aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/X86/X86FixupVectorConstants.cpp
blob: 6fe39c67897372eca92a7002dc43aae59f7931e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
//===-- X86FixupVectorConstants.cpp - optimize constant generation  -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file examines all full size vector constant pool loads and attempts to
// replace them with smaller constant pool entries, including:
// * Converting AVX512 memory-fold instructions to their broadcast-fold form.
// * Using vzload scalar loads.
// * Broadcasting of full width loads.
// * Sign/Zero extension of full width loads.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrFoldTables.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineConstantPool.h"

using namespace llvm;

#define DEBUG_TYPE "x86-fixup-vector-constants"

STATISTIC(NumInstChanges, "Number of instructions changes");

namespace {
class X86FixupVectorConstantsPass : public MachineFunctionPass {
public:
  static char ID;

  X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {}

  StringRef getPassName() const override {
    return "X86 Fixup Vector Constants";
  }

  bool runOnMachineFunction(MachineFunction &MF) override;
  bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
                          MachineInstr &MI);

  // This pass runs after regalloc and doesn't support VReg operands.
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().setNoVRegs();
  }

private:
  const X86InstrInfo *TII = nullptr;
  const X86Subtarget *ST = nullptr;
  const MCSchedModel *SM = nullptr;
};
} // end anonymous namespace

char X86FixupVectorConstantsPass::ID = 0;

INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false)

FunctionPass *llvm::createX86FixupVectorConstants() {
  return new X86FixupVectorConstantsPass();
}

/// Normally, we only allow poison in vector splats. However, as this is part
/// of the backend, and working with the DAG representation, which currently
/// only natively represents undef values, we need to accept undefs here.
static Constant *getSplatValueAllowUndef(const ConstantVector *C) {
  Constant *Res = nullptr;
  for (Value *Op : C->operands()) {
    Constant *OpC = cast<Constant>(Op);
    if (isa<UndefValue>(OpC))
      continue;
    if (!Res)
      Res = OpC;
    else if (Res != OpC)
      return nullptr;
  }
  return Res;
}

// Attempt to extract the full width of bits data from the constant.
static std::optional<APInt> extractConstantBits(const Constant *C) {
  unsigned NumBits = C->getType()->getPrimitiveSizeInBits();

  if (isa<UndefValue>(C))
    return APInt::getZero(NumBits);

  if (auto *CInt = dyn_cast<ConstantInt>(C)) {
    if (isa<VectorType>(CInt->getType()))
      return APInt::getSplat(NumBits, CInt->getValue());

    return CInt->getValue();
  }

  if (auto *CFP = dyn_cast<ConstantFP>(C)) {
    if (isa<VectorType>(CFP->getType()))
      return APInt::getSplat(NumBits, CFP->getValue().bitcastToAPInt());

    return CFP->getValue().bitcastToAPInt();
  }

  if (auto *CV = dyn_cast<ConstantVector>(C)) {
    if (auto *CVSplat = getSplatValueAllowUndef(CV)) {
      if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) {
        assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");
        return APInt::getSplat(NumBits, *Bits);
      }
    }

    APInt Bits = APInt::getZero(NumBits);
    for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) {
      Constant *Elt = CV->getOperand(I);
      std::optional<APInt> SubBits = extractConstantBits(Elt);
      if (!SubBits)
        return std::nullopt;
      assert(NumBits == (E * SubBits->getBitWidth()) &&
             "Illegal vector element size");
      Bits.insertBits(*SubBits, I * SubBits->getBitWidth());
    }
    return Bits;
  }

  if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
    bool IsInteger = CDS->getElementType()->isIntegerTy();
    bool IsFloat = CDS->getElementType()->isHalfTy() ||
                   CDS->getElementType()->isBFloatTy() ||
                   CDS->getElementType()->isFloatTy() ||
                   CDS->getElementType()->isDoubleTy();
    if (IsInteger || IsFloat) {
      APInt Bits = APInt::getZero(NumBits);
      unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();
      for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
        if (IsInteger)
          Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);
        else
          Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),
                          I * EltBits);
      }
      return Bits;
    }
  }

  return std::nullopt;
}

static std::optional<APInt> extractConstantBits(const Constant *C,
                                                unsigned NumBits) {
  if (std::optional<APInt> Bits = extractConstantBits(C))
    return Bits->zextOrTrunc(NumBits);
  return std::nullopt;
}

