aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/SPIRV/SPIRVModuleAnalysis.h
blob: 024728c347e8a852ff83671eba504b6d2eeb2ff9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
//===- SPIRVModuleAnalysis.h - analysis of global instrs & regs -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis collects instructions that should be output at the module level
// and performs the global register numbering.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H
#define LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H

#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"

namespace llvm {
class SPIRVSubtarget;
class MachineFunction;
class MachineModuleInfo;

namespace SPIRV {
// The enum contains logical module sections for the instruction collection.
enum ModuleSectionType {
  //  MB_Capabilities, MB_Extensions, MB_ExtInstImports, MB_MemoryModel,
  MB_EntryPoints, // All OpEntryPoint instructions (if any).
  //  MB_ExecutionModes, MB_DebugSourceAndStrings,
  MB_DebugNames,           // All OpName and OpMemberName intrs.
  MB_DebugStrings,         // All OpString intrs.
  MB_DebugModuleProcessed, // All OpModuleProcessed instructions.
  MB_Annotations,          // OpDecorate, OpMemberDecorate etc.
  MB_TypeConstVars,        // OpTypeXXX, OpConstantXXX, and global OpVariables.
  MB_NonSemanticGlobalDI,  // OpExtInst with e.g. DebugSource, DebugTypeBasic.
  MB_ExtFuncDecls,         // OpFunction etc. to declare for external funcs.
  NUM_MODULE_SECTIONS      // Total number of sections requiring basic blocks.
};

struct Requirements {
  const bool IsSatisfiable;
  const std::optional<Capability::Capability> Cap;
  const ExtensionList Exts;
  const VersionTuple MinVer; // 0 if no min version is required.
  const VersionTuple MaxVer; // 0 if no max version is required.

  Requirements(bool IsSatisfiable = false,
               std::optional<Capability::Capability> Cap = {},
               ExtensionList Exts = {}, VersionTuple MinVer = VersionTuple(),
               VersionTuple MaxVer = VersionTuple())
      : IsSatisfiable(IsSatisfiable), Cap(Cap), Exts(Exts), MinVer(MinVer),
        MaxVer(MaxVer) {}
  Requirements(Capability::Capability Cap) : Requirements(true, {Cap}) {}
};

struct RequirementHandler {
private:
  CapabilityList MinimalCaps;

  // AllCaps and AvailableCaps are related but different. AllCaps is a subset of
  // AvailableCaps. AvailableCaps is the complete set of capabilities that are
  // available to the current target. AllCaps is the set of capabilities that
  // are required by the current module.
  SmallSet<Capability::Capability, 8> AllCaps;
  DenseSet<unsigned> AvailableCaps;

  SmallSet<Extension::Extension, 4> AllExtensions;
  VersionTuple MinVersion; // 0 if no min version is defined.
  VersionTuple MaxVersion; // 0 if no max version is defined.
  // Add capabilities to AllCaps, recursing through their implicitly declared
  // capabilities too.
  void recursiveAddCapabilities(const CapabilityList &ToPrune);

  void initAvailableCapabilitiesForOpenCL(const SPIRVSubtarget &ST);
  void initAvailableCapabilitiesForVulkan(const SPIRVSubtarget &ST);

public:
  RequirementHandler() {}
  void clear() {
    MinimalCaps.clear();
    AllCaps.clear();
    AvailableCaps.clear();
    AllExtensions.clear();
    MinVersion = VersionTuple();
    MaxVersion = VersionTuple();
  }
  const CapabilityList &getMinimalCapabilities() const { return MinimalCaps; }
  const SmallSet<Extension::Extension, 4> &getExtensions() const {
    return AllExtensions;
  }
  // Add a list of capabilities, ensuring AllCaps captures all the implicitly
  // declared capabilities, and MinimalCaps has the minimal set of required
  // capabilities (so all implicitly declared ones are removed).
  void addCapabilities(const CapabilityList &ToAdd);
  void addCapability(Capability::Capability ToAdd) { addCapabilities({ToAdd}); }
  void addExtensions(const ExtensionList &ToAdd) {
    AllExtensions.insert(ToAdd.begin(), ToAdd.end());
  }
  void addExtension(Extension::Extension ToAdd) { AllExtensions.insert(ToAdd); }
  // Add the given requirements to the lists. If constraints conflict, or these
  // requirements cannot be satisfied, then abort the compilation.
  void addRequirements(const Requirements &Req);
  // Get requirement and add it to the list.
  void getAndAddRequirements(SPIRV::OperandCategory::OperandCategory Category,
                             uint32_t i, const SPIRVSubtarget &ST);
  // Check if all the requirements can be satisfied for the given subtarget, and
  // if not abort compilation.
  void checkSatisfiable(const SPIRVSubtarget &ST) const;
  void initAvailableCapabilities(const SPIRVSubtarget &ST);
  // Add the given capabilities to available and all their implicitly defined
  // capabilities too.
  void addAvailableCaps(const CapabilityList &ToAdd);
  bool isCapabilityAvailable(Capability::Capability Cap) const {
    return AvailableCaps.contains(Cap);
  }

