aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/SPIRV/SPIRVUtils.cpp
blob: 768efb96a53e9cdea10b43b5893ed3e2dce64d7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
//===--- SPIRVUtils.cpp ---- SPIR-V Utility Functions -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions.
//
//===----------------------------------------------------------------------===//

#include "SPIRVUtils.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVInstrInfo.h"
#include "SPIRVSubtarget.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include <queue>
#include <vector>

namespace llvm {

// The following functions are used to add these string literals as a series of
// 32-bit integer operands with the correct format, and unpack them if necessary
// when making string comparisons in compiler passes.
// SPIR-V requires null-terminated UTF-8 strings padded to 32-bit alignment.
static uint32_t convertCharsToWord(const StringRef &Str, unsigned i) {
  uint32_t Word = 0u; // Build up this 32-bit word from 4 8-bit chars.
  for (unsigned WordIndex = 0; WordIndex < 4; ++WordIndex) {
    unsigned StrIndex = i + WordIndex;
    uint8_t CharToAdd = 0;       // Initilize char as padding/null.
    if (StrIndex < Str.size()) { // If it's within the string, get a real char.
      CharToAdd = Str[StrIndex];
    }
    Word |= (CharToAdd << (WordIndex * 8));
  }
  return Word;
}

// Get length including padding and null terminator.
static size_t getPaddedLen(const StringRef &Str) {
  return (Str.size() + 4) & ~3;
}

void addStringImm(const StringRef &Str, MCInst &Inst) {
  const size_t PaddedLen = getPaddedLen(Str);
  for (unsigned i = 0; i < PaddedLen; i += 4) {
    // Add an operand for the 32-bits of chars or padding.
    Inst.addOperand(MCOperand::createImm(convertCharsToWord(Str, i)));
  }
}

void addStringImm(const StringRef &Str, MachineInstrBuilder &MIB) {
  const size_t PaddedLen = getPaddedLen(Str);
  for (unsigned i = 0; i < PaddedLen; i += 4) {
    // Add an operand for the 32-bits of chars or padding.
    MIB.addImm(convertCharsToWord(Str, i));
  }
}

void addStringImm(const StringRef &Str, IRBuilder<> &B,
                  std::vector<Value *> &Args) {
  const size_t PaddedLen = getPaddedLen(Str);
  for (unsigned i = 0; i < PaddedLen; i += 4) {
    // Add a vector element for the 32-bits of chars or padding.
    Args.push_back(B.getInt32(convertCharsToWord(Str, i)));
  }
}

std::string getStringImm(const MachineInstr &MI, unsigned StartIndex) {
  return getSPIRVStringOperand(MI, StartIndex);
}

std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI) {
  MachineInstr *Def = getVRegDef(MRI, Reg);
  assert(Def && Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE &&
         "Expected G_GLOBAL_VALUE");
  const GlobalValue *GV = Def->getOperand(1).getGlobal();
  Value *V = GV->getOperand(0);
  const ConstantDataArray *CDA = cast<ConstantDataArray>(V);
  return CDA->getAsCString().str();
}

void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB) {
  const auto Bitwidth = Imm.getBitWidth();
  if (Bitwidth == 1)
    return; // Already handled
  else if (Bitwidth <= 32) {
    MIB.addImm(Imm.getZExtValue());
    // Asm Printer needs this info to print floating-type correctly
    if (Bitwidth == 16)
      MIB.getInstr()->setAsmPrinterFlag(SPIRV::ASM_PRINTER_WIDTH16);
    return;
  } else if (Bitwidth <= 64) {
    uint64_t FullImm = Imm.getZExtValue();
    uint32_t LowBits = FullImm & 0xffffffff;
    uint32_t HighBits = (FullImm >> 32) & 0xffffffff;
    MIB.addImm(LowBits).addImm(HighBits);
    return;
  }
  report_fatal_error("Unsupported constant bitwidth");
}

void buildOpName(Register Target, const StringRef &Name,
                 MachineIRBuilder &MIRBuilder) {
  if (!Name.empty()) {
    auto MIB = MIRBuilder.buildInstr(SPIRV::OpName).addUse(Target);
    addStringImm(Name, MIB);
  }
}

void buildOpName(Register Target, const StringRef &Name, MachineInstr &I,
                 const SPIRVInstrInfo &TII) {
  if (!Name.empty()) {
    auto MIB =
        BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpName))
            .addUse(Target);
    addStringImm(Name, MIB);
  }
}

static void finishBuildOpDecorate(MachineInstrBuilder &MIB,
                                  const std::vector<uint32_t> &DecArgs,
                                  StringRef StrImm) {
  if (!StrImm.empty())
    addStringImm(StrImm, MIB);
  for (const auto &DecArg : DecArgs)
    MIB.addImm(DecArg);
}