// Attempt to compute the splat width of bits data by normalizing the splat to
// remove undefs.
static std::optional<APInt> getSplatableConstant(const Constant *C,
                                                 unsigned SplatBitWidth) {
  const Type *Ty = C->getType();
  assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&
         "Illegal splat width");

  if (std::optional<APInt> Bits = extractConstantBits(C))
    if (Bits->isSplat(SplatBitWidth))
      return Bits->trunc(SplatBitWidth);

  // Detect general splats with undefs.
  // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting?
  if (auto *CV = dyn_cast<ConstantVector>(C)) {
    unsigned NumOps = CV->getNumOperands();
    unsigned NumEltsBits = Ty->getScalarSizeInBits();
    unsigned NumScaleOps = SplatBitWidth / NumEltsBits;
    if ((SplatBitWidth % NumEltsBits) == 0) {
      // Collect the elements and ensure that within the repeated splat sequence
      // they either match or are undef.
      SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr);
      for (unsigned Idx = 0; Idx != NumOps; ++Idx) {
        if (Constant *Elt = CV->getAggregateElement(Idx)) {
          if (isa<UndefValue>(Elt))
            continue;
          unsigned SplatIdx = Idx % NumScaleOps;
          if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {
            Sequence[SplatIdx] = Elt;
            continue;
          }
        }
        return std::nullopt;
      }
      // Extract the constant bits forming the splat and insert into the bits
      // data, leave undef as zero.
      APInt SplatBits = APInt::getZero(SplatBitWidth);
      for (unsigned I = 0; I != NumScaleOps; ++I) {
        if (!Sequence[I])
          continue;
        if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) {
          SplatBits.insertBits(*Bits, I * Bits->getBitWidth());
          continue;
        }
        return std::nullopt;
      }
      return SplatBits;
    }
  }

  return std::nullopt;
}

// Split raw bits into a constant vector of elements of a specific bit width.
// NOTE: We don't always bother converting to scalars if the vector length is 1.
static Constant *rebuildConstant(LLVMContext &Ctx, Type *SclTy,
                                 const APInt &Bits, unsigned NumSclBits) {
  unsigned BitWidth = Bits.getBitWidth();

  if (NumSclBits == 8) {
    SmallVector<uint8_t> RawBits;
    for (unsigned I = 0; I != BitWidth; I += 8)
      RawBits.push_back(Bits.extractBits(8, I).getZExtValue());
    return ConstantDataVector::get(Ctx, RawBits);
  }

  if (NumSclBits == 16) {
    SmallVector<uint16_t> RawBits;
    for (unsigned I = 0; I != BitWidth; I += 16)
      RawBits.push_back(Bits.extractBits(16, I).getZExtValue());
    if (SclTy->is16bitFPTy())
      return ConstantDataVector::getFP(SclTy, RawBits);
    return ConstantDataVector::get(Ctx, RawBits);
  }

  if (NumSclBits == 32) {
    SmallVector<uint32_t> RawBits;
    for (unsigned I = 0; I != BitWidth; I += 32)
      RawBits.push_back(Bits.extractBits(32, I).getZExtValue());
    if (SclTy->isFloatTy())
      return ConstantDataVector::getFP(SclTy, RawBits);
    return ConstantDataVector::get(Ctx, RawBits);
  }

  assert(NumSclBits == 64 && "Unhandled vector element width");

  SmallVector<uint64_t> RawBits;
  for (unsigned I = 0; I != BitWidth; I += 64)
    RawBits.push_back(Bits.extractBits(64, I).getZExtValue());
  if (SclTy->isDoubleTy())
    return ConstantDataVector::getFP(SclTy, RawBits);
  return ConstantDataVector::get(Ctx, RawBits);
}

// Attempt to rebuild a normalized splat vector constant of the requested splat
// width, built up of potentially smaller scalar values.
static Constant *rebuildSplatCst(const Constant *C, unsigned /*NumBits*/,
                                 unsigned /*NumElts*/, unsigned SplatBitWidth) {
  // TODO: Truncate to NumBits once ConvertToBroadcastAVX512 support this.
  std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth);
  if (!Splat)
    return nullptr;

