1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
|
//===-- ExpandVariadicsPass.cpp --------------------------------*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is an optimization pass for variadic functions. If called from codegen,
// it can serve as the implementation of variadic functions for a given target.
//
// The strategy is to turn the ... part of a variadic function into a va_list
// and fix up the call sites. The majority of the pass is target independent.
// The exceptions are the va_list type itself and the rules for where to store
// variables in memory such that va_arg can iterate over them given a va_list.
//
// The majority of the plumbing is splitting the variadic function into a
// single basic block that packs the variadic arguments into a va_list and
// a second function that does the work of the original. That packing is
// exactly what is done by va_start. Further, the transform from ... to va_list
// replaced va_start with an operation to copy a va_list from the new argument,
// which is exactly a va_copy. This is useful for reducing target-dependence.
//
// A va_list instance is a forward iterator, where the primary operation va_arg
// is dereference-then-increment. This interface forces significant convergent
// evolution between target specific implementations. The variation in runtime
// data layout is limited to that representable by the iterator, parameterised
// by the type passed to the va_arg instruction.
//
// Therefore the majority of the target specific subtlety is packing arguments
// into a stack allocated buffer such that a va_list can be initialised with it
// and the va_arg expansion for the target will find the arguments at runtime.
//
// The aggregate effect is to unblock other transforms, most critically the
// general purpose inliner. Known calls to variadic functions become zero cost.
//
// Consistency with clang is primarily tested by emitting va_arg using clang
// then expanding the variadic functions using this pass, followed by trying
// to constant fold the functions to no-ops.
//
// Target specific behaviour is tested in IR - mainly checking that values are
// put into positions in call frames that make sense for that particular target.
//
// There is one "clever" invariant in use. va_start intrinsics that are not
// within a varidic functions are an error in the IR verifier. When this
// transform moves blocks from a variadic function into a fixed arity one, it
// moves va_start intrinsics along with everything else. That means that the
// va_start intrinsics that need to be rewritten to use the trailing argument
// are exactly those that are in non-variadic functions so no further state
// is needed to distinguish those that need to be rewritten.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/ExpandVariadics.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#define DEBUG_TYPE "expand-variadics"
using namespace llvm;
namespace {
cl::opt<ExpandVariadicsMode> ExpandVariadicsModeOption(
DEBUG_TYPE "-override", cl::desc("Override the behaviour of " DEBUG_TYPE),
cl::init(ExpandVariadicsMode::Unspecified),
cl::values(clEnumValN(ExpandVariadicsMode::Unspecified, "unspecified",
"Use the implementation defaults"),
clEnumValN(ExpandVariadicsMode::Disable, "disable",
"Disable the pass entirely"),
clEnumValN(ExpandVariadicsMode::Optimize, "optimize",
"Optimise without changing ABI"),
clEnumValN(ExpandVariadicsMode::Lowering, "lowering",
"Change variadic calling convention")));
bool commandLineOverride() {
return ExpandVariadicsModeOption != ExpandVariadicsMode::Unspecified;
}
// Instances of this class encapsulate the target-dependant behaviour as a
// function of triple. Implementing a new ABI is adding a case to the switch
// in create(llvm::Triple) at the end of this file.
// This class may end up instantiated in TargetMachine instances, keeping it
// here for now until enough targets are implemented for the API to evolve.
class VariadicABIInfo {
protected:
VariadicABIInfo() = default;
public:
static std::unique_ptr<VariadicABIInfo> create(const Triple &T);
// Allow overriding whether the pass runs on a per-target basis
virtual bool enableForTarget() = 0;
// Whether a valist instance is passed by value or by address
// I.e. does it need to be alloca'ed and stored into, or can
// it be passed directly in a SSA register
virtual bool vaListPassedInSSARegister() = 0;
// The type of a va_list iterator object
virtual Type *vaListType(LLVMContext &Ctx) = 0;
// The type of a va_list as a function argument as lowered by C
virtual Type *vaListParameterType(Module &M) = 0;
// Initialize an allocated va_list object to point to an already
// initialized contiguous memory region.
