1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
|
//===- FunctionSpecialization.cpp - Function Specialization ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/FunctionSpecialization.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SCCPSolver.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <cmath>
using namespace llvm;
#define DEBUG_TYPE "function-specialization"
STATISTIC(NumSpecsCreated, "Number of specializations created");
static cl::opt<bool> ForceSpecialization(
"force-specialization", cl::init(false), cl::Hidden, cl::desc(
"Force function specialization for every call site with a constant "
"argument"));
static cl::opt<unsigned> MaxClones(
"funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc(
"The maximum number of clones allowed for a single function "
"specialization"));
static cl::opt<unsigned>
MaxDiscoveryIterations("funcspec-max-discovery-iterations", cl::init(100),
cl::Hidden,
cl::desc("The maximum number of iterations allowed "
"when searching for transitive "
"phis"));
static cl::opt<unsigned> MaxIncomingPhiValues(
"funcspec-max-incoming-phi-values", cl::init(8), cl::Hidden,
cl::desc("The maximum number of incoming values a PHI node can have to be "
"considered during the specialization bonus estimation"));
static cl::opt<unsigned> MaxBlockPredecessors(
"funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc(
"The maximum number of predecessors a basic block can have to be "
"considered during the estimation of dead code"));
static cl::opt<unsigned> MinFunctionSize(
"funcspec-min-function-size", cl::init(500), cl::Hidden,
cl::desc("Don't specialize functions that have less than this number of "
"instructions"));
static cl::opt<unsigned> MaxCodeSizeGrowth(
"funcspec-max-codesize-growth", cl::init(3), cl::Hidden, cl::desc(
"Maximum codesize growth allowed per function"));
static cl::opt<unsigned> MinCodeSizeSavings(
"funcspec-min-codesize-savings", cl::init(20), cl::Hidden,
cl::desc("Reject specializations whose codesize savings are less than this "
"much percent of the original function size"));
static cl::opt<unsigned> MinLatencySavings(
"funcspec-min-latency-savings", cl::init(20), cl::Hidden,
cl::desc("Reject specializations whose latency savings are less than this "
"much percent of the original function size"));
static cl::opt<unsigned> MinInliningBonus(
"funcspec-min-inlining-bonus", cl::init(300), cl::Hidden,
cl::desc("Reject specializations whose inlining bonus is less than this "
"much percent of the original function size"));
static cl::opt<bool> SpecializeOnAddress(
"funcspec-on-address", cl::init(false), cl::Hidden, cl::desc(
"Enable function specialization on the address of global values"));
static cl::opt<bool> SpecializeLiteralConstant(
"funcspec-for-literal-constant", cl::init(true), cl::Hidden,
cl::desc(
"Enable specialization of functions that take a literal constant as an "
"argument"));
bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB,
BasicBlock *Succ) const {
unsigned I = 0;
return all_of(predecessors(Succ), [&I, BB, Succ, this](BasicBlock *Pred) {
return I++ < MaxBlockPredecessors &&
(Pred == BB || Pred == Succ || !isBlockExecutable(Pred));
});
}
// Estimates the codesize savings due to dead code after constant propagation.
// \p WorkList represents the basic blocks of a specialization which will
// eventually become dead once we replace instructions that are known to be
// constants. The successors of such blocks are added to the list as long as
// the \p Solver found they were executable prior to specialization, and only
// if all their predecessors are dead.
Cost InstCostVisitor::estimateBasicBlocks(
SmallVectorImpl<BasicBlock *> &WorkList) {
Cost CodeSize = 0;
// Accumulate the codesize savings of each basic block.
while (!WorkList.empty()) {
BasicBlock *BB = WorkList.pop_back_val();
// These blocks are considered dead as far as the InstCostVisitor
// is concerned. They haven't been proven dead yet by the Solver,
// but may become if we propagate the specialization arguments.
assert(Solver.isBlockExecutable(BB) && "BB already found dead by IPSCCP!");
if (!DeadBlocks.insert(BB).second)
continue;
for (Instruction &I : *BB) {
// If it's a known constant we have already accounted for it.
if (KnownConstants.contains(&I))
continue;
Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
LLVM_DEBUG(dbgs() << "FnSpecialization: CodeSize " << C
<< " for user " << I << "\n");
CodeSize += C;
}
// Keep adding dead successors to the list as long as they are
// executable and only reachable from dead blocks.