  // Determine scalar size to use for the constant splat vector, clamping as we
  // might have found a splat smaller than the original constant data.
  Type *SclTy = C->getType()->getScalarType();
  unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
  NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth);

  // Fallback to i64 / double.
  NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32)
                   ? NumSclBits
                   : 64;

  // Extract per-element bits.
  return rebuildConstant(C->getContext(), SclTy, *Splat, NumSclBits);
}

static Constant *rebuildZeroUpperCst(const Constant *C, unsigned NumBits,
                                     unsigned /*NumElts*/,
                                     unsigned ScalarBitWidth) {
  Type *SclTy = C->getType()->getScalarType();
  unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
  LLVMContext &Ctx = C->getContext();

  if (NumBits > ScalarBitWidth) {
    // Determine if the upper bits are all zero.
    if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
      if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) {
        // If the original constant was made of smaller elements, try to retain
        // those types.
        if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0)
          return rebuildConstant(Ctx, SclTy, *Bits, NumSclBits);

        // Fallback to raw integer bits.
        APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth);
        return ConstantInt::get(Ctx, RawBits);
      }
    }
  }

  return nullptr;
}

static Constant *rebuildExtCst(const Constant *C, bool IsSExt,
                               unsigned NumBits, unsigned NumElts,
                               unsigned SrcEltBitWidth) {
  unsigned DstEltBitWidth = NumBits / NumElts;
  assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 &&
         (DstEltBitWidth % SrcEltBitWidth) == 0 &&
         (DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width");

  if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
    assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts &&
           (Bits->getBitWidth() % DstEltBitWidth) == 0 &&
           "Unexpected constant extension");

    // Ensure every vector element can be represented by the src bitwidth.
    APInt TruncBits = APInt::getZero(NumElts * SrcEltBitWidth);
    for (unsigned I = 0; I != NumElts; ++I) {
      APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth);
      if ((IsSExt && Elt.getSignificantBits() > SrcEltBitWidth) ||
          (!IsSExt && Elt.getActiveBits() > SrcEltBitWidth))
        return nullptr;
      TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth);
    }

    Type *Ty = C->getType();
    return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits,
                           SrcEltBitWidth);
  }

  return nullptr;
}
static Constant *rebuildSExtCst(const Constant *C, unsigned NumBits,
                                unsigned NumElts, unsigned SrcEltBitWidth) {
  return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth);
}
static Constant *rebuildZExtCst(const Constant *C, unsigned NumBits,
                                unsigned NumElts, unsigned SrcEltBitWidth) {
  return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth);
}

bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF,
                                                     MachineBasicBlock &MBB,
                                                     MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();
  bool HasSSE2 = ST->hasSSE2();
  bool HasSSE41 = ST->hasSSE41();
  bool HasAVX2 = ST->hasAVX2();
  bool HasDQI = ST->hasDQI();
  bool HasBWI = ST->hasBWI();
  bool HasVLX = ST->hasVLX();
  bool MultiDomain = ST->hasAVX512() || ST->hasNoDomainDelayMov();
  bool OptSize = MF.getFunction().hasOptSize();

  struct FixupEntry {
    int Op;
    int NumCstElts;
    int MemBitWidth;
    std::function<Constant *(const Constant *, unsigned, unsigned, unsigned)>
        RebuildConstant;
  };

  auto NewOpcPreferable = [&](const FixupEntry &Fixup,
                              unsigned RegBitWidth) -> bool {
    if (SM->hasInstrSchedModel()) {
      unsigned NewOpc = Fixup.Op;
      auto *OldDesc = SM->getSchedClassDesc(TII->get(Opc).getSchedClass());
      auto *NewDesc = SM->getSchedClassDesc(TII->get(NewOpc).getSchedClass());
      unsigned BitsSaved = RegBitWidth - (Fixup.NumCstElts * Fixup.MemBitWidth);

