aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/SPIRV/SPIRVUtils.h
blob: f7e8a827c2767f519687687070cb376c487e4dd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
//===--- SPIRVUtils.h ---- SPIR-V Utility Functions -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H
#define LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H

#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/TypedPointerType.h"
#include <string>
#include <unordered_set>

namespace llvm {
class MCInst;
class MachineFunction;
class MachineInstr;
class MachineInstrBuilder;
class MachineIRBuilder;
class MachineRegisterInfo;
class Register;
class StringRef;
class SPIRVInstrInfo;
class SPIRVSubtarget;

// This class implements a partial ordering visitor, which visits a cyclic graph
// in natural topological-like ordering. Topological ordering is not defined for
// directed graphs with cycles, so this assumes cycles are a single node, and
// ignores back-edges. The cycle is visited from the entry in the same
// topological-like ordering.
//
// This means once we visit a node, we know all the possible ancestors have been
// visited.
//
// clang-format off
//
// Given this graph:
//
//     ,-> B -\
// A -+        +---> D ----> E -> F -> G -> H
//     `-> C -/      ^                 |
//                   +-----------------+
//
// Visit order is:
//  A, [B, C in any order], D, E, F, G, H
//
// clang-format on
//
// Changing the function CFG between the construction of the visitor and
// visiting is undefined. The visitor can be reused, but if the CFG is updated,
// the visitor must be rebuilt.
class PartialOrderingVisitor {
  DomTreeBuilder::BBDomTree DT;
  LoopInfo LI;
  std::unordered_set<BasicBlock *> Visited = {};

  struct OrderInfo {
    size_t Rank;
    size_t TraversalIndex;
  };

  using BlockToOrderInfoMap = std::unordered_map<BasicBlock *, OrderInfo>;
  BlockToOrderInfoMap BlockToOrder;
  std::vector<BasicBlock *> Order = {};

  // Get all basic-blocks reachable from Start.
  std::unordered_set<BasicBlock *> getReachableFrom(BasicBlock *Start);

  // Internal function used to determine the partial ordering.
  // Visits |BB| with the current rank being |Rank|.
  size_t visit(BasicBlock *BB, size_t Rank);

public:
  // Build the visitor to operate on the function F.
  PartialOrderingVisitor(Function &F);

  // Returns true is |LHS| comes before |RHS| in the partial ordering.
  // If |LHS| and |RHS| have the same rank, the traversal order determines the
  // order (order is stable).
  bool compare(const BasicBlock *LHS, const BasicBlock *RHS) const;

  // Visit the function starting from the basic block |Start|, and calling |Op|
  // on each visited BB. This traversal ignores back-edges, meaning this won't
  // visit a node to which |Start| is not an ancestor.
  // If Op returns |true|, the visitor continues. If |Op| returns false, the
  // visitor will stop at that rank. This means if 2 nodes share the same rank,
  // and Op returns false when visiting the first, the second will be visited
  // afterwards. But none of their successors will.
  void partialOrderVisit(BasicBlock &Start,
                         std::function<bool(BasicBlock *)> Op);
};

// Add the given string as a series of integer operand, inserting null
// terminators and padding to make sure the operands all have 32-bit
// little-endian words.
void addStringImm(const StringRef &Str, MCInst &Inst);
void addStringImm(const StringRef &Str, MachineInstrBuilder &MIB);
void addStringImm(const StringRef &Str, IRBuilder<> &B,
                  std::vector<Value *> &Args);

// Read the series of integer operands back as a null-terminated string using
// the reverse of the logic in addStringImm.
std::string getStringImm(const MachineInstr &MI, unsigned StartIndex);

// Add the given numerical immediate to MIB.
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB);

// Add an OpName instruction for the given target register.
void buildOpName(Register Target, const StringRef &Name,
                 MachineIRBuilder &MIRBuilder);

// Add an OpDecorate instruction for the given Reg.
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
                     SPIRV::Decoration::Decoration Dec,
                     const std::vector<uint32_t> &DecArgs,
                     StringRef StrImm = "");
void buildOpDecorate(Register Reg, MachineInstr &I, const SPIRVInstrInfo &TII,
                     SPIRV::Decoration::Decoration Dec,
                     const std::vector<uint32_t> &DecArgs,
                     StringRef StrImm = "");