void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
                     SPIRV::Decoration::Decoration Dec,
                     const std::vector<uint32_t> &DecArgs, StringRef StrImm) {
  auto MIB = MIRBuilder.buildInstr(SPIRV::OpDecorate)
                 .addUse(Reg)
                 .addImm(static_cast<uint32_t>(Dec));
  finishBuildOpDecorate(MIB, DecArgs, StrImm);
}

void buildOpDecorate(Register Reg, MachineInstr &I, const SPIRVInstrInfo &TII,
                     SPIRV::Decoration::Decoration Dec,
                     const std::vector<uint32_t> &DecArgs, StringRef StrImm) {
  MachineBasicBlock &MBB = *I.getParent();
  auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpDecorate))
                 .addUse(Reg)
                 .addImm(static_cast<uint32_t>(Dec));
  finishBuildOpDecorate(MIB, DecArgs, StrImm);
}

void buildOpMemberDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
                           SPIRV::Decoration::Decoration Dec, uint32_t Member,
                           const std::vector<uint32_t> &DecArgs,
                           StringRef StrImm) {
  auto MIB = MIRBuilder.buildInstr(SPIRV::OpMemberDecorate)
                 .addUse(Reg)
                 .addImm(Member)
                 .addImm(static_cast<uint32_t>(Dec));
  finishBuildOpDecorate(MIB, DecArgs, StrImm);
}

void buildOpMemberDecorate(Register Reg, MachineInstr &I,
                           const SPIRVInstrInfo &TII,
                           SPIRV::Decoration::Decoration Dec, uint32_t Member,
                           const std::vector<uint32_t> &DecArgs,
                           StringRef StrImm) {
  MachineBasicBlock &MBB = *I.getParent();
  auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemberDecorate))
                 .addUse(Reg)
                 .addImm(Member)
                 .addImm(static_cast<uint32_t>(Dec));
  finishBuildOpDecorate(MIB, DecArgs, StrImm);
}

void buildOpSpirvDecorations(Register Reg, MachineIRBuilder &MIRBuilder,
                             const MDNode *GVarMD) {
  for (unsigned I = 0, E = GVarMD->getNumOperands(); I != E; ++I) {
    auto *OpMD = dyn_cast<MDNode>(GVarMD->getOperand(I));
    if (!OpMD)
      report_fatal_error("Invalid decoration");
    if (OpMD->getNumOperands() == 0)
      report_fatal_error("Expect operand(s) of the decoration");
    ConstantInt *DecorationId =
        mdconst::dyn_extract<ConstantInt>(OpMD->getOperand(0));
    if (!DecorationId)
      report_fatal_error("Expect SPIR-V <Decoration> operand to be the first "
                         "element of the decoration");
    auto MIB = MIRBuilder.buildInstr(SPIRV::OpDecorate)
                   .addUse(Reg)
                   .addImm(static_cast<uint32_t>(DecorationId->getZExtValue()));
    for (unsigned OpI = 1, OpE = OpMD->getNumOperands(); OpI != OpE; ++OpI) {
      if (ConstantInt *OpV =
              mdconst::dyn_extract<ConstantInt>(OpMD->getOperand(OpI)))
        MIB.addImm(static_cast<uint32_t>(OpV->getZExtValue()));
      else if (MDString *OpV = dyn_cast<MDString>(OpMD->getOperand(OpI)))
        addStringImm(OpV->getString(), MIB);
      else
        report_fatal_error("Unexpected operand of the decoration");
    }
  }
}

MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I) {
  MachineFunction *MF = I.getParent()->getParent();
  MachineBasicBlock *MBB = &MF->front();
  MachineBasicBlock::iterator It = MBB->SkipPHIsAndLabels(MBB->begin()),
                              E = MBB->end();
  bool IsHeader = false;
  unsigned Opcode;
  for (; It != E && It != I; ++It) {
    Opcode = It->getOpcode();
    if (Opcode == SPIRV::OpFunction || Opcode == SPIRV::OpFunctionParameter) {
      IsHeader = true;
    } else if (IsHeader &&
               !(Opcode == SPIRV::ASSIGN_TYPE || Opcode == SPIRV::OpLabel)) {
      ++It;
      break;
    }
  }
  return It;
}

MachineBasicBlock::iterator getInsertPtValidEnd(MachineBasicBlock *MBB) {
  MachineBasicBlock::iterator I = MBB->end();
  if (I == MBB->begin())
    return I;
  --I;
  while (I->isTerminator() || I->isDebugValue()) {
    if (I == MBB->begin())
      break;
    --I;
  }
  return I;
}