// Return the value to pass as the va_list argument
virtual Value *initializeVaList(Module &M, LLVMContext &Ctx,
IRBuilder<> &Builder, AllocaInst *VaList,
Value *Buffer) = 0;
struct VAArgSlotInfo {
Align DataAlign; // With respect to the call frame
bool Indirect; // Passed via a pointer
};
virtual VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) = 0;
// Targets implemented so far all have the same trivial lowering for these
bool vaEndIsNop() { return true; }
bool vaCopyIsMemcpy() { return true; }
virtual ~VariadicABIInfo() = default;
};
class ExpandVariadics : public ModulePass {
// The pass construction sets the default to optimize when called from middle
// end and lowering when called from the backend. The command line variable
// overrides that. This is useful for testing and debugging. It also allows
// building an applications with variadic functions wholly removed if one
// has sufficient control over the dependencies, e.g. a statically linked
// clang that has no variadic function calls remaining in the binary.
public:
static char ID;
const ExpandVariadicsMode Mode;
std::unique_ptr<VariadicABIInfo> ABI;
ExpandVariadics(ExpandVariadicsMode Mode)
: ModulePass(ID),
Mode(commandLineOverride() ? ExpandVariadicsModeOption : Mode) {}
StringRef getPassName() const override { return "Expand variadic functions"; }
bool rewriteABI() { return Mode == ExpandVariadicsMode::Lowering; }
bool runOnModule(Module &M) override;
bool runOnFunction(Module &M, IRBuilder<> &Builder, Function *F);
Function *replaceAllUsesWithNewDeclaration(Module &M,
Function *OriginalFunction);
Function *deriveFixedArityReplacement(Module &M, IRBuilder<> &Builder,
Function *OriginalFunction);
Function *defineVariadicWrapper(Module &M, IRBuilder<> &Builder,
Function *VariadicWrapper,
Function *FixedArityReplacement);
bool expandCall(Module &M, IRBuilder<> &Builder, CallBase *CB, FunctionType *,
Function *NF);
// The intrinsic functions va_copy and va_end are removed unconditionally.
// They correspond to a memcpy and a no-op on all implemented targets.
// The va_start intrinsic is removed from basic blocks that were not created
// by this pass, some may remain if needed to maintain the external ABI.
template <Intrinsic::ID ID, typename InstructionType>
bool expandIntrinsicUsers(Module &M, IRBuilder<> &Builder,
PointerType *IntrinsicArgType) {
bool Changed = false;
const DataLayout &DL = M.getDataLayout();
if (Function *Intrinsic =
Intrinsic::getDeclarationIfExists(&M, ID, {IntrinsicArgType})) {
for (User *U : make_early_inc_range(Intrinsic->users()))
if (auto *I = dyn_cast<InstructionType>(U))
Changed |= expandVAIntrinsicCall(Builder, DL, I);
if (Intrinsic->use_empty())
Intrinsic->eraseFromParent();
}
return Changed;
}
bool expandVAIntrinsicUsersWithAddrspace(Module &M, IRBuilder<> &Builder,
unsigned Addrspace) {
auto &Ctx = M.getContext();
PointerType *IntrinsicArgType = PointerType::get(Ctx, Addrspace);
bool Changed = false;
// expand vastart before vacopy as vastart may introduce a vacopy
Changed |= expandIntrinsicUsers<Intrinsic::vastart, VAStartInst>(
M, Builder, IntrinsicArgType);
Changed |= expandIntrinsicUsers<Intrinsic::vaend, VAEndInst>(
M, Builder, IntrinsicArgType);
Changed |= expandIntrinsicUsers<Intrinsic::vacopy, VACopyInst>(
M, Builder, IntrinsicArgType);
return Changed;
}
bool expandVAIntrinsicCall(IRBuilder<> &Builder, const DataLayout &DL,
VAStartInst *Inst);
bool expandVAIntrinsicCall(IRBuilder<> &, const DataLayout &,
VAEndInst *Inst);
bool expandVAIntrinsicCall(IRBuilder<> &Builder, const DataLayout &DL,
VACopyInst *Inst);
FunctionType *inlinableVariadicFunctionType(Module &M, FunctionType *FTy) {
// The type of "FTy" with the ... removed and a va_list appended
SmallVector<Type *> ArgTypes(FTy->params());
ArgTypes.push_back(ABI->vaListParameterType(M));
return FunctionType::get(FTy->getReturnType(), ArgTypes,
/*IsVarArgs=*/false);
}
static ConstantInt *sizeOfAlloca(LLVMContext &Ctx, const DataLayout &DL,
AllocaInst *Alloced) {