for (BasicBlock *SuccBB : successors(BB))
if (isBlockExecutable(SuccBB) && canEliminateSuccessor(BB, SuccBB))
WorkList.push_back(SuccBB);
}
return CodeSize;
}
Constant *InstCostVisitor::findConstantFor(Value *V) const {
if (auto *C = dyn_cast<Constant>(V))
return C;
if (auto *C = Solver.getConstantOrNull(V))
return C;
return KnownConstants.lookup(V);
}
Cost InstCostVisitor::getCodeSizeSavingsFromPendingPHIs() {
Cost CodeSize;
while (!PendingPHIs.empty()) {
Instruction *Phi = PendingPHIs.pop_back_val();
// The pending PHIs could have been proven dead by now.
if (isBlockExecutable(Phi->getParent()))
CodeSize += getCodeSizeSavingsForUser(Phi);
}
return CodeSize;
}
/// Compute the codesize savings for replacing argument \p A with constant \p C.
Cost InstCostVisitor::getCodeSizeSavingsForArg(Argument *A, Constant *C) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
<< C->getNameOrAsOperand() << "\n");
Cost CodeSize;
for (auto *U : A->users())
if (auto *UI = dyn_cast<Instruction>(U))
if (isBlockExecutable(UI->getParent()))
CodeSize += getCodeSizeSavingsForUser(UI, A, C);
LLVM_DEBUG(dbgs() << "FnSpecialization: Accumulated bonus {CodeSize = "
<< CodeSize << "} for argument " << *A << "\n");
return CodeSize;
}
/// Compute the latency savings from replacing all arguments with constants for
/// a specialization candidate. As this function computes the latency savings
/// for all Instructions in KnownConstants at once, it should be called only
/// after every instruction has been visited, i.e. after:
///
/// * getCodeSizeSavingsForArg has been run for every constant argument of a
/// specialization candidate
///
/// * getCodeSizeSavingsFromPendingPHIs has been run
///
/// to ensure that the latency savings are calculated for all Instructions we
/// have visited and found to be constant.
Cost InstCostVisitor::getLatencySavingsForKnownConstants() {
auto &BFI = GetBFI(*F);
Cost TotalLatency = 0;
for (auto Pair : KnownConstants) {
Instruction *I = dyn_cast<Instruction>(Pair.first);
if (!I)
continue;
uint64_t Weight = BFI.getBlockFreq(I->getParent()).getFrequency() /
BFI.getEntryFreq().getFrequency();
Cost Latency =
Weight * TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
LLVM_DEBUG(dbgs() << "FnSpecialization: {Latency = " << Latency
<< "} for instruction " << *I << "\n");
TotalLatency += Latency;
}
return TotalLatency;
}
Cost InstCostVisitor::getCodeSizeSavingsForUser(Instruction *User, Value *Use,
Constant *C) {
// We have already propagated a constant for this user.
if (KnownConstants.contains(User))
return 0;
// Cache the iterator before visiting.
LastVisited = Use ? KnownConstants.insert({Use, C}).first
: KnownConstants.end();
Cost CodeSize = 0;
if (auto *I = dyn_cast<SwitchInst>(User)) {
CodeSize = estimateSwitchInst(*I);
} else if (auto *I = dyn_cast<BranchInst>(User)) {
CodeSize = estimateBranchInst(*I);
} else {
C = visit(*User);
if (!C)
return 0;
}
// Even though it doesn't make sense to bind switch and branch instructions
// with a constant, unlike any other instruction type, it prevents estimating
// their bonus multiple times.
KnownConstants.insert({User, C});
CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize);
LLVM_DEBUG(dbgs() << "FnSpecialization: {CodeSize = " << CodeSize
<< "} for user " << *User << "\n");
for (auto *U : User->users())
if (auto *UI = dyn_cast<Instruction>(U))
if (UI != User && isBlockExecutable(UI->getParent()))
CodeSize += getCodeSizeSavingsForUser(UI, User, C);
return CodeSize;
}
Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) {
assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
if (I.getCondition() != LastVisited->first)
return 0;
auto *C = dyn_cast<ConstantInt>(LastVisited->second);
if (!C)
return 0;
BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor();
// Initialize the worklist with the dead basic blocks. These are the
// destination labels which are different from the one corresponding
// to \p C. They should be executable and have a unique predecessor.
SmallVector<BasicBlock *> WorkList;
for (const auto &Case : I.cases()) {
BasicBlock *BB = Case.getCaseSuccessor();
if (BB != Succ && isBlockExecutable(BB) &&
canEliminateSuccessor(I.getParent(), BB))
WorkList.push_back(BB);
}
return estimateBasicBlocks(WorkList);
}
Cost InstCostVisitor::estimateBranchInst(BranchInst &I) {
assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
if (I.getCondition() != LastVisited->first)
return 0;
BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue());
// Initialize the worklist with the dead successor as long as
// it is executable and has a unique predecessor.