      // Compare tput/lat - avoid any regressions, but allow extra cycle of
      // latency in exchange for each 128-bit (or less) constant pool reduction
      // (this is a very simple cost:benefit estimate - there will probably be
      // better ways to calculate this).
      double OldTput = MCSchedModel::getReciprocalThroughput(*ST, *OldDesc);
      double NewTput = MCSchedModel::getReciprocalThroughput(*ST, *NewDesc);
      if (OldTput != NewTput)
        return NewTput < OldTput;

      int LatTol = (BitsSaved + 127) / 128;
      int OldLat = MCSchedModel::computeInstrLatency(*ST, *OldDesc);
      int NewLat = MCSchedModel::computeInstrLatency(*ST, *NewDesc);
      if (OldLat != NewLat)
        return NewLat < (OldLat + LatTol);
    }

    // We either were unable to get tput/lat or all values were equal.
    // Prefer the new opcode for reduced constant pool size.
    return true;
  };

  auto FixupConstant = [&](ArrayRef<FixupEntry> Fixups, unsigned RegBitWidth,
                           unsigned OperandNo) {
#ifdef EXPENSIVE_CHECKS
    assert(llvm::is_sorted(Fixups,
                           [](const FixupEntry &A, const FixupEntry &B) {
                             return (A.NumCstElts * A.MemBitWidth) <
                                    (B.NumCstElts * B.MemBitWidth);
                           }) &&
           "Constant fixup table not sorted in ascending constant size");
#endif
    assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) &&
           "Unexpected number of operands!");
    if (auto *C = X86::getConstantFromPool(MI, OperandNo)) {
      unsigned CstBitWidth = C->getType()->getPrimitiveSizeInBits();
      RegBitWidth = RegBitWidth ? RegBitWidth : CstBitWidth;
      for (const FixupEntry &Fixup : Fixups) {
        // Always uses the smallest possible constant load with opt/minsize,
        // otherwise use the smallest instruction that doesn't affect
        // performance.
        // TODO: If constant has been hoisted from loop, use smallest constant.
        if (Fixup.Op && (OptSize || NewOpcPreferable(Fixup, RegBitWidth))) {
          // Construct a suitable constant and adjust the MI to use the new
          // constant pool entry.
          if (Constant *NewCst = Fixup.RebuildConstant(
                  C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) {
            unsigned NewCPI =
                CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8));
            MI.setDesc(TII->get(Fixup.Op));
            MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI);
            return true;
          }
        }
      }
    }
    return false;
  };