std::optional<TypeSize> AllocaTypeSize = Alloced->getAllocationSize(DL);
uint64_t AsInt = AllocaTypeSize ? AllocaTypeSize->getFixedValue() : 0;
return ConstantInt::get(Type::getInt64Ty(Ctx), AsInt);
}
bool expansionApplicableToFunction(Module &M, Function *F) {
if (F->isIntrinsic() || !F->isVarArg() ||
F->hasFnAttribute(Attribute::Naked))
return false;
if (F->getCallingConv() != CallingConv::C)
return false;
if (rewriteABI())
return true;
if (!F->hasExactDefinition())
return false;
return true;
}
bool expansionApplicableToFunctionCall(CallBase *CB) {
if (CallInst *CI = dyn_cast<CallInst>(CB)) {
if (CI->isMustTailCall()) {
// Cannot expand musttail calls
return false;
}
if (CI->getCallingConv() != CallingConv::C)
return false;
return true;
}
if (isa<InvokeInst>(CB)) {
// Invoke not implemented in initial implementation of pass
return false;
}
// Other unimplemented derivative of CallBase
return false;
}
class ExpandedCallFrame {
// Helper for constructing an alloca instance containing the arguments bound
// to the variadic ... parameter, rearranged to allow indexing through a
// va_list iterator
enum { N = 4 };
SmallVector<Type *, N> FieldTypes;
enum Tag { Store, Memcpy, Padding };
SmallVector<std::tuple<Value *, uint64_t, Tag>, N> Source;
template <Tag tag> void append(Type *FieldType, Value *V, uint64_t Bytes) {
FieldTypes.push_back(FieldType);
Source.push_back({V, Bytes, tag});
}
public:
void store(LLVMContext &Ctx, Type *T, Value *V) { append<Store>(T, V, 0); }
void memcpy(LLVMContext &Ctx, Type *T, Value *V, uint64_t Bytes) {
append<Memcpy>(T, V, Bytes);
}
void padding(LLVMContext &Ctx, uint64_t By) {
append<Padding>(ArrayType::get(Type::getInt8Ty(Ctx), By), nullptr, 0);
}
size_t size() const { return FieldTypes.size(); }
bool empty() const { return FieldTypes.empty(); }
StructType *asStruct(LLVMContext &Ctx, StringRef Name) {
const bool IsPacked = true;
return StructType::create(Ctx, FieldTypes,
(Twine(Name) + ".vararg").str(), IsPacked);
}
void initializeStructAlloca(const DataLayout &DL, IRBuilder<> &Builder,
AllocaInst *Alloced) {
StructType *VarargsTy = cast<StructType>(Alloced->getAllocatedType());
for (size_t I = 0; I < size(); I++) {
auto [V, bytes, tag] = Source[I];
if (tag == Padding) {
assert(V == nullptr);
continue;
}
auto Dst = Builder.CreateStructGEP(VarargsTy, Alloced, I);
assert(V != nullptr);
if (tag == Store)
Builder.CreateStore(V, Dst);
if (tag == Memcpy)
Builder.CreateMemCpy(Dst, {}, V, {}, bytes);
}
}
};
};
bool ExpandVariadics::runOnModule(Module &M) {
bool Changed = false;
if (Mode == ExpandVariadicsMode::Disable)
return Changed;
Triple TT(M.getTargetTriple());
ABI = VariadicABIInfo::create(TT);
if (!ABI)
return Changed;
if (!ABI->enableForTarget())
return Changed;
auto &Ctx = M.getContext();
const DataLayout &DL = M.getDataLayout();
IRBuilder<> Builder(Ctx);
// Lowering needs to run on all functions exactly once.
// Optimize could run on functions containing va_start exactly once.
for (Function &F : make_early_inc_range(M))
Changed |= runOnFunction(M, Builder, &F);
// After runOnFunction, all known calls to known variadic functions have been
// replaced. va_start intrinsics are presently (and invalidly!) only present
// in functions that used to be variadic and have now been replaced to take a
// va_list instead. If lowering as opposed to optimising, calls to unknown
// variadic functions have also been replaced.
{
// 0 and AllocaAddrSpace are sufficient for the targets implemented so far
unsigned Addrspace = 0;
Changed |= expandVAIntrinsicUsersWithAddrspace(M, Builder, Addrspace);
Addrspace = DL.getAllocaAddrSpace();
if (Addrspace != 0)
Changed |= expandVAIntrinsicUsersWithAddrspace(M, Builder, Addrspace);
}
if (Mode != ExpandVariadicsMode::Lowering)
return Changed;
for (Function &F : make_early_inc_range(M)) {
if (F.isDeclaration())
continue;
// Now need to track down indirect calls. Can't find those
// by walking uses of variadic functions, need to crawl the instruction
// stream. Fortunately this is only necessary for the ABI rewrite case.
