1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
//===- AMDGPUEmitPrintf.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Utility function to lower a printf call into a series of device
// library calls on the AMDGPU target.
//
// WARNING: This file knows about certain library functions. It recognizes them
// by name, and hardwires knowledge of their semantics.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/AMDGPUEmitPrintf.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-emit-printf"
static Value *fitArgInto64Bits(IRBuilder<> &Builder, Value *Arg) {
auto Int64Ty = Builder.getInt64Ty();
auto Ty = Arg->getType();
if (auto IntTy = dyn_cast<IntegerType>(Ty)) {
switch (IntTy->getBitWidth()) {
case 32:
return Builder.CreateZExt(Arg, Int64Ty);
case 64:
return Arg;
}
}
if (Ty->getTypeID() == Type::DoubleTyID) {
return Builder.CreateBitCast(Arg, Int64Ty);
}
if (isa<PointerType>(Ty)) {
return Builder.CreatePtrToInt(Arg, Int64Ty);
}
llvm_unreachable("unexpected type");
}
static Value *callPrintfBegin(IRBuilder<> &Builder, Value *Version) {
auto Int64Ty = Builder.getInt64Ty();
auto M = Builder.GetInsertBlock()->getModule();
auto Fn = M->getOrInsertFunction("__ockl_printf_begin", Int64Ty, Int64Ty);
return Builder.CreateCall(Fn, Version);
}
static Value *callAppendArgs(IRBuilder<> &Builder, Value *Desc, int NumArgs,
Value *Arg0, Value *Arg1, Value *Arg2, Value *Arg3,
Value *Arg4, Value *Arg5, Value *Arg6,
bool IsLast) {
auto Int64Ty = Builder.getInt64Ty();
auto Int32Ty = Builder.getInt32Ty();
auto M = Builder.GetInsertBlock()->getModule();
auto Fn = M->getOrInsertFunction("__ockl_printf_append_args", Int64Ty,
Int64Ty, Int32Ty, Int64Ty, Int64Ty, Int64Ty,
Int64Ty, Int64Ty, Int64Ty, Int64Ty, Int32Ty);
auto IsLastValue = Builder.getInt32(IsLast);
auto NumArgsValue = Builder.getInt32(NumArgs);
return Builder.CreateCall(Fn, {Desc, NumArgsValue, Arg0, Arg1, Arg2, Arg3,
Arg4, Arg5, Arg6, IsLastValue});
}
static Value *appendArg(IRBuilder<> &Builder, Value *Desc, Value *Arg,
bool IsLast) {
auto Arg0 = fitArgInto64Bits(Builder, Arg);
auto Zero = Builder.getInt64(0);
return callAppendArgs(Builder, Desc, 1, Arg0, Zero, Zero, Zero, Zero, Zero,
Zero, IsLast);
}
// The device library does not provide strlen, so we build our own loop
// here. While we are at it, we also include the terminating null in the length.
static Value *getStrlenWithNull(IRBuilder<> &Builder, Value *Str) {
auto *Prev = Builder.GetInsertBlock();
Module *M = Prev->getModule();
auto CharZero = Builder.getInt8(0);
auto One = Builder.getInt64(1);
auto Zero = Builder.getInt64(0);
auto Int64Ty = Builder.getInt64Ty();
// The length is either zero for a null pointer, or the computed value for an
// actual string. We need a join block for a phi that represents the final
// value.
//
// Strictly speaking, the zero does not matter since
// __ockl_printf_append_string_n ignores the length if the pointer is null.
BasicBlock *Join = nullptr;
if (Prev->getTerminator()) {
Join = Prev->splitBasicBlock(Builder.GetInsertPoint(),
"strlen.join");
Prev->getTerminator()->eraseFromParent();
} else {
Join = BasicBlock::Create(M->getContext(), "strlen.join",
Prev->getParent());
}
BasicBlock *While =
BasicBlock::Create(M->getContext(), "strlen.while",
Prev->getParent(), Join);
BasicBlock *WhileDone = BasicBlock::Create(
M->getContext(), "strlen.while.done",
Prev->getParent(), Join);
// Emit an early return for when the pointer is null.
Builder.SetInsertPoint(Prev);
auto CmpNull =
Builder.CreateICmpEQ(Str, Constant::getNullValue(Str->getType()));
BranchInst::Create(Join, While, CmpNull, Prev);
// Entry to the while loop.