  // Attempt to detect a suitable vzload/broadcast/vextload from increasing
  // constant bitwidths. Prefer vzload/broadcast/vextload for same bitwidth:
  // - vzload shouldn't ever need a shuffle port to zero the upper elements and
  // the fp/int domain versions are equally available so we don't introduce a
  // domain crossing penalty.
  // - broadcast sometimes need a shuffle port (especially for 8/16-bit
  // variants), AVX1 only has fp domain broadcasts but AVX2+ have good fp/int
  // domain equivalents.
  // - vextload always needs a shuffle port and is only ever int domain.
  switch (Opc) {
  /* FP Loads */
  case X86::MOVAPDrm:
  case X86::MOVAPSrm:
  case X86::MOVUPDrm:
  case X86::MOVUPSrm: {
    // TODO: SSE3 MOVDDUP Handling
    FixupEntry Fixups[] = {
        {X86::MOVSSrm, 1, 32, rebuildZeroUpperCst},
        {HasSSE2 ? X86::MOVSDrm : 0, 1, 64, rebuildZeroUpperCst}};
    return FixupConstant(Fixups, 128, 1);
  }
  case X86::VMOVAPDrm:
  case X86::VMOVAPSrm:
  case X86::VMOVUPDrm:
  case X86::VMOVUPSrm: {
    FixupEntry Fixups[] = {
        {MultiDomain ? X86::VPMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
        {X86::VMOVSSrm, 1, 32, rebuildZeroUpperCst},
        {X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst},
        {MultiDomain ? X86::VPMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
        {MultiDomain ? X86::VPMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
        {X86::VMOVSDrm, 1, 64, rebuildZeroUpperCst},
        {X86::VMOVDDUPrm, 1, 64, rebuildSplatCst},
        {MultiDomain ? X86::VPMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
        {MultiDomain ? X86::VPMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
    return FixupConstant(Fixups, 128, 1);
  }
  case X86::VMOVAPDYrm:
  case X86::VMOVAPSYrm:
  case X86::VMOVUPDYrm:
  case X86::VMOVUPSYrm: {
    FixupEntry Fixups[] = {
        {X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst},
        {HasAVX2 && MultiDomain ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
        {HasAVX2 && MultiDomain ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
        {X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst},
        {HasAVX2 && MultiDomain ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
        {HasAVX2 && MultiDomain ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
        {HasAVX2 && MultiDomain ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
        {HasAVX2 && MultiDomain ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
        {X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst},
        {HasAVX2 && MultiDomain ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
        {HasAVX2 && MultiDomain ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
        {HasAVX2 && MultiDomain ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
        {HasAVX2 && MultiDomain ? X86::VPMOVZXDQYrm : 0, 4, 32,
         rebuildZExtCst}};
    return FixupConstant(Fixups, 256, 1);
  }
  case X86::VMOVAPDZ128rm:
  case X86::VMOVAPSZ128rm:
  case X86::VMOVUPDZ128rm:
  case X86::VMOVUPSZ128rm: {
    FixupEntry Fixups[] = {
        {MultiDomain ? X86::VPMOVSXBQZ128rm : 0, 2, 8, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXBQZ128rm : 0, 2, 8, rebuildZExtCst},
        {X86::VMOVSSZrm, 1, 32, rebuildZeroUpperCst},
        {X86::VBROADCASTSSZ128rm, 1, 32, rebuildSplatCst},
        {MultiDomain ? X86::VPMOVSXBDZ128rm : 0, 4, 8, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXBDZ128rm : 0, 4, 8, rebuildZExtCst},
        {MultiDomain ? X86::VPMOVSXWQZ128rm : 0, 2, 16, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXWQZ128rm : 0, 2, 16, rebuildZExtCst},
        {X86::VMOVSDZrm, 1, 64, rebuildZeroUpperCst},
        {X86::VMOVDDUPZ128rm, 1, 64, rebuildSplatCst},
        {MultiDomain ? X86::VPMOVSXWDZ128rm : 0, 4, 16, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXWDZ128rm : 0, 4, 16, rebuildZExtCst},
        {MultiDomain ? X86::VPMOVSXDQZ128rm : 0, 2, 32, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXDQZ128rm : 0, 2, 32, rebuildZExtCst}};
    return FixupConstant(Fixups, 128, 1);
  }
  case X86::VMOVAPDZ256rm:
  case X86::VMOVAPSZ256rm:
  case X86::VMOVUPDZ256rm:
  case X86::VMOVUPSZ256rm: {
    FixupEntry Fixups[] = {
        {X86::VBROADCASTSSZ256rm, 1, 32, rebuildSplatCst},
        {MultiDomain ? X86::VPMOVSXBQZ256rm : 0, 4, 8, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXBQZ256rm : 0, 4, 8, rebuildZExtCst},
        {X86::VBROADCASTSDZ256rm, 1, 64, rebuildSplatCst},