SmallVector<BasicBlock *> WorkList;
if (isBlockExecutable(Succ) && canEliminateSuccessor(I.getParent(), Succ))
WorkList.push_back(Succ);
return estimateBasicBlocks(WorkList);
}
bool InstCostVisitor::discoverTransitivelyIncomingValues(
Constant *Const, PHINode *Root, DenseSet<PHINode *> &TransitivePHIs) {
SmallVector<PHINode *, 64> WorkList;
WorkList.push_back(Root);
unsigned Iter = 0;
while (!WorkList.empty()) {
PHINode *PN = WorkList.pop_back_val();
if (++Iter > MaxDiscoveryIterations ||
PN->getNumIncomingValues() > MaxIncomingPhiValues)
return false;
if (!TransitivePHIs.insert(PN).second)
continue;
for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
Value *V = PN->getIncomingValue(I);
// Disregard self-references and dead incoming values.
if (auto *Inst = dyn_cast<Instruction>(V))
if (Inst == PN || !isBlockExecutable(PN->getIncomingBlock(I)))
continue;
if (Constant *C = findConstantFor(V)) {
// Not all incoming values are the same constant. Bail immediately.
if (C != Const)
return false;
continue;
}
if (auto *Phi = dyn_cast<PHINode>(V)) {
WorkList.push_back(Phi);
continue;
}
// We can't reason about anything else.
return false;
}
}
return true;
}
Constant *InstCostVisitor::visitPHINode(PHINode &I) {
if (I.getNumIncomingValues() > MaxIncomingPhiValues)
return nullptr;
bool Inserted = VisitedPHIs.insert(&I).second;
Constant *Const = nullptr;
bool HaveSeenIncomingPHI = false;
for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) {
Value *V = I.getIncomingValue(Idx);
// Disregard self-references and dead incoming values.
if (auto *Inst = dyn_cast<Instruction>(V))
if (Inst == &I || !isBlockExecutable(I.getIncomingBlock(Idx)))
continue;
if (Constant *C = findConstantFor(V)) {
if (!Const)
Const = C;
// Not all incoming values are the same constant. Bail immediately.
if (C != Const)
return nullptr;
continue;
}
if (Inserted) {
// First time we are seeing this phi. We will retry later, after
// all the constant arguments have been propagated. Bail for now.
PendingPHIs.push_back(&I);
return nullptr;
}
if (isa<PHINode>(V)) {
// Perhaps it is a Transitive Phi. We will confirm later.
HaveSeenIncomingPHI = true;
continue;
}
// We can't reason about anything else.
return nullptr;
}
if (!Const)
return nullptr;
if (!HaveSeenIncomingPHI)
return Const;
DenseSet<PHINode *> TransitivePHIs;
if (!discoverTransitivelyIncomingValues(Const, &I, TransitivePHIs))
return nullptr;
return Const;
}
Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) {
assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second))
return LastVisited->second;
return nullptr;
}
Constant *InstCostVisitor::visitCallBase(CallBase &I) {
assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
// Look through calls to ssa_copy intrinsics.
if (auto *II = dyn_cast<IntrinsicInst>(&I);
II && II->getIntrinsicID() == Intrinsic::ssa_copy) {
return LastVisited->second;
}
Function *F = I.getCalledFunction();
if (!F || !canConstantFoldCallTo(&I, F))
return nullptr;
SmallVector<Constant *, 8> Operands;
Operands.reserve(I.getNumOperands());
for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) {
Value *V = I.getOperand(Idx);
if (isa<MetadataAsValue>(V))
return nullptr;
Constant *C = findConstantFor(V);
if (!C)
return nullptr;
Operands.push_back(C);
}
auto Ops = ArrayRef(Operands.begin(), Operands.end());
return ConstantFoldCall(&I, F, Ops);
}
Constant *InstCostVisitor::visitLoadInst(LoadInst &I) {
assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
if (isa<ConstantPointerNull>(LastVisited->second))
return nullptr;
return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL);
}
Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
SmallVector<Constant *, 8> Operands;
Operands.reserve(I.getNumOperands());
for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) {
Value *V = I.getOperand(Idx);
Constant *C = findConstantFor(V);
if (!C)
return nullptr;
Operands.push_back(C);
}
auto Ops = ArrayRef(Operands.begin(), Operands.end());
return ConstantFoldInstOperands(&I, Ops, DL);
}
Constant *InstCostVisitor::visitSelectInst(SelectInst &I) {
assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
if (I.getCondition() == LastVisited->first) {
Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue()
: I.getTrueValue();
return findConstantFor(V);
}
if (Constant *Condition = findConstantFor(I.getCondition()))
if ((I.getTrueValue() == LastVisited->first && Condition->isOneValue()) ||
(I.getFalseValue() == LastVisited->first && Condition->isZeroValue()))
return LastVisited->second;
return nullptr;
}
Constant *InstCostVisitor::visitCastInst(CastInst &I) {
return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second,
I.getType(), DL);
}
Constant *InstCostVisitor::visitCmpInst(CmpInst &I) {
assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
Constant *Const = LastVisited->second;
bool ConstOnRHS = I.getOperand(1) == LastVisited->first;
Value *V = ConstOnRHS ? I.getOperand(0) : I.getOperand(1);
Constant *Other = findConstantFor(V);
if (Other) {
if (ConstOnRHS)
std::swap(Const, Other);
return ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL);
}
// If we haven't found Other to be a specific constant value, we may still be
// able to constant fold using information from the lattice value.