Builder.SetInsertPoint(While);
auto PtrPhi = Builder.CreatePHI(Str->getType(), 2);
PtrPhi->addIncoming(Str, Prev);
auto PtrNext = Builder.CreateGEP(Builder.getInt8Ty(), PtrPhi, One);
PtrPhi->addIncoming(PtrNext, While);
// Condition for the while loop.
auto Data = Builder.CreateLoad(Builder.getInt8Ty(), PtrPhi);
auto Cmp = Builder.CreateICmpEQ(Data, CharZero);
Builder.CreateCondBr(Cmp, WhileDone, While);
// Add one to the computed length.
Builder.SetInsertPoint(WhileDone, WhileDone->begin());
auto Begin = Builder.CreatePtrToInt(Str, Int64Ty);
auto End = Builder.CreatePtrToInt(PtrPhi, Int64Ty);
auto Len = Builder.CreateSub(End, Begin);
Len = Builder.CreateAdd(Len, One);
// Final join.
BranchInst::Create(Join, WhileDone);
Builder.SetInsertPoint(Join, Join->begin());
auto LenPhi = Builder.CreatePHI(Len->getType(), 2);
LenPhi->addIncoming(Len, WhileDone);
LenPhi->addIncoming(Zero, Prev);
return LenPhi;
}
static Value *callAppendStringN(IRBuilder<> &Builder, Value *Desc, Value *Str,
Value *Length, bool isLast) {
auto Int64Ty = Builder.getInt64Ty();
auto IsLastInt32 = Builder.getInt32(isLast);
auto M = Builder.GetInsertBlock()->getModule();
auto Fn = M->getOrInsertFunction("__ockl_printf_append_string_n", Int64Ty,
Desc->getType(), Str->getType(),
Length->getType(), IsLastInt32->getType());
return Builder.CreateCall(Fn, {Desc, Str, Length, IsLastInt32});
}
static Value *appendString(IRBuilder<> &Builder, Value *Desc, Value *Arg,
bool IsLast) {
auto Length = getStrlenWithNull(Builder, Arg);
return callAppendStringN(Builder, Desc, Arg, Length, IsLast);
}
static Value *processArg(IRBuilder<> &Builder, Value *Desc, Value *Arg,
bool SpecIsCString, bool IsLast) {
if (SpecIsCString && isa<PointerType>(Arg->getType())) {
return appendString(Builder, Desc, Arg, IsLast);
}
// If the format specifies a string but the argument is not, the frontend will
// have printed a warning. We just rely on undefined behaviour and send the
// argument anyway.
return appendArg(Builder, Desc, Arg, IsLast);
}
// Scan the format string to locate all specifiers, and mark the ones that
// specify a string, i.e, the "%s" specifier with optional '*' characters.
static void locateCStrings(SparseBitVector<8> &BV, StringRef Str) {
static const char ConvSpecifiers[] = "diouxXfFeEgGaAcspn";
size_t SpecPos = 0;
// Skip the first argument, the format string.