for (BasicBlock &BB : F) {
for (Instruction &I : make_early_inc_range(BB)) {
if (CallBase *CB = dyn_cast<CallBase>(&I)) {
if (CB->isIndirectCall()) {
FunctionType *FTy = CB->getFunctionType();
if (FTy->isVarArg())
Changed |= expandCall(M, Builder, CB, FTy, 0);
}
}
}
}
}
return Changed;
}
bool ExpandVariadics::runOnFunction(Module &M, IRBuilder<> &Builder,
Function *OriginalFunction) {
bool Changed = false;
if (!expansionApplicableToFunction(M, OriginalFunction))
return Changed;
[[maybe_unused]] const bool OriginalFunctionIsDeclaration =
OriginalFunction->isDeclaration();
assert(rewriteABI() || !OriginalFunctionIsDeclaration);
// Declare a new function and redirect every use to that new function
Function *VariadicWrapper =
replaceAllUsesWithNewDeclaration(M, OriginalFunction);
assert(VariadicWrapper->isDeclaration());
assert(OriginalFunction->use_empty());
// Create a new function taking va_list containing the implementation of the
// original
Function *FixedArityReplacement =
deriveFixedArityReplacement(M, Builder, OriginalFunction);
assert(OriginalFunction->isDeclaration());
assert(FixedArityReplacement->isDeclaration() ==
OriginalFunctionIsDeclaration);
assert(VariadicWrapper->isDeclaration());
// Create a single block forwarding wrapper that turns a ... into a va_list
[[maybe_unused]] Function *VariadicWrapperDefine =
defineVariadicWrapper(M, Builder, VariadicWrapper, FixedArityReplacement);
assert(VariadicWrapperDefine == VariadicWrapper);
assert(!VariadicWrapper->isDeclaration());
// We now have:
// 1. the original function, now as a declaration with no uses
// 2. a variadic function that unconditionally calls a fixed arity replacement
// 3. a fixed arity function equivalent to the original function
// Replace known calls to the variadic with calls to the va_list equivalent
for (User *U : make_early_inc_range(VariadicWrapper->users())) {
if (CallBase *CB = dyn_cast<CallBase>(U)) {
Value *CalledOperand = CB->getCalledOperand();
if (VariadicWrapper == CalledOperand)
Changed |=
expandCall(M, Builder, CB, VariadicWrapper->getFunctionType(),
FixedArityReplacement);
}
}
// The original function will be erased.
// One of the two new functions will become a replacement for the original.
// When preserving the ABI, the other is an internal implementation detail.
// When rewriting the ABI, RAUW then the variadic one.
Function *const ExternallyAccessible =
rewriteABI() ? FixedArityReplacement : VariadicWrapper;
Function *const InternalOnly =
rewriteABI() ? VariadicWrapper : FixedArityReplacement;
// The external function is the replacement for the original
ExternallyAccessible->setLinkage(OriginalFunction->getLinkage());
ExternallyAccessible->setVisibility(OriginalFunction->getVisibility());
ExternallyAccessible->setComdat(OriginalFunction->getComdat());
ExternallyAccessible->takeName(OriginalFunction);
// Annotate the internal one as internal
InternalOnly->setVisibility(GlobalValue::DefaultVisibility);
InternalOnly->setLinkage(GlobalValue::InternalLinkage);
// The original is unused and obsolete
OriginalFunction->eraseFromParent();
InternalOnly->removeDeadConstantUsers();
if (rewriteABI()) {
// All known calls to the function have been removed by expandCall
// Resolve everything else by replaceAllUsesWith
VariadicWrapper->replaceAllUsesWith(FixedArityReplacement);
VariadicWrapper->eraseFromParent();
}
return Changed;
}
Function *
ExpandVariadics::replaceAllUsesWithNewDeclaration(Module &M,
Function *OriginalFunction) {
auto &Ctx = M.getContext();
Function &F = *OriginalFunction;
FunctionType *FTy = F.getFunctionType();
Function *NF = Function::Create(FTy, F.getLinkage(), F.getAddressSpace());
NF->setName(F.getName() + ".varargs");
F.getParent()->getFunctionList().insert(F.getIterator(), NF);
AttrBuilder ParamAttrs(Ctx);
AttributeList Attrs = NF->getAttributes();
Attrs = Attrs.addParamAttributes(Ctx, FTy->getNumParams(), ParamAttrs);
NF->setAttributes(Attrs);
OriginalFunction->replaceAllUsesWith(NF);
return NF;
}
Function *
ExpandVariadics::deriveFixedArityReplacement(Module &M, IRBuilder<> &Builder,
Function *OriginalFunction) {
Function &F = *OriginalFunction;
// The purpose here is split the variadic function F into two functions
// One is a variadic function that bundles the passed argument into a va_list
// and passes it to the second function. The second function does whatever
// the original F does, except that it takes a va_list instead of the ...