// Add an OpDecorate instruction by "spirv.Decorations" metadata node.
void buildOpSpirvDecorations(Register Reg, MachineIRBuilder &MIRBuilder,
                             const MDNode *GVarMD);

// Convert a SPIR-V storage class to the corresponding LLVM IR address space.
// TODO: maybe the following two functions should be handled in the subtarget
// to allow for different OpenCL vs Vulkan handling.
constexpr unsigned
storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC) {
  switch (SC) {
  case SPIRV::StorageClass::Function:
    return 0;
  case SPIRV::StorageClass::CrossWorkgroup:
    return 1;
  case SPIRV::StorageClass::UniformConstant:
    return 2;
  case SPIRV::StorageClass::Workgroup:
    return 3;
  case SPIRV::StorageClass::Generic:
    return 4;
  case SPIRV::StorageClass::DeviceOnlyINTEL:
    return 5;
  case SPIRV::StorageClass::HostOnlyINTEL:
    return 6;
  case SPIRV::StorageClass::Input:
    return 7;
  default:
    report_fatal_error("Unable to get address space id");
  }
}

// Convert an LLVM IR address space to a SPIR-V storage class.
SPIRV::StorageClass::StorageClass
addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI);

SPIRV::MemorySemantics::MemorySemantics
getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC);

SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord);

SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id);

// Find def instruction for the given ConstReg, walking through
// spv_track_constant and ASSIGN_TYPE instructions. Updates ConstReg by def
// of OpConstant instruction.
MachineInstr *getDefInstrMaybeConstant(Register &ConstReg,
                                       const MachineRegisterInfo *MRI);

// Get constant integer value of the given ConstReg.
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI);

// Check if MI is a SPIR-V specific intrinsic call.
bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID);

// Get type of i-th operand of the metadata node.
Type *getMDOperandAsType(const MDNode *N, unsigned I);

// If OpenCL or SPIR-V builtin function name is recognized, return a demangled
// name, otherwise return an empty string.
std::string getOclOrSpirvBuiltinDemangledName(StringRef Name);

// Check if a string contains a builtin prefix.
bool hasBuiltinTypePrefix(StringRef Name);

// Check if given LLVM type is a special opaque builtin type.
bool isSpecialOpaqueType(const Type *Ty);

// Check if the function is an SPIR-V entry point
bool isEntryPoint(const Function &F);

// Parse basic scalar type name, substring TypeName, and return LLVM type.
Type *parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx);

// Sort blocks in a partial ordering, so each block is after all its
// dominators. This should match both the SPIR-V and the MIR requirements.
// Returns true if the function was changed.
bool sortBlocks(Function &F);

// True if this is an instance of TypedPointerType.
inline bool isTypedPointerTy(const Type *T) {
  return T && T->getTypeID() == Type::TypedPointerTyID;
}

// True if this is an instance of PointerType.
inline bool isUntypedPointerTy(const Type *T) {
  return T && T->getTypeID() == Type::PointerTyID;
}

// True if this is an instance of PointerType or TypedPointerType.
inline bool isPointerTy(const Type *T) {
  return isUntypedPointerTy(T) || isTypedPointerTy(T);
}

// Get the address space of this pointer or pointer vector type for instances of
// PointerType or TypedPointerType.
inline unsigned getPointerAddressSpace(const Type *T) {
  Type *SubT = T->getScalarType();
  return SubT->getTypeID() == Type::PointerTyID
             ? cast<PointerType>(SubT)->getAddressSpace()
             : cast<TypedPointerType>(SubT)->getAddressSpace();
}

// Return true if the Argument is decorated with a pointee type
inline bool hasPointeeTypeAttr(Argument *Arg) {
  return Arg->hasByValAttr() || Arg->hasByRefAttr() || Arg->hasStructRetAttr();
}

// Return the pointee type of the argument or nullptr otherwise
inline Type *getPointeeTypeByAttr(Argument *Arg) {
  if (Arg->hasByValAttr())
    return Arg->getParamByValType();
  if (Arg->hasStructRetAttr())
    return Arg->getParamStructRetType();
  if (Arg->hasByRefAttr())
    return Arg->getParamByRefType();
  return nullptr;
}

inline Type *reconstructFunctionType(Function *F) {
  SmallVector<Type *> ArgTys;
  for (unsigned i = 0; i < F->arg_size(); ++i)
    ArgTys.push_back(F->getArg(i)->getType());
  return FunctionType::get(F->getReturnType(), ArgTys, F->isVarArg());
}