unsigned ArgIdx = 1;
while ((SpecPos = Str.find_first_of('%', SpecPos)) != StringRef::npos) {
if (Str[SpecPos + 1] == '%') {
SpecPos += 2;
continue;
}
auto SpecEnd = Str.find_first_of(ConvSpecifiers, SpecPos);
if (SpecEnd == StringRef::npos)
return;
auto Spec = Str.slice(SpecPos, SpecEnd + 1);
ArgIdx += Spec.count('*');
if (Str[SpecEnd] == 's') {
BV.set(ArgIdx);
}
SpecPos = SpecEnd + 1;
++ArgIdx;
}
}
// helper struct to package the string related data
struct StringData {
StringRef Str;
Value *RealSize = nullptr;
Value *AlignedSize = nullptr;
bool IsConst = true;
StringData(StringRef ST, Value *RS, Value *AS, bool IC)
: Str(ST), RealSize(RS), AlignedSize(AS), IsConst(IC) {}
};
// Calculates frame size required for current printf expansion and allocates
// space on printf buffer. Printf frame includes following contents
// [ ControlDWord , format string/Hash , Arguments (each aligned to 8 byte) ]
static Value *callBufferedPrintfStart(
IRBuilder<> &Builder, ArrayRef<Value *> Args, Value *Fmt,
bool isConstFmtStr, SparseBitVector<8> &SpecIsCString,
SmallVectorImpl<StringData> &StringContents, Value *&ArgSize) {
Module *M = Builder.GetInsertBlock()->getModule();
Value *NonConstStrLen = nullptr;
Value *LenWithNull = nullptr;
Value *LenWithNullAligned = nullptr;
Value *TempAdd = nullptr;
// First 4 bytes to be reserved for control dword
size_t BufSize = 4;
if (isConstFmtStr)
// First 8 bytes of MD5 hash
BufSize += 8;
else {
LenWithNull = getStrlenWithNull(Builder, Fmt);
// Align the computed length to next 8 byte boundary
TempAdd = Builder.CreateAdd(LenWithNull,
ConstantInt::get(LenWithNull->getType(), 7U));
NonConstStrLen = Builder.CreateAnd(
TempAdd, ConstantInt::get(LenWithNull->getType(), ~7U));
StringContents.push_back(
StringData(StringRef(), LenWithNull, NonConstStrLen, false));
}
for (size_t i = 1; i < Args.size(); i++) {
if (SpecIsCString.test(i)) {
StringRef ArgStr;
if (getConstantStringInfo(Args[i], ArgStr)) {
auto alignedLen = alignTo(ArgStr.size() + 1, 8);
StringContents.push_back(StringData(
ArgStr,
/*RealSize*/ nullptr, /*AlignedSize*/ nullptr, /*IsConst*/ true));
BufSize += alignedLen;
} else {
LenWithNull = getStrlenWithNull(Builder, Args[i]);
// Align the computed length to next 8 byte boundary
TempAdd = Builder.CreateAdd(
LenWithNull, ConstantInt::get(LenWithNull->getType(), 7U));
LenWithNullAligned = Builder.CreateAnd(
TempAdd, ConstantInt::get(LenWithNull->getType(), ~7U));
if (NonConstStrLen) {
auto Val = Builder.CreateAdd(LenWithNullAligned, NonConstStrLen,
"cumulativeAdd");
NonConstStrLen = Val;
} else
NonConstStrLen = LenWithNullAligned;
StringContents.push_back(
StringData(StringRef(), LenWithNull, LenWithNullAligned, false));
}
} else {
int AllocSize = M->getDataLayout().getTypeAllocSize(Args[i]->getType());
// We end up expanding non string arguments to 8 bytes
// (args smaller than 8 bytes)
BufSize += std::max(AllocSize, 8);
}
}
// calculate final size value to be passed to printf_alloc
Value *SizeToReserve = ConstantInt::get(Builder.getInt64Ty(), BufSize, false);
SmallVector<Value *, 1> Alloc_args;
if (NonConstStrLen)
SizeToReserve = Builder.CreateAdd(NonConstStrLen, SizeToReserve);
ArgSize = Builder.CreateTrunc(SizeToReserve, Builder.getInt32Ty());
Alloc_args.push_back(ArgSize);
// call the printf_alloc function
AttributeList Attr = AttributeList::get(
Builder.getContext(), AttributeList::FunctionIndex, Attribute::NoUnwind);
Type *Tys_alloc[1] = {Builder.getInt32Ty()};
Type *PtrTy =
Builder.getPtrTy(M->getDataLayout().getDefaultGlobalsAddressSpace());
FunctionType *FTy_alloc = FunctionType::get(PtrTy, Tys_alloc, false);
auto PrintfAllocFn =
M->getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
return Builder.CreateCall(PrintfAllocFn, Alloc_args, "printf_alloc_fn");
}
// Prepare constant string argument to push onto the buffer
static void processConstantStringArg(StringData *SD, IRBuilder<> &Builder,
SmallVectorImpl<Value *> &WhatToStore) {
std::string Str(SD->Str.str() + '\0');
DataExtractor Extractor(Str, /*IsLittleEndian=*/true, 8);
DataExtractor::Cursor Offset(0);
while (Offset && Offset.tell() < Str.size()) {
const uint64_t ReadSize = 4;
uint64_t ReadNow = std::min(ReadSize, Str.size() - Offset.tell());
uint64_t ReadBytes = 0;
switch (ReadNow) {
default:
llvm_unreachable("min(4, X) > 4?");
case 1:
ReadBytes = Extractor.getU8(Offset);
break;
case 2:
ReadBytes = Extractor.getU16(Offset);
break;
case 3:
ReadBytes = Extractor.getU24(Offset);
break;
case 4:
ReadBytes = Extractor.getU32(Offset);
break;
}
cantFail(Offset.takeError(), "failed to read bytes from constant array");
APInt IntVal(8 * ReadSize, ReadBytes);
// TODO: Should not bother aligning up.