assert(expansionApplicableToFunction(M, &F));
auto &Ctx = M.getContext();
// Returned value isDeclaration() is equal to F.isDeclaration()
// but that property is not invariant throughout this function
const bool FunctionIsDefinition = !F.isDeclaration();
FunctionType *FTy = F.getFunctionType();
SmallVector<Type *> ArgTypes(FTy->params());
ArgTypes.push_back(ABI->vaListParameterType(M));
FunctionType *NFTy = inlinableVariadicFunctionType(M, FTy);
Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
// Note - same attribute handling as DeadArgumentElimination
NF->copyAttributesFrom(&F);
NF->setComdat(F.getComdat());
F.getParent()->getFunctionList().insert(F.getIterator(), NF);
NF->setName(F.getName() + ".valist");
AttrBuilder ParamAttrs(Ctx);
AttributeList Attrs = NF->getAttributes();
Attrs = Attrs.addParamAttributes(Ctx, NFTy->getNumParams() - 1, ParamAttrs);
NF->setAttributes(Attrs);
// Splice the implementation into the new function with minimal changes
if (FunctionIsDefinition) {
NF->splice(NF->begin(), &F);
auto NewArg = NF->arg_begin();
for (Argument &Arg : F.args()) {
Arg.replaceAllUsesWith(NewArg);
NewArg->setName(Arg.getName()); // takeName without killing the old one
++NewArg;
}
NewArg->setName("varargs");
}
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
F.getAllMetadata(MDs);
for (auto [KindID, Node] : MDs)
NF->addMetadata(KindID, *Node);
F.clearMetadata();
return NF;
}
Function *
ExpandVariadics::defineVariadicWrapper(Module &M, IRBuilder<> &Builder,
Function *VariadicWrapper,
Function *FixedArityReplacement) {
auto &Ctx = Builder.getContext();
const DataLayout &DL = M.getDataLayout();
assert(VariadicWrapper->isDeclaration());
Function &F = *VariadicWrapper;
assert(F.isDeclaration());
Type *VaListTy = ABI->vaListType(Ctx);
auto *BB = BasicBlock::Create(Ctx, "entry", &F);
Builder.SetInsertPoint(BB);
AllocaInst *VaListInstance =
Builder.CreateAlloca(VaListTy, nullptr, "va_start");
Builder.CreateLifetimeStart(VaListInstance,
sizeOfAlloca(Ctx, DL, VaListInstance));
Builder.CreateIntrinsic(Intrinsic::vastart, {DL.getAllocaPtrType(Ctx)},
{VaListInstance});
SmallVector<Value *> Args(llvm::make_pointer_range(F.args()));
Type *ParameterType = ABI->vaListParameterType(M);
if (ABI->vaListPassedInSSARegister())
Args.push_back(Builder.CreateLoad(ParameterType, VaListInstance));
else
Args.push_back(Builder.CreateAddrSpaceCast(VaListInstance, ParameterType));
CallInst *Result = Builder.CreateCall(FixedArityReplacement, Args);
Builder.CreateIntrinsic(Intrinsic::vaend, {DL.getAllocaPtrType(Ctx)},
{VaListInstance});
Builder.CreateLifetimeEnd(VaListInstance,
sizeOfAlloca(Ctx, DL, VaListInstance));
if (Result->getType()->isVoidTy())
Builder.CreateRetVoid();
else
Builder.CreateRet(Result);
return VariadicWrapper;
}
bool ExpandVariadics::expandCall(Module &M, IRBuilder<> &Builder, CallBase *CB,
FunctionType *VarargFunctionType,
Function *NF) {
bool Changed = false;
const DataLayout &DL = M.getDataLayout();
if (!expansionApplicableToFunctionCall(CB)) {
if (rewriteABI())
report_fatal_error("Cannot lower callbase instruction");
return Changed;
}
// This is tricky. The call instruction's function type might not match
// the type of the caller. When optimising, can leave it unchanged.
// Webassembly detects that inconsistency and repairs it.
FunctionType *FuncType = CB->getFunctionType();
if (FuncType != VarargFunctionType) {
if (!rewriteABI())
return Changed;
FuncType = VarargFunctionType;
}
auto &Ctx = CB->getContext();
Align MaxFieldAlign(1);
// The strategy is to allocate a call frame containing the variadic
// arguments laid out such that a target specific va_list can be initialized
// with it, such that target specific va_arg instructions will correctly
// iterate over it. This means getting the alignment right and sometimes
// embedding a pointer to the value instead of embedding the value itself.