const ValueLatticeElement &ConstLV = ValueLatticeElement::get(Const);
const ValueLatticeElement &OtherLV = Solver.getLatticeValueFor(V);
auto &V1State = ConstOnRHS ? OtherLV : ConstLV;
auto &V2State = ConstOnRHS ? ConstLV : OtherLV;
return V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
}
Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) {
assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL);
}
Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) {
assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
bool ConstOnRHS = I.getOperand(1) == LastVisited->first;
Value *V = ConstOnRHS ? I.getOperand(0) : I.getOperand(1);
Constant *Other = findConstantFor(V);
Value *OtherVal = Other ? Other : V;
Value *ConstVal = LastVisited->second;
if (ConstOnRHS)
std::swap(ConstVal, OtherVal);
return dyn_cast_or_null<Constant>(
simplifyBinOp(I.getOpcode(), ConstVal, OtherVal, SimplifyQuery(DL)));
}
Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
CallInst *Call) {
Value *StoreValue = nullptr;
for (auto *User : Alloca->users()) {
// We can't use llvm::isAllocaPromotable() as that would fail because of
// the usage in the CallInst, which is what we check here.
if (User == Call)
continue;
if (auto *Store = dyn_cast<StoreInst>(User)) {
// This is a duplicate store, bail out.
if (StoreValue || Store->isVolatile())
return nullptr;
StoreValue = Store->getValueOperand();
continue;
}
// Bail if there is any other unknown usage.
return nullptr;
}
if (!StoreValue)
return nullptr;
return getCandidateConstant(StoreValue);
}
// A constant stack value is an AllocaInst that has a single constant
// value stored to it. Return this constant if such an alloca stack value
// is a function argument.
Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
Value *Val) {
if (!Val)
return nullptr;
Val = Val->stripPointerCasts();
if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
return ConstVal;
auto *Alloca = dyn_cast<AllocaInst>(Val);
if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
return nullptr;
return getPromotableAlloca(Alloca, Call);
}
// To support specializing recursive functions, it is important to propagate
// constant arguments because after a first iteration of specialisation, a
// reduced example may look like this:
//
// define internal void @RecursiveFn(i32* arg1) {
// %temp = alloca i32, align 4
// store i32 2 i32* %temp, align 4
// call void @RecursiveFn.1(i32* nonnull %temp)
// ret void
// }
//
// Before a next iteration, we need to propagate the constant like so
// which allows further specialization in next iterations.
//
// @funcspec.arg = internal constant i32 2
//
// define internal void @someFunc(i32* arg1) {
// call void @otherFunc(i32* nonnull @funcspec.arg)
// ret void
// }
//
// See if there are any new constant values for the callers of \p F via
// stack variables and promote them to global variables.
void FunctionSpecializer::promoteConstantStackValues(Function *F) {
for (User *U : F->users()) {
auto *Call = dyn_cast<CallInst>(U);
if (!Call)
continue;
if (!Solver.isBlockExecutable(Call->getParent()))
continue;
for (const Use &U : Call->args()) {
unsigned Idx = Call->getArgOperandNo(&U);
Value *ArgOp = Call->getArgOperand(Idx);
Type *ArgOpType = ArgOp->getType();
if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
continue;
auto *ConstVal = getConstantStackValue(Call, ArgOp);
if (!ConstVal)
continue;
Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
GlobalValue::InternalLinkage, ConstVal,
"specialized.arg." + Twine(++NGlobals));
Call->setArgOperand(Idx, GV);
}
}
}
// ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
// interfere with the promoteConstantStackValues() optimization.