        {MultiDomain ? X86::VPMOVSXBDZ256rm : 0, 8, 8, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXBDZ256rm : 0, 8, 8, rebuildZExtCst},
        {MultiDomain ? X86::VPMOVSXWQZ256rm : 0, 4, 16, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXWQZ256rm : 0, 4, 16, rebuildZExtCst},
        {X86::VBROADCASTF32X4Z256rm, 1, 128, rebuildSplatCst},
        {MultiDomain ? X86::VPMOVSXWDZ256rm : 0, 8, 16, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXWDZ256rm : 0, 8, 16, rebuildZExtCst},
        {MultiDomain ? X86::VPMOVSXDQZ256rm : 0, 4, 32, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXDQZ256rm : 0, 4, 32, rebuildZExtCst}};
    return FixupConstant(Fixups, 256, 1);
  }
  case X86::VMOVAPDZrm:
  case X86::VMOVAPSZrm:
  case X86::VMOVUPDZrm:
  case X86::VMOVUPSZrm: {
    FixupEntry Fixups[] = {
        {X86::VBROADCASTSSZrm, 1, 32, rebuildSplatCst},
        {X86::VBROADCASTSDZrm, 1, 64, rebuildSplatCst},
        {MultiDomain ? X86::VPMOVSXBQZrm : 0, 8, 8, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXBQZrm : 0, 8, 8, rebuildZExtCst},
        {X86::VBROADCASTF32X4Zrm, 1, 128, rebuildSplatCst},
        {MultiDomain ? X86::VPMOVSXBDZrm : 0, 16, 8, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXBDZrm : 0, 16, 8, rebuildZExtCst},
        {MultiDomain ? X86::VPMOVSXWQZrm : 0, 8, 16, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXWQZrm : 0, 8, 16, rebuildZExtCst},
        {X86::VBROADCASTF64X4Zrm, 1, 256, rebuildSplatCst},
        {MultiDomain ? X86::VPMOVSXWDZrm : 0, 16, 16, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXWDZrm : 0, 16, 16, rebuildZExtCst},
        {MultiDomain ? X86::VPMOVSXDQZrm : 0, 8, 32, rebuildSExtCst},
        {MultiDomain ? X86::VPMOVZXDQZrm : 0, 8, 32, rebuildZExtCst}};
    return FixupConstant(Fixups, 512, 1);
  }
    /* Integer Loads */
  case X86::MOVDQArm:
  case X86::MOVDQUrm: {
    FixupEntry Fixups[] = {
        {HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
        {HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
        {X86::MOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
        {HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
        {HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
        {HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
        {HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
        {X86::MOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
        {HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst},
        {HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst},
        {HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
        {HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
        {HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
        {HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
    return FixupConstant(Fixups, 128, 1);
  }
  case X86::VMOVDQArm:
  case X86::VMOVDQUrm: {
    FixupEntry Fixups[] = {
        {HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst},
        {HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst},
        {X86::VPMOVSXBQrm, 2, 8, rebuildSExtCst},
        {X86::VPMOVZXBQrm, 2, 8, rebuildZExtCst},
        {X86::VMOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
        {HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32,
         rebuildSplatCst},
        {X86::VPMOVSXBDrm, 4, 8, rebuildSExtCst},
        {X86::VPMOVZXBDrm, 4, 8, rebuildZExtCst},
        {X86::VPMOVSXWQrm, 2, 16, rebuildSExtCst},
        {X86::VPMOVZXWQrm, 2, 16, rebuildZExtCst},
        {X86::VMOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
        {HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64,
         rebuildSplatCst},
        {X86::VPMOVSXBWrm, 8, 8, rebuildSExtCst},
        {X86::VPMOVZXBWrm, 8, 8, rebuildZExtCst},
        {X86::VPMOVSXWDrm, 4, 16, rebuildSExtCst},
        {X86::VPMOVZXWDrm, 4, 16, rebuildZExtCst},
        {X86::VPMOVSXDQrm, 2, 32, rebuildSExtCst},
        {X86::VPMOVZXDQrm, 2, 32, rebuildZExtCst}};
    return FixupConstant(Fixups, 128, 1);
  }
  case X86::VMOVDQAYrm:
  case X86::VMOVDQUYrm: {
    FixupEntry Fixups[] = {
        {HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst},
        {HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst},
        {HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32,
         rebuildSplatCst},
        {HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
        {HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