Function *CBF = CB->getParent()->getParent();
ExpandedCallFrame Frame;
uint64_t CurrentOffset = 0;
for (unsigned I = FuncType->getNumParams(), E = CB->arg_size(); I < E; ++I) {
Value *ArgVal = CB->getArgOperand(I);
const bool IsByVal = CB->paramHasAttr(I, Attribute::ByVal);
const bool IsByRef = CB->paramHasAttr(I, Attribute::ByRef);
// The type of the value being passed, decoded from byval/byref metadata if
// required
Type *const UnderlyingType = IsByVal ? CB->getParamByValType(I)
: IsByRef ? CB->getParamByRefType(I)
: ArgVal->getType();
const uint64_t UnderlyingSize =
DL.getTypeAllocSize(UnderlyingType).getFixedValue();
// The type to be written into the call frame
Type *FrameFieldType = UnderlyingType;
// The value to copy from when initialising the frame alloca
Value *SourceValue = ArgVal;
VariadicABIInfo::VAArgSlotInfo SlotInfo = ABI->slotInfo(DL, UnderlyingType);
if (SlotInfo.Indirect) {
// The va_arg lowering loads through a pointer. Set up an alloca to aim
// that pointer at.
Builder.SetInsertPointPastAllocas(CBF);
Builder.SetCurrentDebugLocation(CB->getStableDebugLoc());
Value *CallerCopy =
Builder.CreateAlloca(UnderlyingType, nullptr, "IndirectAlloca");
Builder.SetInsertPoint(CB);
if (IsByVal)
Builder.CreateMemCpy(CallerCopy, {}, ArgVal, {}, UnderlyingSize);
else
Builder.CreateStore(ArgVal, CallerCopy);
// Indirection now handled, pass the alloca ptr by value
FrameFieldType = DL.getAllocaPtrType(Ctx);
SourceValue = CallerCopy;
}
// Alignment of the value within the frame
// This probably needs to be controllable as a function of type
Align DataAlign = SlotInfo.DataAlign;
MaxFieldAlign = std::max(MaxFieldAlign, DataAlign);
uint64_t DataAlignV = DataAlign.value();
if (uint64_t Rem = CurrentOffset % DataAlignV) {
// Inject explicit padding to deal with alignment requirements
uint64_t Padding = DataAlignV - Rem;
Frame.padding(Ctx, Padding);
CurrentOffset += Padding;
}
if (SlotInfo.Indirect) {
Frame.store(Ctx, FrameFieldType, SourceValue);
} else {
if (IsByVal)
Frame.memcpy(Ctx, FrameFieldType, SourceValue, UnderlyingSize);
else
Frame.store(Ctx, FrameFieldType, SourceValue);
}
CurrentOffset += DL.getTypeAllocSize(FrameFieldType).getFixedValue();
}
if (Frame.empty()) {
// Not passing any arguments, hopefully va_arg won't try to read any
// Creating a single byte frame containing nothing to point the va_list
// instance as that is less special-casey in the compiler and probably
// easier to interpret in a debugger.
Frame.padding(Ctx, 1);
}
StructType *VarargsTy = Frame.asStruct(Ctx, CBF->getName());
// The struct instance needs to be at least MaxFieldAlign for the alignment of
// the fields to be correct at runtime. Use the native stack alignment instead
// if that's greater as that tends to give better codegen.
// This is an awkward way to guess whether there is a known stack alignment
// without hitting an assert in DL.getStackAlignment, 1024 is an arbitrary
// number likely to be greater than the natural stack alignment.
Align AllocaAlign = MaxFieldAlign;
if (MaybeAlign StackAlign = DL.getStackAlignment();
StackAlign && *StackAlign > AllocaAlign)
AllocaAlign = *StackAlign;
// Put the alloca to hold the variadic args in the entry basic block.