static void removeSSACopy(Function &F) {
for (BasicBlock &BB : F) {
for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
auto *II = dyn_cast<IntrinsicInst>(&Inst);
if (!II)
continue;
if (II->getIntrinsicID() != Intrinsic::ssa_copy)
continue;
Inst.replaceAllUsesWith(II->getOperand(0));
Inst.eraseFromParent();
}
}
}
/// Remove any ssa_copy intrinsics that may have been introduced.
void FunctionSpecializer::cleanUpSSA() {
for (Function *F : Specializations)
removeSSACopy(*F);
}
template <> struct llvm::DenseMapInfo<SpecSig> {
static inline SpecSig getEmptyKey() { return {~0U, {}}; }
static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
static unsigned getHashValue(const SpecSig &S) {
return static_cast<unsigned>(hash_value(S));
}
static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
return LHS == RHS;
}
};
FunctionSpecializer::~FunctionSpecializer() {
LLVM_DEBUG(
if (NumSpecsCreated > 0)
dbgs() << "FnSpecialization: Created " << NumSpecsCreated
<< " specializations in module " << M.getName() << "\n");
// Eliminate dead code.
removeDeadFunctions();
cleanUpSSA();
}
/// Get the unsigned Value of given Cost object. Assumes the Cost is always
/// non-negative, which is true for both TCK_CodeSize and TCK_Latency, and
/// always Valid.
static unsigned getCostValue(const Cost &C) {
int64_t Value = C.getValue();
assert(Value >= 0 && "CodeSize and Latency cannot be negative");
// It is safe to down cast since we know the arguments cannot be negative and
// Cost is of type int64_t.
return static_cast<unsigned>(Value);
}
/// Attempt to specialize functions in the module to enable constant
/// propagation across function boundaries.
///
/// \returns true if at least one function is specialized.
bool FunctionSpecializer::run() {
// Find possible specializations for each function.
SpecMap SM;
SmallVector<Spec, 32> AllSpecs;
unsigned NumCandidates = 0;
for (Function &F : M) {
if (!isCandidateFunction(&F))
continue;
auto [It, Inserted] = FunctionMetrics.try_emplace(&F);
CodeMetrics &Metrics = It->second;
//Analyze the function.
if (Inserted) {
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues);
for (BasicBlock &BB : F)
Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues);
}
// When specializing literal constants is enabled, always require functions
// to be larger than MinFunctionSize, to prevent excessive specialization.
const bool RequireMinSize =
!ForceSpecialization &&
(SpecializeLiteralConstant || !F.hasFnAttribute(Attribute::NoInline));
// If the code metrics reveal that we shouldn't duplicate the function,
// or if the code size implies that this function is easy to get inlined,
// then we shouldn't specialize it.
if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
(RequireMinSize && Metrics.NumInsts < MinFunctionSize))
continue;
// When specialization on literal constants is disabled, only consider
// recursive functions when running multiple times to save wasted analysis,
// as we will not be able to specialize on any newly found literal constant
// return values.
if (!SpecializeLiteralConstant && !Inserted && !Metrics.isRecursive)
continue;
int64_t Sz = Metrics.NumInsts.getValue();
assert(Sz > 0 && "CodeSize should be positive");
// It is safe to down cast from int64_t, NumInsts is always positive.
unsigned FuncSize = static_cast<unsigned>(Sz);
LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
<< F.getName() << " is " << FuncSize << "\n");
if (Inserted && Metrics.isRecursive)
promoteConstantStackValues(&F);
if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) {
LLVM_DEBUG(
dbgs() << "FnSpecialization: No possible specializations found for "
<< F.getName() << "\n");
continue;
}
++NumCandidates;
}
if (!NumCandidates) {
LLVM_DEBUG(
dbgs()
<< "FnSpecialization: No possible specializations found in module\n");
return false;
}
// Choose the most profitable specialisations, which fit in the module
// specialization budget, which is derived from maximum number of
// specializations per specialization candidate function.
auto CompareScore = [&AllSpecs](unsigned I, unsigned J) {
if (AllSpecs[I].Score != AllSpecs[J].Score)
return AllSpecs[I].Score > AllSpecs[J].Score;
return I > J;
};
const unsigned NSpecs =
std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size()));
SmallVector<unsigned> BestSpecs(NSpecs + 1);
std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
if (AllSpecs.size() > NSpecs) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
<< "the maximum number of clones threshold.\n"
<< "FnSpecialization: Specializing the "
<< NSpecs
<< " most profitable candidates.\n");
std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore);
for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
BestSpecs[NSpecs] = I;
std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
}
}
LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
for (unsigned I = 0; I < NSpecs; ++I) {
const Spec &S = AllSpecs[BestSpecs[I]];
dbgs() << "FnSpecialization: Function " << S.F->getName()
<< " , score " << S.Score << "\n";
for (const ArgInfo &Arg : S.Sig.Args)
dbgs() << "FnSpecialization: FormalArg = "
<< Arg.Formal->getNameOrAsOperand()
<< ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
<< "\n";
});
// Create the chosen specializations.