if (ReadNow < ReadSize)
IntVal = IntVal.zext(8 * ReadSize);
Type *IntTy = Type::getIntNTy(Builder.getContext(), IntVal.getBitWidth());
WhatToStore.push_back(ConstantInt::get(IntTy, IntVal));
}
// Additional padding for 8 byte alignment
int Rem = (Str.size() % 8);
if (Rem > 0 && Rem <= 4)
WhatToStore.push_back(ConstantInt::get(Builder.getInt32Ty(), 0));
}
static Value *processNonStringArg(Value *Arg, IRBuilder<> &Builder) {
const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
auto Ty = Arg->getType();
if (auto IntTy = dyn_cast<IntegerType>(Ty)) {
if (IntTy->getBitWidth() < 64) {
return Builder.CreateZExt(Arg, Builder.getInt64Ty());
}
}
if (Ty->isFloatingPointTy()) {
if (DL.getTypeAllocSize(Ty) < 8) {
return Builder.CreateFPExt(Arg, Builder.getDoubleTy());
}
}
return Arg;
}
static void
callBufferedPrintfArgPush(IRBuilder<> &Builder, ArrayRef<Value *> Args,
Value *PtrToStore, SparseBitVector<8> &SpecIsCString,
SmallVectorImpl<StringData> &StringContents,
bool IsConstFmtStr) {
Module *M = Builder.GetInsertBlock()->getModule();
const DataLayout &DL = M->getDataLayout();
auto StrIt = StringContents.begin();
size_t i = IsConstFmtStr ? 1 : 0;
for (; i < Args.size(); i++) {
SmallVector<Value *, 32> WhatToStore;
if ((i == 0) || SpecIsCString.test(i)) {
if (StrIt->IsConst) {
processConstantStringArg(StrIt, Builder, WhatToStore);
StrIt++;
} else {
// This copies the contents of the string, however the next offset
// is at aligned length, the extra space that might be created due
// to alignment padding is not populated with any specific value
// here. This would be safe as long as runtime is sync with
// the offsets.
Builder.CreateMemCpy(PtrToStore, /*DstAlign*/ Align(1), Args[i],
/*SrcAlign*/ Args[i]->getPointerAlignment(DL),
StrIt->RealSize);
PtrToStore =
Builder.CreateInBoundsGEP(Builder.getInt8Ty(), PtrToStore,
{StrIt->AlignedSize}, "PrintBuffNextPtr");
LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:"
<< *PtrToStore << '\n');
// done with current argument, move to next
StrIt++;
continue;
}
} else {
WhatToStore.push_back(processNonStringArg(Args[i], Builder));
}
for (Value *toStore : WhatToStore) {
StoreInst *StBuff = Builder.CreateStore(toStore, PtrToStore);
LLVM_DEBUG(dbgs() << "inserting store to printf buffer:" << *StBuff
<< '\n');
(void)StBuff;
PtrToStore = Builder.CreateConstInBoundsGEP1_32(
Builder.getInt8Ty(), PtrToStore,
M->getDataLayout().getTypeAllocSize(toStore->getType()),
"PrintBuffNextPtr");
LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:" << *PtrToStore
<< '\n');
}
}
}
Value *llvm::emitAMDGPUPrintfCall(IRBuilder<> &Builder, ArrayRef<Value *> Args,
bool IsBuffered) {
auto NumOps = Args.size();
assert(NumOps >= 1);
auto Fmt = Args[0];
SparseBitVector<8> SpecIsCString;
StringRef FmtStr;
if (getConstantStringInfo(Fmt, FmtStr))
locateCStrings(SpecIsCString, FmtStr);
if (IsBuffered) {
SmallVector<StringData, 8> StringContents;
Module *M = Builder.GetInsertBlock()->getModule();
LLVMContext &Ctx = Builder.getContext();
auto Int8Ty = Builder.getInt8Ty();
auto Int32Ty = Builder.getInt32Ty();
bool IsConstFmtStr = !FmtStr.empty();
Value *ArgSize = nullptr;
Value *Ptr =
callBufferedPrintfStart(Builder, Args, Fmt, IsConstFmtStr,
SpecIsCString, StringContents, ArgSize);
// The buffered version still follows OpenCL printf standards for
// printf return value, i.e 0 on success, -1 on failure.