SPIRV::StorageClass::StorageClass
addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI) {
  switch (AddrSpace) {
  case 0:
    return SPIRV::StorageClass::Function;
  case 1:
    return SPIRV::StorageClass::CrossWorkgroup;
  case 2:
    return SPIRV::StorageClass::UniformConstant;
  case 3:
    return SPIRV::StorageClass::Workgroup;
  case 4:
    return SPIRV::StorageClass::Generic;
  case 5:
    return STI.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)
               ? SPIRV::StorageClass::DeviceOnlyINTEL
               : SPIRV::StorageClass::CrossWorkgroup;
  case 6:
    return STI.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)
               ? SPIRV::StorageClass::HostOnlyINTEL
               : SPIRV::StorageClass::CrossWorkgroup;
  case 7:
    return SPIRV::StorageClass::Input;
  case 8:
    return SPIRV::StorageClass::Output;
  case 9:
    return SPIRV::StorageClass::CodeSectionINTEL;
  case 10:
    return SPIRV::StorageClass::Private;
  case 11:
    return SPIRV::StorageClass::StorageBuffer;
  case 12:
    return SPIRV::StorageClass::Uniform;
  default:
    report_fatal_error("Unknown address space");
  }
}

SPIRV::MemorySemantics::MemorySemantics
getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC) {
  switch (SC) {
  case SPIRV::StorageClass::StorageBuffer:
  case SPIRV::StorageClass::Uniform:
    return SPIRV::MemorySemantics::UniformMemory;
  case SPIRV::StorageClass::Workgroup:
    return SPIRV::MemorySemantics::WorkgroupMemory;
  case SPIRV::StorageClass::CrossWorkgroup:
    return SPIRV::MemorySemantics::CrossWorkgroupMemory;
  case SPIRV::StorageClass::AtomicCounter:
    return SPIRV::MemorySemantics::AtomicCounterMemory;
  case SPIRV::StorageClass::Image:
    return SPIRV::MemorySemantics::ImageMemory;
  default:
    return SPIRV::MemorySemantics::None;
  }
}

SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord) {
  switch (Ord) {
  case AtomicOrdering::Acquire:
    return SPIRV::MemorySemantics::Acquire;
  case AtomicOrdering::Release:
    return SPIRV::MemorySemantics::Release;
  case AtomicOrdering::AcquireRelease:
    return SPIRV::MemorySemantics::AcquireRelease;
  case AtomicOrdering::SequentiallyConsistent:
    return SPIRV::MemorySemantics::SequentiallyConsistent;
  case AtomicOrdering::Unordered:
  case AtomicOrdering::Monotonic:
  case AtomicOrdering::NotAtomic:
    return SPIRV::MemorySemantics::None;
  }
  llvm_unreachable(nullptr);
}

SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id) {
  // Named by
  // https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_scope_id.
  // We don't need aliases for Invocation and CrossDevice, as we already have
  // them covered by "singlethread" and "" strings respectively (see
  // implementation of LLVMContext::LLVMContext()).
  static const llvm::SyncScope::ID SubGroup =
      Ctx.getOrInsertSyncScopeID("subgroup");
  static const llvm::SyncScope::ID WorkGroup =
      Ctx.getOrInsertSyncScopeID("workgroup");
  static const llvm::SyncScope::ID Device =
      Ctx.getOrInsertSyncScopeID("device");

  if (Id == llvm::SyncScope::SingleThread)
    return SPIRV::Scope::Invocation;
  else if (Id == llvm::SyncScope::System)
    return SPIRV::Scope::CrossDevice;
  else if (Id == SubGroup)
    return SPIRV::Scope::Subgroup;
  else if (Id == WorkGroup)
    return SPIRV::Scope::Workgroup;
  else if (Id == Device)
    return SPIRV::Scope::Device;
  return SPIRV::Scope::CrossDevice;
}

MachineInstr *getDefInstrMaybeConstant(Register &ConstReg,
                                       const MachineRegisterInfo *MRI) {
  MachineInstr *MI = MRI->getVRegDef(ConstReg);
  MachineInstr *ConstInstr =
      MI->getOpcode() == SPIRV::G_TRUNC || MI->getOpcode() == SPIRV::G_ZEXT
          ? MRI->getVRegDef(MI->getOperand(1).getReg())
          : MI;
  if (auto *GI = dyn_cast<GIntrinsic>(ConstInstr)) {
    if (GI->is(Intrinsic::spv_track_constant)) {
      ConstReg = ConstInstr->getOperand(2).getReg();
      return MRI->getVRegDef(ConstReg);
    }
  } else if (ConstInstr->getOpcode() == SPIRV::ASSIGN_TYPE) {
    ConstReg = ConstInstr->getOperand(1).getReg();
    return MRI->getVRegDef(ConstReg);
  } else if (ConstInstr->getOpcode() == TargetOpcode::G_CONSTANT ||
             ConstInstr->getOpcode() == TargetOpcode::G_FCONSTANT) {
    ConstReg = ConstInstr->getOperand(0).getReg();
    return ConstInstr;
  }
  return MRI->getVRegDef(ConstReg);
}

uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI) {
  const MachineInstr *MI = getDefInstrMaybeConstant(ConstReg, MRI);
  assert(MI && MI->getOpcode() == TargetOpcode::G_CONSTANT);
  return MI->getOperand(1).getCImm()->getValue().getZExtValue();
}

bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID) {
  if (const auto *GI = dyn_cast<GIntrinsic>(&MI))
    return GI->is(IntrinsicID);
  return false;
}