Builder.SetInsertPointPastAllocas(CBF);
// SetCurrentDebugLocation when the builder SetInsertPoint method does not
Builder.SetCurrentDebugLocation(CB->getStableDebugLoc());
// The awkward construction here is to set the alignment on the instance
AllocaInst *Alloced = Builder.Insert(
new AllocaInst(VarargsTy, DL.getAllocaAddrSpace(), nullptr, AllocaAlign),
"vararg_buffer");
Changed = true;
assert(Alloced->getAllocatedType() == VarargsTy);
// Initialize the fields in the struct
Builder.SetInsertPoint(CB);
Builder.CreateLifetimeStart(Alloced, sizeOfAlloca(Ctx, DL, Alloced));
Frame.initializeStructAlloca(DL, Builder, Alloced);
const unsigned NumArgs = FuncType->getNumParams();
SmallVector<Value *> Args(CB->arg_begin(), CB->arg_begin() + NumArgs);
// Initialize a va_list pointing to that struct and pass it as the last
// argument
AllocaInst *VaList = nullptr;
{
if (!ABI->vaListPassedInSSARegister()) {
Type *VaListTy = ABI->vaListType(Ctx);
Builder.SetInsertPointPastAllocas(CBF);
Builder.SetCurrentDebugLocation(CB->getStableDebugLoc());
VaList = Builder.CreateAlloca(VaListTy, nullptr, "va_argument");
Builder.SetInsertPoint(CB);
Builder.CreateLifetimeStart(VaList, sizeOfAlloca(Ctx, DL, VaList));
}
Builder.SetInsertPoint(CB);
Args.push_back(ABI->initializeVaList(M, Ctx, Builder, VaList, Alloced));
}
// Attributes excluding any on the vararg arguments
AttributeList PAL = CB->getAttributes();
if (!PAL.isEmpty()) {
SmallVector<AttributeSet, 8> ArgAttrs;
for (unsigned ArgNo = 0; ArgNo < NumArgs; ArgNo++)
ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
PAL =
AttributeList::get(Ctx, PAL.getFnAttrs(), PAL.getRetAttrs(), ArgAttrs);
}
SmallVector<OperandBundleDef, 1> OpBundles;
CB->getOperandBundlesAsDefs(OpBundles);
CallBase *NewCB = nullptr;
if (CallInst *CI = dyn_cast<CallInst>(CB)) {
Value *Dst = NF ? NF : CI->getCalledOperand();
FunctionType *NFTy = inlinableVariadicFunctionType(M, VarargFunctionType);
NewCB = CallInst::Create(NFTy, Dst, Args, OpBundles, "", CI->getIterator());
CallInst::TailCallKind TCK = CI->getTailCallKind();
assert(TCK != CallInst::TCK_MustTail);
// Can't tail call a function that is being passed a pointer to an alloca
if (TCK == CallInst::TCK_Tail)
TCK = CallInst::TCK_None;
CI->setTailCallKind(TCK);
} else {
llvm_unreachable("Unreachable when !expansionApplicableToFunctionCall()");
}
if (VaList)
Builder.CreateLifetimeEnd(VaList, sizeOfAlloca(Ctx, DL, VaList));
Builder.CreateLifetimeEnd(Alloced, sizeOfAlloca(Ctx, DL, Alloced));
NewCB->setAttributes(PAL);
NewCB->takeName(CB);
NewCB->setCallingConv(CB->getCallingConv());
NewCB->setDebugLoc(DebugLoc());
// DeadArgElim and ArgPromotion copy exactly this metadata
NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
CB->replaceAllUsesWith(NewCB);
CB->eraseFromParent();
return Changed;
}
bool ExpandVariadics::expandVAIntrinsicCall(IRBuilder<> &Builder,
const DataLayout &DL,
VAStartInst *Inst) {
// Only removing va_start instructions that are not in variadic functions.
// Those would be rejected by the IR verifier before this pass.
// After splicing basic blocks from a variadic function into a fixed arity
// one the va_start that used to refer to the ... parameter still exist.
// There are also variadic functions that this pass did not change and
// va_start instances in the created single block wrapper functions.
// Replace exactly the instances in non-variadic functions as those are
// the ones to be fixed up to use the va_list passed as the final argument.
Function *ContainingFunction = Inst->getFunction();
if (ContainingFunction->isVarArg()) {
return false;
}
// The last argument is a vaListParameterType, either a va_list
// or a pointer to one depending on the target.
bool PassedByValue = ABI->vaListPassedInSSARegister();
Argument *PassedVaList =
ContainingFunction->getArg(ContainingFunction->arg_size() - 1);
// va_start takes a pointer to a va_list, e.g. one on the stack
Value *VaStartArg = Inst->getArgList();
Builder.SetInsertPoint(Inst);
if (PassedByValue) {
// The general thing to do is create an alloca, store the va_list argument
// to it, then create a va_copy. When vaCopyIsMemcpy(), this optimises to a
// store to the VaStartArg.
