step '" << *StepV
                      << "'\n");
    if (ORE) {
      ORE->emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE, "UnrecognizedIndVar",
                                        L.getStartLoc(), L.getHeader())
               << "Could not infer VF from IndVar step "
               << ore::NV("Step", StepV);
      });
    }
    return false;
  }
  LLVM_DEBUG(dbgs() << "Using VF=" << VF << " for loop " << L.getName()
                    << "\n");

  // Try to find the EVL-based induction variable.
  using namespace PatternMatch;
  BasicBlock *BB = IndVar->getParent();

  Value *EVLIndVar = nullptr;
  Value *RemTC = nullptr;
  Value *TC = nullptr;
  auto IntrinsicMatch = m_Intrinsic<Intrinsic::experimental_get_vector_length>(
      m_Value(RemTC), m_SpecificInt(VF),
      /*Scalable=*/m_SpecificInt(1));
  for (PHINode &PN : BB->phis()) {
    if (&PN == IndVar)
      continue;

    // Check 1: it has to contain both incoming (init) & backedge blocks
    // from IndVar.
    if (PN.getBasicBlockIndex(InitBlock) < 0 ||
        PN.getBasicBlockIndex(BackEdgeBlock) < 0)
      continue;
    // Check 2: EVL index is always increasing, thus its inital value has to be
    // equal to either the initial IV value (when the canonical IV is also
    // increasing) or the last IV value (when canonical IV is decreasing).
    Value *Init = PN.getIncomingValueForBlock(InitBlock);
    using Direction = Loop::LoopBounds::Direction;
    switch (Bounds->getDirection()) {
    case Direction::Increasing:
      if (Init != CanonicalIVInit)
        continue;
      break;
    case Direction::Decreasing:
      if (Init != CanonicalIVFinal)
        continue;
      break;
    case Direction::Unknown:
      // To be more permissive and see if either the initial or final IV value
      // matches PN's init value.
      if (Init != CanonicalIVInit && Init != CanonicalIVFinal)
        continue;
      break;
    }
    Value *RecValue = PN.getIncomingValueForBlock(BackEdgeBlock);
    assert(RecValue && "expect recurrent IndVar value");

    LLVM_DEBUG(dbgs() << "Found candidate PN of EVL-based IndVar: " << PN
                      << "\n");

    // Check 3: Pattern match to find the EVL-based index and total trip count
    // (TC).
    if (match(RecValue,
              m_c_Add(m_ZExtOrSelf(IntrinsicMatch), m_Specific(&PN))) &&
        match(RemTC, m_Sub(m_Value(TC), m_Specific(&PN)))) {
      EVLIndVar = RecValue;
      break;
    }
  }

  if (!EVLIndVar || !TC)
    return false;

  LLVM_DEBUG(dbgs() << "Using " << *EVLIndVar << " for EVL-based IndVar\n");
  if (ORE) {
    ORE->emit([&]() {
      DebugLoc DL;
      BasicBlock *Region = nullptr;
      if (auto *I = dyn_cast<Instruction>(EVLIndVar)) {
        DL = I->getDebugLoc();
        Region = I->getParent();
      } else {
        DL = L.getStartLoc();
        Region = L.getHeader();
      }
      return OptimizationRemark(DEBUG_TYPE, "UseEVLIndVar", DL, Region)
             << "Using " << ore::NV("EVLIndVar", EVLIndVar)
             << " for EVL-based IndVar";
    });
  }

  // Create an EVL-based comparison and replace the branch to use it as
  // predicate.

  // Loop::getLatchCmpInst check at the beginning of this function has ensured
  // that latch block ends in a conditional branch.
  auto *LatchBranch = cast<BranchInst>(LatchBlock->getTerminator());
  assert(LatchBranch->isConditional() &&
         "expect the loop latch to be ended with a conditional branch");
  ICmpInst::Predicate Pred;
  if (LatchBranch->getSuccessor(0) == L.getHeader())
    Pred = ICmpInst::ICMP_NE;
  else
    Pred = ICmpInst::ICMP_EQ;

  IRBuilder<> Builder(OrigLatchCmp);
  auto *NewLatchCmp = Builder.CreateICmp(Pred, EVLIndVar, TC);
  OrigLatchCmp->replaceAllUsesWith(NewLatchCmp);

  // llvm::RecursivelyDeleteDeadPHINode only deletes cycles whose values are
  // not used outside the cycles. However, in this case the now-RAUW-ed
  // OrigLatchCmp will be considered a use outside the cycle while in reality
  // it's practically dead. Thus we need to remove it before calling
  // RecursivelyDeleteDeadPHINode.
  (void)RecursivelyDeleteTriviallyDeadInstructions(OrigLatchCmp);
  if (llvm::RecursivelyDeleteDeadPHINode(IndVar))
    LLVM_DEBUG(dbgs() << "Removed original IndVar\n");

  ++NumEliminatedCanonicalIV;

  return true;
}

PreservedAnalyses EVLIndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &LAM,
                                             LoopStandardAnalysisResults &AR,
                                             LPMUpdater &U) {
  Function &F = *L.getHeader()->getParent();
  auto &FAMProxy = LAM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
  OptimizationRemarkEmitter *ORE =
      FAMProxy.getCachedResult<OptimizationRemarkEmitterAnalysis>(F);

  if (EVLIndVarSimplifyImpl(AR, ORE).run(L))
    return PreservedAnalyses::allInSet<CFGAnalyses>();
  return PreservedAnalyses::all();
}