Type *getMDOperandAsType(const MDNode *N, unsigned I) {
  Type *ElementTy = cast<ValueAsMetadata>(N->getOperand(I))->getType();
  return toTypedPointer(ElementTy);
}

// The set of names is borrowed from the SPIR-V translator.
// TODO: may be implemented in SPIRVBuiltins.td.
static bool isPipeOrAddressSpaceCastBI(const StringRef MangledName) {
  return MangledName == "write_pipe_2" || MangledName == "read_pipe_2" ||
         MangledName == "write_pipe_2_bl" || MangledName == "read_pipe_2_bl" ||
         MangledName == "write_pipe_4" || MangledName == "read_pipe_4" ||
         MangledName == "reserve_write_pipe" ||
         MangledName == "reserve_read_pipe" ||
         MangledName == "commit_write_pipe" ||
         MangledName == "commit_read_pipe" ||
         MangledName == "work_group_reserve_write_pipe" ||
         MangledName == "work_group_reserve_read_pipe" ||
         MangledName == "work_group_commit_write_pipe" ||
         MangledName == "work_group_commit_read_pipe" ||
         MangledName == "get_pipe_num_packets_ro" ||
         MangledName == "get_pipe_max_packets_ro" ||
         MangledName == "get_pipe_num_packets_wo" ||
         MangledName == "get_pipe_max_packets_wo" ||
         MangledName == "sub_group_reserve_write_pipe" ||
         MangledName == "sub_group_reserve_read_pipe" ||
         MangledName == "sub_group_commit_write_pipe" ||
         MangledName == "sub_group_commit_read_pipe" ||
         MangledName == "to_global" || MangledName == "to_local" ||
         MangledName == "to_private";
}

static bool isEnqueueKernelBI(const StringRef MangledName) {
  return MangledName == "__enqueue_kernel_basic" ||
         MangledName == "__enqueue_kernel_basic_events" ||
         MangledName == "__enqueue_kernel_varargs" ||
         MangledName == "__enqueue_kernel_events_varargs";
}

static bool isKernelQueryBI(const StringRef MangledName) {
  return MangledName == "__get_kernel_work_group_size_impl" ||
         MangledName == "__get_kernel_sub_group_count_for_ndrange_impl" ||
         MangledName == "__get_kernel_max_sub_group_size_for_ndrange_impl" ||
         MangledName == "__get_kernel_preferred_work_group_size_multiple_impl";
}

static bool isNonMangledOCLBuiltin(StringRef Name) {
  if (!Name.starts_with("__"))
    return false;

  return isEnqueueKernelBI(Name) || isKernelQueryBI(Name) ||
         isPipeOrAddressSpaceCastBI(Name.drop_front(2)) ||
         Name == "__translate_sampler_initializer";
}

std::string getOclOrSpirvBuiltinDemangledName(StringRef Name) {
  bool IsNonMangledOCL = isNonMangledOCLBuiltin(Name);
  bool IsNonMangledSPIRV = Name.starts_with("__spirv_");
  bool IsNonMangledHLSL = Name.starts_with("__hlsl_");
  bool IsMangled = Name.starts_with("_Z");

  // Otherwise use simple demangling to return the function name.
  if (IsNonMangledOCL || IsNonMangledSPIRV || IsNonMangledHLSL || !IsMangled)
    return Name.str();

  // Try to use the itanium demangler.
  if (char *DemangledName = itaniumDemangle(Name.data())) {
    std::string Result = DemangledName;
    free(DemangledName);
    return Result;
  }

  // Autocheck C++, maybe need to do explicit check of the source language.
  // OpenCL C++ built-ins are declared in cl namespace.
  // TODO: consider using 'St' abbriviation for cl namespace mangling.
  // Similar to ::std:: in C++.
  size_t Start, Len = 0;
  size_t DemangledNameLenStart = 2;
  if (Name.starts_with("_ZN")) {
    // Skip CV and ref qualifiers.
    size_t NameSpaceStart = Name.find_first_not_of("rVKRO", 3);
    // All built-ins are in the ::cl:: namespace.
    if (Name.substr(NameSpaceStart, 11) != "2cl7__spirv")
      return std::string();
    DemangledNameLenStart = NameSpaceStart + 11;
  }
  Start = Name.find_first_not_of("0123456789", DemangledNameLenStart);
  Name.substr(DemangledNameLenStart, Start - DemangledNameLenStart)
      .getAsInteger(10, Len);
  return Name.substr(Start, Len).str();
}

bool hasBuiltinTypePrefix(StringRef Name) {
  if (Name.starts_with("opencl.") || Name.starts_with("ocl_") ||
      Name.starts_with("spirv."))
    return true;
  return false;
}

bool isSpecialOpaqueType(const Type *Ty) {
  if (const TargetExtType *ExtTy = dyn_cast<TargetExtType>(Ty))
    return isTypedPointerWrapper(ExtTy)
               ? false
               : hasBuiltinTypePrefix(ExtTy->getName());

  return false;
}

bool isEntryPoint(const Function &F) {
  // OpenCL handling: any function with the SPIR_KERNEL
  // calling convention will be a potential entry point.
  if (F.getCallingConv() == CallingConv::SPIR_KERNEL)
    return true;