        {HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64,
         rebuildSplatCst},
        {HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
        {HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
        {HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
        {HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
        {HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128,
         rebuildSplatCst},
        {HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst},
        {HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst},
        {HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
        {HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
        {HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
        {HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}};
    return FixupConstant(Fixups, 256, 1);
  }
  case X86::VMOVDQA32Z128rm:
  case X86::VMOVDQA64Z128rm:
  case X86::VMOVDQU32Z128rm:
  case X86::VMOVDQU64Z128rm: {
    FixupEntry Fixups[] = {
        {HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst},
        {HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst},
        {X86::VPMOVSXBQZ128rm, 2, 8, rebuildSExtCst},
        {X86::VPMOVZXBQZ128rm, 2, 8, rebuildZExtCst},
        {X86::VMOVDI2PDIZrm, 1, 32, rebuildZeroUpperCst},
        {X86::VPBROADCASTDZ128rm, 1, 32, rebuildSplatCst},
        {X86::VPMOVSXBDZ128rm, 4, 8, rebuildSExtCst},
        {X86::VPMOVZXBDZ128rm, 4, 8, rebuildZExtCst},
        {X86::VPMOVSXWQZ128rm, 2, 16, rebuildSExtCst},
        {X86::VPMOVZXWQZ128rm, 2, 16, rebuildZExtCst},
        {X86::VMOVQI2PQIZrm, 1, 64, rebuildZeroUpperCst},
        {X86::VPBROADCASTQZ128rm, 1, 64, rebuildSplatCst},
        {HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst},
        {HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst},
        {X86::VPMOVSXWDZ128rm, 4, 16, rebuildSExtCst},
        {X86::VPMOVZXWDZ128rm, 4, 16, rebuildZExtCst},
        {X86::VPMOVSXDQZ128rm, 2, 32, rebuildSExtCst},
        {X86::VPMOVZXDQZ128rm, 2, 32, rebuildZExtCst}};
    return FixupConstant(Fixups, 128, 1);
  }
  case X86::VMOVDQA32Z256rm:
  case X86::VMOVDQA64Z256rm:
  case X86::VMOVDQU32Z256rm:
  case X86::VMOVDQU64Z256rm: {
    FixupEntry Fixups[] = {
        {HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst},
        {HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst},
        {X86::VPBROADCASTDZ256rm, 1, 32, rebuildSplatCst},
        {X86::VPMOVSXBQZ256rm, 4, 8, rebuildSExtCst},
        {X86::VPMOVZXBQZ256rm, 4, 8, rebuildZExtCst},
        {X86::VPBROADCASTQZ256rm, 1, 64, rebuildSplatCst},
        {X86::VPMOVSXBDZ256rm, 8, 8, rebuildSExtCst},
        {X86::VPMOVZXBDZ256rm, 8, 8, rebuildZExtCst},
        {X86::VPMOVSXWQZ256rm, 4, 16, rebuildSExtCst},
        {X86::VPMOVZXWQZ256rm, 4, 16, rebuildZExtCst},
        {X86::VBROADCASTI32X4Z256rm, 1, 128, rebuildSplatCst},
        {HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst},
        {HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst},
        {X86::VPMOVSXWDZ256rm, 8, 16, rebuildSExtCst},
        {X86::VPMOVZXWDZ256rm, 8, 16, rebuildZExtCst},
        {X86::VPMOVSXDQZ256rm, 4, 32, rebuildSExtCst},
        {X86::VPMOVZXDQZ256rm, 4, 32, rebuildZExtCst}};
    return FixupConstant(Fixups, 256, 1);
  }
  case X86::VMOVDQA32Zrm:
  case X86::VMOVDQA64Zrm:
  case X86::VMOVDQU32Zrm:
  case X86::VMOVDQU64Zrm: {
    FixupEntry Fixups[] = {
        {HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst},
        {HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst},
        {X86::VPBROADCASTDZrm, 1, 32, rebuildSplatCst},
        {X86::VPBROADCASTQZrm, 1, 64, rebuildSplatCst},
        {X86::VPMOVSXBQZrm, 8, 8, rebuildSExtCst},
        {X86::VPMOVZXBQZrm, 8, 8, rebuildZExtCst},
        {X86::VBROADCASTI32X4Zrm, 1, 128, rebuildSplatCst},
        {X86::VPMOVSXBDZrm, 16, 8, rebuildSExtCst},
        {X86::VPMOVZXBDZrm, 16, 8, rebuildZExtCst},
        {X86::VPMOVSXWQZrm, 8, 16, rebuildSExtCst},
        {X86::VPMOVZXWQZrm, 8, 16, rebuildZExtCst},
        {X86::VBROADCASTI64X4Zrm, 1, 256, rebuildSplatCst},
        {HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst},
        {HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst},
        {X86::VPMOVSXWDZrm, 16, 16, rebuildSExtCst},
        {X86::VPMOVZXWDZrm, 16, 16, rebuildZExtCst},
        {X86::VPMOVSXDQZrm, 8, 32, rebuildSExtCst},
        {X86::VPMOVZXDQZrm, 8, 32, rebuildZExtCst}};
    return FixupConstant(Fixups, 512, 1);
  }
  }