ConstantPointerNull *zeroIntPtr =
ConstantPointerNull::get(cast<PointerType>(Ptr->getType()));
auto *Cmp = cast<ICmpInst>(Builder.CreateICmpNE(Ptr, zeroIntPtr, ""));
BasicBlock *End = BasicBlock::Create(Ctx, "end.block",
Builder.GetInsertBlock()->getParent());
BasicBlock *ArgPush = BasicBlock::Create(
Ctx, "argpush.block", Builder.GetInsertBlock()->getParent());
BranchInst::Create(ArgPush, End, Cmp, Builder.GetInsertBlock());
Builder.SetInsertPoint(ArgPush);
// Create controlDWord and store as the first entry, format as follows
// Bit 0 (LSB) -> stream (1 if stderr, 0 if stdout, printf always outputs to
// stdout) Bit 1 -> constant format string (1 if constant) Bits 2-31 -> size
// of printf data frame
auto ConstantTwo = Builder.getInt32(2);
auto ControlDWord = Builder.CreateShl(ArgSize, ConstantTwo);
if (IsConstFmtStr)
ControlDWord = Builder.CreateOr(ControlDWord, ConstantTwo);
Builder.CreateStore(ControlDWord, Ptr);
Ptr = Builder.CreateConstInBoundsGEP1_32(Int8Ty, Ptr, 4);
// Create MD5 hash for costant format string, push low 64 bits of the
// same onto buffer and metadata.
NamedMDNode *metaD = M->getOrInsertNamedMetadata("llvm.printf.fmts");
if (IsConstFmtStr) {
MD5 Hasher;
MD5::MD5Result Hash;
Hasher.update(FmtStr);
Hasher.final(Hash);
// Try sticking to llvm.printf.fmts format, although we are not going to
// use the ID and argument size fields while printing,
std::string MetadataStr =
"0:0:" + llvm::utohexstr(Hash.low(), /*LowerCase=*/true) + "," +
FmtStr.str();
MDString *fmtStrArray = MDString::get(Ctx, MetadataStr);
MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
metaD->addOperand(myMD);
Builder.CreateStore(Builder.getInt64(Hash.low()), Ptr);
Ptr = Builder.CreateConstInBoundsGEP1_32(Int8Ty, Ptr, 8);
} else {
// Include a dummy metadata instance in case of only non constant
// format string usage, This might be an absurd usecase but needs to
// be done for completeness
if (metaD->getNumOperands() == 0) {
MDString *fmtStrArray =
MDString::get(Ctx, "0:0:ffffffff,\"Non const format string\"");
MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
metaD->addOperand(myMD);
}
}
// Push The printf arguments onto buffer
callBufferedPrintfArgPush(Builder, Args, Ptr, SpecIsCString, StringContents,
IsConstFmtStr);
// End block, returns -1 on failure
BranchInst::Create(End, ArgPush);
Builder.SetInsertPoint(End);
return Builder.CreateSExt(Builder.CreateNot(Cmp), Int32Ty, "printf_result");
}
auto Desc = callPrintfBegin(Builder, Builder.getIntN(64, 0));
Desc = appendString(Builder, Desc, Fmt, NumOps == 1);
// FIXME: This invokes hostcall once for each argument. We can pack up to
// seven scalar printf arguments in a single hostcall. See the signature of
// callAppendArgs().
for (unsigned int i = 1; i != NumOps; ++i) {
bool IsLast = i == NumOps - 1;
bool IsCString = SpecIsCString.test(i);
Desc = processArg(Builder, Desc, Args[i], IsCString, IsLast);
}
return Builder.CreateTrunc(Desc, Builder.getInt32Ty());
}
|