  // HLSL handling: special attribute are emitted from the
  // front-end.
  if (F.getFnAttribute("hlsl.shader").isValid())
    return true;

  return false;
}

Type *parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx) {
  TypeName.consume_front("atomic_");
  if (TypeName.consume_front("void"))
    return Type::getVoidTy(Ctx);
  else if (TypeName.consume_front("bool") || TypeName.consume_front("_Bool"))
    return Type::getIntNTy(Ctx, 1);
  else if (TypeName.consume_front("char") ||
           TypeName.consume_front("signed char") ||
           TypeName.consume_front("unsigned char") ||
           TypeName.consume_front("uchar"))
    return Type::getInt8Ty(Ctx);
  else if (TypeName.consume_front("short") ||
           TypeName.consume_front("signed short") ||
           TypeName.consume_front("unsigned short") ||
           TypeName.consume_front("ushort"))
    return Type::getInt16Ty(Ctx);
  else if (TypeName.consume_front("int") ||
           TypeName.consume_front("signed int") ||
           TypeName.consume_front("unsigned int") ||
           TypeName.consume_front("uint"))
    return Type::getInt32Ty(Ctx);
  else if (TypeName.consume_front("long") ||
           TypeName.consume_front("signed long") ||
           TypeName.consume_front("unsigned long") ||
           TypeName.consume_front("ulong"))
    return Type::getInt64Ty(Ctx);
  else if (TypeName.consume_front("half") ||
           TypeName.consume_front("_Float16") ||
           TypeName.consume_front("__fp16"))
    return Type::getHalfTy(Ctx);
  else if (TypeName.consume_front("float"))
    return Type::getFloatTy(Ctx);
  else if (TypeName.consume_front("double"))
    return Type::getDoubleTy(Ctx);

  // Unable to recognize SPIRV type name
  return nullptr;
}

std::unordered_set<BasicBlock *>
PartialOrderingVisitor::getReachableFrom(BasicBlock *Start) {
  std::queue<BasicBlock *> ToVisit;
  ToVisit.push(Start);

  std::unordered_set<BasicBlock *> Output;
  while (ToVisit.size() != 0) {
    BasicBlock *BB = ToVisit.front();
    ToVisit.pop();

    if (Output.count(BB) != 0)
      continue;
    Output.insert(BB);

    for (BasicBlock *Successor : successors(BB)) {
      if (DT.dominates(Successor, BB))
        continue;
      ToVisit.push(Successor);
    }
  }

  return Output;
}

bool PartialOrderingVisitor::CanBeVisited(BasicBlock *BB) const {
  for (BasicBlock *P : predecessors(BB)) {
    // Ignore back-edges.
    if (DT.dominates(BB, P))
      continue;

    // One of the predecessor hasn't been visited. Not ready yet.
    if (BlockToOrder.count(P) == 0)
      return false;

    // If the block is a loop exit, the loop must be finished before
    // we can continue.
    Loop *L = LI.getLoopFor(P);
    if (L == nullptr || L->contains(BB))
      continue;

    // SPIR-V requires a single back-edge. And the backend first
    // step transforms loops into the simplified format. If we have
    // more than 1 back-edge, something is wrong.
    assert(L->getNumBackEdges() <= 1);

    // If the loop has no latch, loop's rank won't matter, so we can
    // proceed.
    BasicBlock *Latch = L->getLoopLatch();
    assert(Latch);
    if (Latch == nullptr)
      continue;

    // The latch is not ready yet, let's wait.
    if (BlockToOrder.count(Latch) == 0)
      return false;
  }

  return true;
}

size_t PartialOrderingVisitor::GetNodeRank(BasicBlock *BB) const {
  auto It = BlockToOrder.find(BB);
  if (It != BlockToOrder.end())
    return It->second.Rank;

  size_t result = 0;
  for (BasicBlock *P : predecessors(BB)) {
    // Ignore back-edges.
    if (DT.dominates(BB, P))
      continue;

    auto Iterator = BlockToOrder.end();
    Loop *L = LI.getLoopFor(P);
    BasicBlock *Latch = L ? L->getLoopLatch() : nullptr;