assert(ABI->vaCopyIsMemcpy());
Builder.CreateStore(PassedVaList, VaStartArg);
} else {
// Otherwise emit a vacopy to pick up target-specific handling if any
auto &Ctx = Builder.getContext();
Builder.CreateIntrinsic(Intrinsic::vacopy, {DL.getAllocaPtrType(Ctx)},
{VaStartArg, PassedVaList});
}
Inst->eraseFromParent();
return true;
}
bool ExpandVariadics::expandVAIntrinsicCall(IRBuilder<> &, const DataLayout &,
VAEndInst *Inst) {
assert(ABI->vaEndIsNop());
Inst->eraseFromParent();
return true;
}
bool ExpandVariadics::expandVAIntrinsicCall(IRBuilder<> &Builder,
const DataLayout &DL,
VACopyInst *Inst) {
assert(ABI->vaCopyIsMemcpy());
Builder.SetInsertPoint(Inst);
auto &Ctx = Builder.getContext();
Type *VaListTy = ABI->vaListType(Ctx);
uint64_t Size = DL.getTypeAllocSize(VaListTy).getFixedValue();
Builder.CreateMemCpy(Inst->getDest(), {}, Inst->getSrc(), {},
Builder.getInt32(Size));
Inst->eraseFromParent();
return true;
}
struct Amdgpu final : public VariadicABIInfo {
bool enableForTarget() override { return true; }
bool vaListPassedInSSARegister() override { return true; }
Type *vaListType(LLVMContext &Ctx) override {
return PointerType::getUnqual(Ctx);
}
Type *vaListParameterType(Module &M) override {
return PointerType::getUnqual(M.getContext());
}
Value *initializeVaList(Module &M, LLVMContext &Ctx, IRBuilder<> &Builder,
AllocaInst * /*va_list*/, Value *Buffer) override {
// Given Buffer, which is an AllocInst of vararg_buffer
// need to return something usable as parameter type
return Builder.CreateAddrSpaceCast(Buffer, vaListParameterType(M));
}
VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) override {
return {Align(4), false};
}
};
struct NVPTX final : public VariadicABIInfo {
bool enableForTarget() override { return true; }
bool vaListPassedInSSARegister() override { return true; }
Type *vaListType(LLVMContext &Ctx) override {
return PointerType::getUnqual(Ctx);
}
Type *vaListParameterType(Module &M) override {
return PointerType::getUnqual(M.getContext());
}
Value *initializeVaList(Module &M, LLVMContext &Ctx, IRBuilder<> &Builder,
AllocaInst *, Value *Buffer) override {
return Builder.CreateAddrSpaceCast(Buffer, vaListParameterType(M));
}
VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) override {
// NVPTX expects natural alignment in all cases. The variadic call ABI will
// handle promoting types to their appropriate size and alignment.
Align A = DL.getABITypeAlign(Parameter);
return {A, false};
}
};
struct Wasm final : public VariadicABIInfo {
bool enableForTarget() override {
// Currently wasm is only used for testing.
return commandLineOverride();
}
bool vaListPassedInSSARegister() override { return true; }
Type *vaListType(LLVMContext &Ctx) override {
return PointerType::getUnqual(Ctx);
}
Type *vaListParameterType(Module &M) override {
return PointerType::getUnqual(M.getContext());
}
Value *initializeVaList(Module &M, LLVMContext &Ctx, IRBuilder<> &Builder,
AllocaInst * /*va_list*/, Value *Buffer) override {
return Buffer;
}
VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) override {
LLVMContext &Ctx = Parameter->getContext();
const unsigned MinAlign = 4;
Align A = DL.getABITypeAlign(Parameter);
if (A < MinAlign)
A = Align(MinAlign);
if (auto *S = dyn_cast<StructType>(Parameter)) {
if (S->getNumElements() > 1) {
return {DL.getABITypeAlign(PointerType::getUnqual(Ctx)), true};
}
}
return {A, false};
}
};
std::unique_ptr<VariadicABIInfo> VariadicABIInfo::create(const Triple &T) {
switch (T.getArch()) {
case Triple::r600:
case Triple::amdgcn: {
return std::make_unique<Amdgpu>();
}
case Triple::wasm32: {
return std::make_unique<Wasm>();
}
case Triple::nvptx:
case Triple::nvptx64: {
return std::make_unique<NVPTX>();
}
default:
return {};
}
}
} // namespace
char ExpandVariadics::ID = 0;
INITIALIZE_PASS(ExpandVariadics, DEBUG_TYPE, "Expand variadic functions", false,
false)
ModulePass *llvm::createExpandVariadicsPass(ExpandVariadicsMode M) {
return new ExpandVariadics(M);
}
PreservedAnalyses ExpandVariadicsPass::run(Module &M, ModuleAnalysisManager &) {
return ExpandVariadics(Mode).runOnModule(M) ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}
ExpandVariadicsPass::ExpandVariadicsPass(ExpandVariadicsMode M) : Mode(M) {}
|