  auto ConvertToBroadcast = [&](unsigned OpSrc, int BW) {
    if (OpSrc) {
      if (const X86FoldTableEntry *Mem2Bcst =
              llvm::lookupBroadcastFoldTableBySize(OpSrc, BW)) {
        unsigned OpBcst = Mem2Bcst->DstOp;
        unsigned OpNoBcst = Mem2Bcst->Flags & TB_INDEX_MASK;
        FixupEntry Fixups[] = {{(int)OpBcst, 1, BW, rebuildSplatCst}};
        // TODO: Add support for RegBitWidth, but currently rebuildSplatCst
        // doesn't require it (defaults to Constant::getPrimitiveSizeInBits).
        return FixupConstant(Fixups, 0, OpNoBcst);
      }
    }
    return false;
  };

  // Attempt to find a AVX512 mapping from a full width memory-fold instruction
  // to a broadcast-fold instruction variant.
  if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX)
    return ConvertToBroadcast(Opc, 32) || ConvertToBroadcast(Opc, 64);

  // Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic
  // conversion to see if we can convert to a broadcasted (integer) logic op.
  if (HasVLX && !HasDQI) {
    unsigned OpSrc32 = 0, OpSrc64 = 0;
    switch (Opc) {
    case X86::VANDPDrm:
    case X86::VANDPSrm:
    case X86::VPANDrm:
      OpSrc32 = X86 ::VPANDDZ128rm;
      OpSrc64 = X86 ::VPANDQZ128rm;
      break;
    case X86::VANDPDYrm:
    case X86::VANDPSYrm:
    case X86::VPANDYrm:
      OpSrc32 = X86 ::VPANDDZ256rm;
      OpSrc64 = X86 ::VPANDQZ256rm;
      break;
    case X86::VANDNPDrm:
    case X86::VANDNPSrm:
    case X86::VPANDNrm:
      OpSrc32 = X86 ::VPANDNDZ128rm;
      OpSrc64 = X86 ::VPANDNQZ128rm;
      break;
    case X86::VANDNPDYrm:
    case X86::VANDNPSYrm:
    case X86::VPANDNYrm:
      OpSrc32 = X86 ::VPANDNDZ256rm;
      OpSrc64 = X86 ::VPANDNQZ256rm;
      break;
    case X86::VORPDrm:
    case X86::VORPSrm:
    case X86::VPORrm:
      OpSrc32 = X86 ::VPORDZ128rm;
      OpSrc64 = X86 ::VPORQZ128rm;
      break;
    case X86::VORPDYrm:
    case X86::VORPSYrm:
    case X86::VPORYrm:
      OpSrc32 = X86 ::VPORDZ256rm;
      OpSrc64 = X86 ::VPORQZ256rm;
      break;
    case X86::VXORPDrm:
    case X86::VXORPSrm:
    case X86::VPXORrm:
      OpSrc32 = X86 ::VPXORDZ128rm;
      OpSrc64 = X86 ::VPXORQZ128rm;
      break;
    case X86::VXORPDYrm:
    case X86::VXORPSYrm:
    case X86::VPXORYrm:
      OpSrc32 = X86 ::VPXORDZ256rm;
      OpSrc64 = X86 ::VPXORQZ256rm;
      break;
    }
    if (OpSrc32 || OpSrc64)
      return ConvertToBroadcast(OpSrc32, 32) || ConvertToBroadcast(OpSrc64, 64);
  }

  return false;
}

bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);
  bool Changed = false;
  ST = &MF.getSubtarget<X86Subtarget>();
  TII = ST->getInstrInfo();
  SM = &ST->getSchedModel();

  for (MachineBasicBlock &MBB : MF) {
    for (MachineInstr &MI : MBB) {
      if (processInstruction(MF, MBB, MI)) {
        ++NumInstChanges;
        Changed = true;
      }
    }
  }
  LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);
  return Changed;
}