    // If the predecessor is either outside a loop, or part of
    // the same loop, simply take its rank + 1.
    if (L == nullptr || L->contains(BB) || Latch == nullptr) {
      Iterator = BlockToOrder.find(P);
    } else {
      // Otherwise, take the loop's rank (highest rank in the loop) as base.
      // Since loops have a single latch, highest rank is easy to find.
      // If the loop has no latch, then it doesn't matter.
      Iterator = BlockToOrder.find(Latch);
    }

    assert(Iterator != BlockToOrder.end());
    result = std::max(result, Iterator->second.Rank + 1);
  }

  return result;
}

size_t PartialOrderingVisitor::visit(BasicBlock *BB, size_t Unused) {
  ToVisit.push(BB);
  Queued.insert(BB);

  size_t QueueIndex = 0;
  while (ToVisit.size() != 0) {
    BasicBlock *BB = ToVisit.front();
    ToVisit.pop();

    if (!CanBeVisited(BB)) {
      ToVisit.push(BB);
      if (QueueIndex >= ToVisit.size())
        llvm::report_fatal_error(
            "No valid candidate in the queue. Is the graph reducible?");
      QueueIndex++;
      continue;
    }

    QueueIndex = 0;
    size_t Rank = GetNodeRank(BB);
    OrderInfo Info = {Rank, BlockToOrder.size()};
    BlockToOrder.emplace(BB, Info);

    for (BasicBlock *S : successors(BB)) {
      if (Queued.count(S) != 0)
        continue;
      ToVisit.push(S);
      Queued.insert(S);
    }
  }

  return 0;
}

PartialOrderingVisitor::PartialOrderingVisitor(Function &F) {
  DT.recalculate(F);
  LI = LoopInfo(DT);

  visit(&*F.begin(), 0);

  Order.reserve(F.size());
  for (auto &[BB, Info] : BlockToOrder)
    Order.emplace_back(BB);

  std::sort(Order.begin(), Order.end(), [&](const auto &LHS, const auto &RHS) {
    return compare(LHS, RHS);
  });
}

bool PartialOrderingVisitor::compare(const BasicBlock *LHS,
                                     const BasicBlock *RHS) const {
  const OrderInfo &InfoLHS = BlockToOrder.at(const_cast<BasicBlock *>(LHS));
  const OrderInfo &InfoRHS = BlockToOrder.at(const_cast<BasicBlock *>(RHS));
  if (InfoLHS.Rank != InfoRHS.Rank)
    return InfoLHS.Rank < InfoRHS.Rank;
  return InfoLHS.TraversalIndex < InfoRHS.TraversalIndex;
}

void PartialOrderingVisitor::partialOrderVisit(
    BasicBlock &Start, std::function<bool(BasicBlock *)> Op) {
  std::unordered_set<BasicBlock *> Reachable = getReachableFrom(&Start);
  assert(BlockToOrder.count(&Start) != 0);

  // Skipping blocks with a rank inferior to |Start|'s rank.
  auto It = Order.begin();
  while (It != Order.end() && *It != &Start)
    ++It;

  // This is unexpected. Worst case |Start| is the last block,
  // so It should point to the last block, not past-end.
  assert(It != Order.end());

  // By default, there is no rank limit. Setting it to the maximum value.
  std::optional<size_t> EndRank = std::nullopt;
  for (; It != Order.end(); ++It) {
    if (EndRank.has_value() && BlockToOrder[*It].Rank > *EndRank)
      break;

    if (Reachable.count(*It) == 0) {
      continue;
    }

    if (!Op(*It)) {
      EndRank = BlockToOrder[*It].Rank;
    }
  }
}

bool sortBlocks(Function &F) {
  if (F.size() == 0)
    return false;

  bool Modified = false;
  std::vector<BasicBlock *> Order;
  Order.reserve(F.size());

  ReversePostOrderTraversal<Function *> RPOT(&F);
  llvm::append_range(Order, RPOT);

  assert(&*F.begin() == Order[0]);
  BasicBlock *LastBlock = &*F.begin();
  for (BasicBlock *BB : Order) {
    if (BB != LastBlock && &*LastBlock->getNextNode() != BB) {
      Modified = true;
      BB->moveAfter(LastBlock);
    }
    LastBlock = BB;
  }

  return Modified;
}

MachineInstr *getVRegDef(MachineRegisterInfo &MRI, Register Reg) {
  MachineInstr *MaybeDef = MRI.getVRegDef(Reg);
  if (MaybeDef && MaybeDef->getOpcode() == SPIRV::ASSIGN_TYPE)
    MaybeDef = MRI.getVRegDef(MaybeDef->getOperand(1).getReg());
  return MaybeDef;
}

bool getVacantFunctionName(Module &M, std::string &Name) {
  // It's a bit of paranoia, but still we don't want to have even a chance that
  // the loop will work for too long.
  constexpr unsigned MaxIters = 1024;
  for (unsigned I = 0; I < MaxIters; ++I) {
    std::string OrdName = Name + Twine(I).str();
    if (!M.getFunction(OrdName)) {
      Name = OrdName;
      return true;
    }
  }
  return false;
}