SmallPtrSet<Function *, 8> OriginalFuncs;
SmallVector<Function *> Clones;
for (unsigned I = 0; I < NSpecs; ++I) {
Spec &S = AllSpecs[BestSpecs[I]];
// Accumulate the codesize growth for the function, now we are creating the
// specialization.
FunctionGrowth[S.F] += S.CodeSize;
S.Clone = createSpecialization(S.F, S.Sig);
// Update the known call sites to call the clone.
for (CallBase *Call : S.CallSites) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
<< " to call " << S.Clone->getName() << "\n");
Call->setCalledFunction(S.Clone);
}
Clones.push_back(S.Clone);
OriginalFuncs.insert(S.F);
}
Solver.solveWhileResolvedUndefsIn(Clones);
// Update the rest of the call sites - these are the recursive calls, calls
// to discarded specialisations and calls that may match a specialisation
// after the solver runs.
for (Function *F : OriginalFuncs) {
auto [Begin, End] = SM[F];
updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
}
for (Function *F : Clones) {
if (F->getReturnType()->isVoidTy())
continue;
if (F->getReturnType()->isStructTy()) {
auto *STy = cast<StructType>(F->getReturnType());
if (!Solver.isStructLatticeConstant(F, STy))
continue;
} else {
auto It = Solver.getTrackedRetVals().find(F);
assert(It != Solver.getTrackedRetVals().end() &&
"Return value ought to be tracked");
if (SCCPSolver::isOverdefined(It->second))
continue;
}
for (User *U : F->users()) {
if (auto *CS = dyn_cast<CallBase>(U)) {
//The user instruction does not call our function.
if (CS->getCalledFunction() != F)
continue;
Solver.resetLatticeValueFor(CS);
}
}
}
// Rerun the solver to notify the users of the modified callsites.
Solver.solveWhileResolvedUndefs();
for (Function *F : OriginalFuncs)
if (FunctionMetrics[F].isRecursive)
promoteConstantStackValues(F);
return true;
}
void FunctionSpecializer::removeDeadFunctions() {
for (Function *F : FullySpecialized) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
<< F->getName() << "\n");
if (FAM)
FAM->clear(*F, F->getName());
F->eraseFromParent();
}
FullySpecialized.clear();
}
/// Clone the function \p F and remove the ssa_copy intrinsics added by
/// the SCCPSolver in the cloned version.
static Function *cloneCandidateFunction(Function *F, unsigned NSpecs) {
ValueToValueMapTy Mappings;
Function *Clone = CloneFunction(F, Mappings);
Clone->setName(F->getName() + ".specialized." + Twine(NSpecs));
removeSSACopy(*Clone);
return Clone;
}
bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize,
SmallVectorImpl<Spec> &AllSpecs,
SpecMap &SM) {
// A mapping from a specialisation signature to the index of the respective
// entry in the all specialisation array. Used to ensure uniqueness of
// specialisations.
DenseMap<SpecSig, unsigned> UniqueSpecs;
// Get a list of interesting arguments.
SmallVector<Argument *> Args;
for (Argument &Arg : F->args())
if (isArgumentInteresting(&Arg))
Args.push_back(&Arg);
if (Args.empty())
return false;
for (User *U : F->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto &CS = *cast<CallBase>(U);
// The user instruction does not call our function.
if (CS.getCalledFunction() != F)
continue;
// If the call site has attribute minsize set, that callsite won't be
// specialized.
if (CS.hasFnAttr(Attribute::MinSize))
continue;
// If the parent of the call site will never be executed, we don't need
// to worry about the passed value.
if (!Solver.isBlockExecutable(CS.getParent()))
continue;
// Examine arguments and create a specialisation candidate from the
// constant operands of this call site.