#define TYPED_PTR_TARGET_EXT_NAME "spirv.$TypedPointerType"
inline Type *getTypedPointerWrapper(Type *ElemTy, unsigned AS) {
  return TargetExtType::get(ElemTy->getContext(), TYPED_PTR_TARGET_EXT_NAME,
                            {ElemTy}, {AS});
}

inline bool isTypedPointerWrapper(TargetExtType *ExtTy) {
  return ExtTy->getName() == TYPED_PTR_TARGET_EXT_NAME &&
         ExtTy->getNumIntParameters() == 1 &&
         ExtTy->getNumTypeParameters() == 1;
}

inline Type *applyWrappers(Type *Ty) {
  if (auto *ExtTy = dyn_cast<TargetExtType>(Ty)) {
    if (isTypedPointerWrapper(ExtTy))
      return TypedPointerType::get(applyWrappers(ExtTy->getTypeParameter(0)),
                                   ExtTy->getIntParameter(0));
  } else if (auto *VecTy = dyn_cast<VectorType>(Ty)) {
    Type *ElemTy = VecTy->getElementType();
    Type *NewElemTy = ElemTy->isTargetExtTy() ? applyWrappers(ElemTy) : ElemTy;
    if (NewElemTy != ElemTy)
      return VectorType::get(NewElemTy, VecTy->getElementCount());
  }
  return Ty;
}

inline Type *getPointeeType(Type *Ty) {
  if (auto PType = dyn_cast<TypedPointerType>(Ty))
    return PType->getElementType();
  else if (auto *ExtTy = dyn_cast<TargetExtType>(Ty))
    if (isTypedPointerWrapper(ExtTy))
      return applyWrappers(ExtTy->getTypeParameter(0));
  return nullptr;
}

inline bool isUntypedEquivalentToTyExt(Type *Ty1, Type *Ty2) {
  if (!isUntypedPointerTy(Ty1) || !Ty2)
    return false;
  if (auto *ExtTy = dyn_cast<TargetExtType>(Ty2))
    if (isTypedPointerWrapper(ExtTy) &&
        ExtTy->getTypeParameter(0) ==
            IntegerType::getInt8Ty(Ty1->getContext()) &&
        ExtTy->getIntParameter(0) == cast<PointerType>(Ty1)->getAddressSpace())
      return true;
  return false;
}

inline bool isEquivalentTypes(Type *Ty1, Type *Ty2) {
  return isUntypedEquivalentToTyExt(Ty1, Ty2) ||
         isUntypedEquivalentToTyExt(Ty2, Ty1);
}

inline Type *toTypedPointer(Type *Ty) {
  if (Type *NewTy = applyWrappers(Ty); NewTy != Ty)
    return NewTy;
  return isUntypedPointerTy(Ty)
             ? TypedPointerType::get(IntegerType::getInt8Ty(Ty->getContext()),
                                     getPointerAddressSpace(Ty))
             : Ty;
}

inline Type *toTypedFunPointer(FunctionType *FTy) {
  Type *OrigRetTy = FTy->getReturnType();
  Type *RetTy = toTypedPointer(OrigRetTy);
  bool IsUntypedPtr = false;
  for (Type *PTy : FTy->params()) {
    if (isUntypedPointerTy(PTy)) {
      IsUntypedPtr = true;
      break;
    }
  }
  if (!IsUntypedPtr && RetTy == OrigRetTy)
    return FTy;
  SmallVector<Type *> ParamTys;
  for (Type *PTy : FTy->params())
    ParamTys.push_back(toTypedPointer(PTy));
  return FunctionType::get(RetTy, ParamTys, FTy->isVarArg());
}

inline const Type *unifyPtrType(const Type *Ty) {
  if (auto FTy = dyn_cast<FunctionType>(Ty))
    return toTypedFunPointer(const_cast<FunctionType *>(FTy));
  return toTypedPointer(const_cast<Type *>(Ty));
}

MachineInstr *getVRegDef(MachineRegisterInfo &MRI, Register Reg);

} // namespace llvm
#endif // LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H