// Assign SPIR-V type to the register. If the register has no valid assigned
// class, set register LLT type and class according to the SPIR-V type.
void setRegClassType(Register Reg, SPIRVType *SpvType, SPIRVGlobalRegistry *GR,
                     MachineRegisterInfo *MRI, const MachineFunction &MF,
                     bool Force) {
  GR->assignSPIRVTypeToVReg(SpvType, Reg, MF);
  if (!MRI->getRegClassOrNull(Reg) || Force) {
    MRI->setRegClass(Reg, GR->getRegClass(SpvType));
    MRI->setType(Reg, GR->getRegType(SpvType));
  }
}

// Create a SPIR-V type, assign SPIR-V type to the register. If the register has
// no valid assigned class, set register LLT type and class according to the
// SPIR-V type.
void setRegClassType(Register Reg, const Type *Ty, SPIRVGlobalRegistry *GR,
                     MachineIRBuilder &MIRBuilder,
                     SPIRV::AccessQualifier::AccessQualifier AccessQual,
                     bool EmitIR, bool Force) {
  setRegClassType(Reg,
                  GR->getOrCreateSPIRVType(Ty, MIRBuilder, AccessQual, EmitIR),
                  GR, MIRBuilder.getMRI(), MIRBuilder.getMF(), Force);
}

// Create a virtual register and assign SPIR-V type to the register. Set
// register LLT type and class according to the SPIR-V type.
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR,
                               MachineRegisterInfo *MRI,
                               const MachineFunction &MF) {
  Register Reg = MRI->createVirtualRegister(GR->getRegClass(SpvType));
  MRI->setType(Reg, GR->getRegType(SpvType));
  GR->assignSPIRVTypeToVReg(SpvType, Reg, MF);
  return Reg;
}

// Create a virtual register and assign SPIR-V type to the register. Set
// register LLT type and class according to the SPIR-V type.
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR,
                               MachineIRBuilder &MIRBuilder) {
  return createVirtualRegister(SpvType, GR, MIRBuilder.getMRI(),
                               MIRBuilder.getMF());
}

// Create a SPIR-V type, virtual register and assign SPIR-V type to the
// register. Set register LLT type and class according to the SPIR-V type.
Register createVirtualRegister(
    const Type *Ty, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIRBuilder,
    SPIRV::AccessQualifier::AccessQualifier AccessQual, bool EmitIR) {
  return createVirtualRegister(
      GR->getOrCreateSPIRVType(Ty, MIRBuilder, AccessQual, EmitIR), GR,
      MIRBuilder);
}

CallInst *buildIntrWithMD(Intrinsic::ID IntrID, ArrayRef<Type *> Types,
                          Value *Arg, Value *Arg2, ArrayRef<Constant *> Imms,
                          IRBuilder<> &B) {
  SmallVector<Value *, 4> Args;
  Args.push_back(Arg2);
  Args.push_back(buildMD(Arg));
  llvm::append_range(Args, Imms);
  return B.CreateIntrinsic(IntrID, {Types}, Args);
}

// Return true if there is an opaque pointer type nested in the argument.
bool isNestedPointer(const Type *Ty) {
  if (Ty->isPtrOrPtrVectorTy())
    return true;
  if (const FunctionType *RefTy = dyn_cast<FunctionType>(Ty)) {
    if (isNestedPointer(RefTy->getReturnType()))
      return true;
    for (const Type *ArgTy : RefTy->params())
      if (isNestedPointer(ArgTy))
        return true;
    return false;
  }
  if (const ArrayType *RefTy = dyn_cast<ArrayType>(Ty))
    return isNestedPointer(RefTy->getElementType());
  return false;
}

bool isSpvIntrinsic(const Value *Arg) {
  if (const auto *II = dyn_cast<IntrinsicInst>(Arg))
    if (Function *F = II->getCalledFunction())
      if (F->getName().starts_with("llvm.spv."))
        return true;
  return false;
}

// Function to create continued instructions for SPV_INTEL_long_composites
// extension
SmallVector<MachineInstr *, 4>
createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode,
                            unsigned MinWC, unsigned ContinuedOpcode,
                            ArrayRef<Register> Args, Register ReturnRegister,
                            Register TypeID) {

  SmallVector<MachineInstr *, 4> Instructions;
  constexpr unsigned MaxWordCount = UINT16_MAX;
  const size_t NumElements = Args.size();
  size_t MaxNumElements = MaxWordCount - MinWC;
  size_t SPIRVStructNumElements = NumElements;

  if (NumElements > MaxNumElements) {
    // Do adjustments for continued instructions which always had only one
    // minumum word count.
    SPIRVStructNumElements = MaxNumElements;
    MaxNumElements = MaxWordCount - 1;
  }

  auto MIB =
      MIRBuilder.buildInstr(Opcode).addDef(ReturnRegister).addUse(TypeID);

  for (size_t I = 0; I < SPIRVStructNumElements; ++I)
    MIB.addUse(Args[I]);