SpecSig S;
for (Argument *A : Args) {
Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
if (!C)
continue;
LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
<< A->getName() << " : " << C->getNameOrAsOperand()
<< "\n");
S.Args.push_back({A, C});
}
if (S.Args.empty())
continue;
// Check if we have encountered the same specialisation already.
if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) {
// Existing specialisation. Add the call to the list to rewrite, unless
// it's a recursive call. A specialisation, generated because of a
// recursive call may end up as not the best specialisation for all
// the cloned instances of this call, which result from specialising
// functions. Hence we don't rewrite the call directly, but match it with
// the best specialisation once all specialisations are known.
if (CS.getFunction() == F)
continue;
const unsigned Index = It->second;
AllSpecs[Index].CallSites.push_back(&CS);
} else {
// Calculate the specialisation gain.
Cost CodeSize;
unsigned Score = 0;
InstCostVisitor Visitor = getInstCostVisitorFor(F);
for (ArgInfo &A : S.Args) {
CodeSize += Visitor.getCodeSizeSavingsForArg(A.Formal, A.Actual);
Score += getInliningBonus(A.Formal, A.Actual);
}
CodeSize += Visitor.getCodeSizeSavingsFromPendingPHIs();
unsigned CodeSizeSavings = getCostValue(CodeSize);
unsigned SpecSize = FuncSize - CodeSizeSavings;
auto IsProfitable = [&]() -> bool {
// No check required.
if (ForceSpecialization)
return true;
LLVM_DEBUG(
dbgs() << "FnSpecialization: Specialization bonus {Inlining = "
<< Score << " (" << (Score * 100 / FuncSize) << "%)}\n");
// Minimum inlining bonus.
if (Score > MinInliningBonus * FuncSize / 100)
return true;
LLVM_DEBUG(
dbgs() << "FnSpecialization: Specialization bonus {CodeSize = "
<< CodeSizeSavings << " ("
<< (CodeSizeSavings * 100 / FuncSize) << "%)}\n");
// Minimum codesize savings.
if (CodeSizeSavings < MinCodeSizeSavings * FuncSize / 100)
return false;
// Lazily compute the Latency, to avoid unnecessarily computing BFI.
unsigned LatencySavings =
getCostValue(Visitor.getLatencySavingsForKnownConstants());
LLVM_DEBUG(
dbgs() << "FnSpecialization: Specialization bonus {Latency = "
<< LatencySavings << " ("
<< (LatencySavings * 100 / FuncSize) << "%)}\n");
// Minimum latency savings.
if (LatencySavings < MinLatencySavings * FuncSize / 100)
return false;
// Maximum codesize growth.
if ((FunctionGrowth[F] + SpecSize) / FuncSize > MaxCodeSizeGrowth)
return false;
Score += std::max(CodeSizeSavings, LatencySavings);
return true;
};
// Discard unprofitable specialisations.
if (!IsProfitable())
continue;
// Create a new specialisation entry.
auto &Spec = AllSpecs.emplace_back(F, S, Score, SpecSize);
if (CS.getFunction() != F)
Spec.CallSites.push_back(&CS);
const unsigned Index = AllSpecs.size() - 1;
UniqueSpecs[S] = Index;
if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
It->second.second = Index + 1;
}
}
return !UniqueSpecs.empty();
}
bool FunctionSpecializer::isCandidateFunction(Function *F) {
if (F->isDeclaration() || F->arg_empty())
return false;
if (F->hasFnAttribute(Attribute::NoDuplicate))
return false;
// Do not specialize the cloned function again.
if (Specializations.contains(F))
return false;
// If we're optimizing the function for size, we shouldn't specialize it.
if (shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
return false;
// Exit if the function is not executable. There's no point in specializing
// a dead function.
if (!Solver.isBlockExecutable(&F->getEntryBlock()))
return false;
// It wastes time to specialize a function which would get inlined finally.
if (F->hasFnAttribute(Attribute::AlwaysInline))
return false;
LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
<< "\n");
return true;
}
Function *FunctionSpecializer::createSpecialization(Function *F,
const SpecSig &S) {
Function *Clone = cloneCandidateFunction(F, Specializations.size() + 1);
// The original function does not neccessarily have internal linkage, but the
// clone must.
Clone->setLinkage(GlobalValue::InternalLinkage);
// Initialize the lattice state of the arguments of the function clone,
// marking the argument on which we specialized the function constant
// with the given value.
Solver.setLatticeValueForSpecializationArguments(Clone, S.Args);
Solver.markBlockExecutable(&Clone->front());
Solver.addArgumentTrackedFunction(Clone);
Solver.addTrackedFunction(Clone);
// Mark all the specialized functions
Specializations.insert(Clone);
++NumSpecsCreated;
return Clone;
}
/// Compute the inlining bonus for replacing argument \p A with constant \p C.