  // Remove capability ToRemove, but only if IfPresent is present.
  void removeCapabilityIf(const Capability::Capability ToRemove,
                          const Capability::Capability IfPresent);
};

using InstrList = SmallVector<MachineInstr *>;
// Maps a local register to the corresponding global alias.
using LocalToGlobalRegTable = std::map<Register, Register>;
using RegisterAliasMapTy =
    std::map<const MachineFunction *, LocalToGlobalRegTable>;

// The struct contains results of the module analysis and methods
// to access them.
struct ModuleAnalysisInfo {
  RequirementHandler Reqs;
  MemoryModel::MemoryModel Mem;
  AddressingModel::AddressingModel Addr;
  SourceLanguage::SourceLanguage SrcLang;
  unsigned SrcLangVersion;
  StringSet<> SrcExt;
  // Maps ExtInstSet to corresponding ID register.
  DenseMap<unsigned, Register> ExtInstSetMap;
  // Contains the list of all global OpVariables in the module.
  SmallVector<MachineInstr *, 4> GlobalVarList;
  // Maps functions to corresponding function ID registers.
  DenseMap<const Function *, Register> FuncMap;
  // The set contains machine instructions which are necessary
  // for correct MIR but will not be emitted in function bodies.
  DenseSet<MachineInstr *> InstrsToDelete;
  // The table contains global aliases of local registers for each machine
  // function. The aliases are used to substitute local registers during
  // code emission.
  RegisterAliasMapTy RegisterAliasTable;
  // The counter holds the maximum ID we have in the module.
  unsigned MaxID;
  // The array contains lists of MIs for each module section.
  InstrList MS[NUM_MODULE_SECTIONS];
  // The table maps MBB number to SPIR-V unique ID register.
  DenseMap<int, Register> BBNumToRegMap;

  Register getFuncReg(const Function *F) {
    assert(F && "Function is null");
    auto FuncPtrRegPair = FuncMap.find(F);
    return FuncPtrRegPair == FuncMap.end() ? Register(0)
                                           : FuncPtrRegPair->second;
  }
  Register getExtInstSetReg(unsigned SetNum) { return ExtInstSetMap[SetNum]; }
  InstrList &getMSInstrs(unsigned MSType) { return MS[MSType]; }
  void setSkipEmission(MachineInstr *MI) { InstrsToDelete.insert(MI); }
  bool getSkipEmission(const MachineInstr *MI) {
    return InstrsToDelete.contains(MI);
  }
  void setRegisterAlias(const MachineFunction *MF, Register Reg,
                        Register AliasReg) {
    RegisterAliasTable[MF][Reg] = AliasReg;
  }
  Register getRegisterAlias(const MachineFunction *MF, Register Reg) {
    auto RI = RegisterAliasTable[MF].find(Reg);
    if (RI == RegisterAliasTable[MF].end()) {
      return Register(0);
    }
    return RegisterAliasTable[MF][Reg];
  }
  bool hasRegisterAlias(const MachineFunction *MF, Register Reg) {
    return RegisterAliasTable.find(MF) != RegisterAliasTable.end() &&
           RegisterAliasTable[MF].find(Reg) != RegisterAliasTable[MF].end();
  }
  unsigned getNextID() { return MaxID++; }
  bool hasMBBRegister(const MachineBasicBlock &MBB) {
    return BBNumToRegMap.contains(MBB.getNumber());
  }
  // Convert MBB's number to corresponding ID register.
  Register getOrCreateMBBRegister(const MachineBasicBlock &MBB) {
    auto f = BBNumToRegMap.find(MBB.getNumber());
    if (f != BBNumToRegMap.end())
      return f->second;
    Register NewReg = Register::index2VirtReg(getNextID());
    BBNumToRegMap[MBB.getNumber()] = NewReg;
    return NewReg;
  }
};
} // namespace SPIRV

struct SPIRVModuleAnalysis : public ModulePass {
  static char ID;

public:
  SPIRVModuleAnalysis() : ModulePass(ID) {}

  bool runOnModule(Module &M) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  static struct SPIRV::ModuleAnalysisInfo MAI;

private:
  void setBaseInfo(const Module &M);
  void collectGlobalEntities(
      const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
      SPIRV::ModuleSectionType MSType,
      std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
      bool UsePreOrder);
  void processDefInstrs(const Module &M);
  void collectFuncNames(MachineInstr &MI, const Function *F);
  void processOtherInstrs(const Module &M);
  void numberRegistersGlobally(const Module &M);
  void collectFuncPtrs();
  void collectFuncPtrs(MachineInstr *MI);

  const SPIRVSubtarget *ST;
  SPIRVGlobalRegistry *GR;
  const SPIRVInstrInfo *TII;
  MachineModuleInfo *MMI;
};
} // namespace llvm
#endif // LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H