  Instructions.push_back(MIB.getInstr());

  for (size_t I = SPIRVStructNumElements; I < NumElements;
       I += MaxNumElements) {
    auto MIB = MIRBuilder.buildInstr(ContinuedOpcode);
    for (size_t J = I; J < std::min(I + MaxNumElements, NumElements); ++J)
      MIB.addUse(Args[J]);
    Instructions.push_back(MIB.getInstr());
  }
  return Instructions;
}

SmallVector<unsigned, 1> getSpirvLoopControlOperandsFromLoopMetadata(Loop *L) {
  unsigned LC = SPIRV::LoopControl::None;
  // Currently used only to store PartialCount value. Later when other
  // LoopControls are added - this map should be sorted before making
  // them loop_merge operands to satisfy 3.23. Loop Control requirements.
  std::vector<std::pair<unsigned, unsigned>> MaskToValueMap;
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) {
    LC |= SPIRV::LoopControl::DontUnroll;
  } else {
    if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable") ||
        getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) {
      LC |= SPIRV::LoopControl::Unroll;
    }
    std::optional<int> Count =
        getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
    if (Count && Count != 1) {
      LC |= SPIRV::LoopControl::PartialCount;
      MaskToValueMap.emplace_back(
          std::make_pair(SPIRV::LoopControl::PartialCount, *Count));
    }
  }
  SmallVector<unsigned, 1> Result = {LC};
  for (auto &[Mask, Val] : MaskToValueMap)
    Result.push_back(Val);
  return Result;
}

const std::set<unsigned> &getTypeFoldingSupportedOpcodes() {
  // clang-format off
  static const std::set<unsigned> TypeFoldingSupportingOpcs = {
    TargetOpcode::G_ADD,
    TargetOpcode::G_FADD,
    TargetOpcode::G_STRICT_FADD,
    TargetOpcode::G_SUB,
    TargetOpcode::G_FSUB,
    TargetOpcode::G_STRICT_FSUB,
    TargetOpcode::G_MUL,
    TargetOpcode::G_FMUL,
    TargetOpcode::G_STRICT_FMUL,
    TargetOpcode::G_SDIV,
    TargetOpcode::G_UDIV,
    TargetOpcode::G_FDIV,
    TargetOpcode::G_STRICT_FDIV,
    TargetOpcode::G_SREM,
    TargetOpcode::G_UREM,
    TargetOpcode::G_FREM,
    TargetOpcode::G_STRICT_FREM,
    TargetOpcode::G_FNEG,
    TargetOpcode::G_CONSTANT,
    TargetOpcode::G_FCONSTANT,
    TargetOpcode::G_AND,
    TargetOpcode::G_OR,
    TargetOpcode::G_XOR,
    TargetOpcode::G_SHL,
    TargetOpcode::G_ASHR,
    TargetOpcode::G_LSHR,
    TargetOpcode::G_SELECT,
    TargetOpcode::G_EXTRACT_VECTOR_ELT,
  };
  // clang-format on
  return TypeFoldingSupportingOpcs;
}

bool isTypeFoldingSupported(unsigned Opcode) {
  return getTypeFoldingSupportedOpcodes().count(Opcode) > 0;
}

// Traversing [g]MIR accounting for pseudo-instructions.
MachineInstr *passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI) {
  return (Def->getOpcode() == SPIRV::ASSIGN_TYPE ||
          Def->getOpcode() == TargetOpcode::COPY)
             ? MRI->getVRegDef(Def->getOperand(1).getReg())
             : Def;
}

MachineInstr *getDef(const MachineOperand &MO, const MachineRegisterInfo *MRI) {
  if (MachineInstr *Def = MRI->getVRegDef(MO.getReg()))
    return passCopy(Def, MRI);
  return nullptr;
}

MachineInstr *getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI) {
  if (MachineInstr *Def = getDef(MO, MRI)) {
    if (Def->getOpcode() == TargetOpcode::G_CONSTANT ||
        Def->getOpcode() == SPIRV::OpConstantI)
      return Def;
  }
  return nullptr;
}

int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI) {
  if (MachineInstr *Def = getImm(MO, MRI)) {
    if (Def->getOpcode() == SPIRV::OpConstantI)
      return Def->getOperand(2).getImm();
    if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
      return Def->getOperand(1).getCImm()->getZExtValue();
  }
  llvm_unreachable("Unexpected integer constant pattern");
}

unsigned getArrayComponentCount(const MachineRegisterInfo *MRI,
                                const MachineInstr *ResType) {
  return foldImm(ResType->getOperand(2), MRI);
}

} // namespace llvm