/// The below heuristic is only concerned with exposing inlining
/// opportunities via indirect call promotion. If the argument is not a
/// (potentially casted) function pointer, give up.
unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) {
Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
if (!CalledFunction)
return 0;
// Get TTI for the called function (used for the inline cost).
auto &CalleeTTI = (GetTTI)(*CalledFunction);
// Look at all the call sites whose called value is the argument.
// Specializing the function on the argument would allow these indirect
// calls to be promoted to direct calls. If the indirect call promotion
// would likely enable the called function to be inlined, specializing is a
// good idea.
int InliningBonus = 0;
for (User *U : A->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto *CS = cast<CallBase>(U);
if (CS->getCalledOperand() != A)
continue;
if (CS->getFunctionType() != CalledFunction->getFunctionType())
continue;
// Get the cost of inlining the called function at this call site. Note
// that this is only an estimate. The called function may eventually
// change in a way that leads to it not being inlined here, even though
// inlining looks profitable now. For example, one of its called
// functions may be inlined into it, making the called function too large
// to be inlined into this call site.
//
// We apply a boost for performing indirect call promotion by increasing
// the default threshold by the threshold for indirect calls.
auto Params = getInlineParams();
Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
InlineCost IC =
getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
// We clamp the bonus for this call to be between zero and the default
// threshold.
if (IC.isAlways())
InliningBonus += Params.DefaultThreshold;
else if (IC.isVariable() && IC.getCostDelta() > 0)
InliningBonus += IC.getCostDelta();
LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << InliningBonus
<< " for user " << *U << "\n");
}
return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0;
}
/// Determine if it is possible to specialise the function for constant values
/// of the formal parameter \p A.
bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
// No point in specialization if the argument is unused.
if (A->user_empty())
return false;
Type *Ty = A->getType();
if (!Ty->isPointerTy() && (!SpecializeLiteralConstant ||
(!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy())))
return false;
// SCCP solver does not record an argument that will be constructed on
// stack.
if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
return false;
// For non-argument-tracked functions every argument is overdefined.
if (!Solver.isArgumentTrackedFunction(A->getParent()))
return true;
// Check the lattice value and decide if we should attemt to specialize,
// based on this argument. No point in specialization, if the lattice value
// is already a constant.
bool IsOverdefined = Ty->isStructTy()
? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined)
: SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A));
LLVM_DEBUG(
if (IsOverdefined)
dbgs() << "FnSpecialization: Found interesting parameter "
<< A->getNameOrAsOperand() << "\n";
else
dbgs() << "FnSpecialization: Nothing to do, parameter "
<< A->getNameOrAsOperand() << " is already constant\n";
);
return IsOverdefined;
}
/// Check if the value \p V (an actual argument) is a constant or can only
/// have a constant value. Return that constant.
Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
if (isa<PoisonValue>(V))
return nullptr;
// Select for possible specialisation values that are constants or
// are deduced to be constants or constant ranges with a single element.
Constant *C = dyn_cast<Constant>(V);
if (!C)
C = Solver.getConstantOrNull(V);
// Don't specialize on (anything derived from) the address of a non-constant
// global variable, unless explicitly enabled.
if (C && C->getType()->isPointerTy() && !C->isNullValue())
if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
GV && !(GV->isConstant() || SpecializeOnAddress))
return nullptr;
return C;
}
void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
const Spec *End) {
// Collect the call sites that need updating.
SmallVector<CallBase *> ToUpdate;
for (User *U : F->users())
if (auto *CS = dyn_cast<CallBase>(U);
CS && CS->getCalledFunction() == F &&
Solver.isBlockExecutable(CS->getParent()))
ToUpdate.push_back(CS);
unsigned NCallsLeft = ToUpdate.size();
for (CallBase *CS : ToUpdate) {
bool ShouldDecrementCount = CS->getFunction() == F;
// Find the best matching specialisation.
const Spec *BestSpec = nullptr;
for (const Spec &S : make_range(Begin, End)) {
if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score))
continue;
if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
unsigned ArgNo = Arg.Formal->getArgNo();
return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
}))
continue;
BestSpec = &S;
}
if (BestSpec) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
<< " to call " << BestSpec->Clone->getName() << "\n");
CS->setCalledFunction(BestSpec->Clone);
ShouldDecrementCount = true;
}
if (ShouldDecrementCount)
--NCallsLeft;
}
// If the function has been completely specialized, the original function
// is no longer needed. Mark it unreachable.
if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) {
Solver.markFunctionUnreachable(F);
FullySpecialized.insert(F);
}
}
|