1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
|
//===-- RISCVInstrInfoZfh.td - RISC-V 'Zfh' instructions ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard 'Zfh'
// half-precision floating-point extension, version 1.0.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDT_RISCVFMV_H_X
: SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, XLenVT>]>;
def SDT_RISCVFMV_X_EXTH
: SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisFP<1>]>;
// FPR<->GPR transfer operations when the FPR is smaller than XLEN, needed as
// XLEN is the only legal integer width.
//
// FMV_H_X matches the semantics of the FMV.H.X.
// FMV_X_ANYEXTH is similar to FMV.X.H but has an any-extended result.
// FMV_X_SIGNEXTH is similar to FMV.X.H and has a sign-extended result.
//
// This is a more convenient semantic for producing dagcombines that remove
// unnecessary GPR->FPR->GPR moves.
def riscv_fmv_h_x
: RVSDNode<"FMV_H_X", SDT_RISCVFMV_H_X>;
def riscv_fmv_x_anyexth
: RVSDNode<"FMV_X_ANYEXTH", SDT_RISCVFMV_X_EXTH>;
def riscv_fmv_x_signexth
: RVSDNode<"FMV_X_SIGNEXTH", SDT_RISCVFMV_X_EXTH>;
//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//
// Zhinxmin and Zhinx
def GPRAsFPR16 : AsmOperandClass {
let Name = "GPRAsFPR16";
let ParserMethod = "parseGPRAsFPR";
let RenderMethod = "addRegOperands";
}
def FPR16INX : RegisterOperand<GPRF16> {
let ParserMatchClass = GPRAsFPR16;
}
def ZfhExt : ExtInfo<"", "", [HasStdExtZfh],
f16, FPR16, FPR32, ?, FPR16>;
def ZfhminExt : ExtInfo<"", "", [HasStdExtZfhmin],
f16, FPR16, FPR32, ?, FPR16>;
def ZfhDExt : ExtInfo<"", "", [HasStdExtZfh, HasStdExtD],
?, ?, FPR32, FPR64, FPR16>;
def ZfhminDExt : ExtInfo<"", "", [HasStdExtZfhmin, HasStdExtD],
?, ?, FPR32, FPR64, FPR16>;
def ZhinxExt : ExtInfo<"_INX", "Zfinx",
[HasStdExtZhinx],
f16, FPR16INX, FPR32INX, ?, FPR16INX>;
def ZhinxminExt : ExtInfo<"_INX", "Zfinx",
[HasStdExtZhinxmin],
f16, FPR16INX, FPR32INX, ?, FPR16INX>;
def ZhinxZdinxExt : ExtInfo<"_INX", "Zfinx",
[HasStdExtZhinx, HasStdExtZdinx, IsRV64],
?, ?, FPR32INX, FPR64INX, FPR16INX>;
def ZhinxminZdinxExt : ExtInfo<"_INX", "Zfinx",
[HasStdExtZhinxmin, HasStdExtZdinx, IsRV64],
?, ?, FPR32INX, FPR64INX, FPR16INX>;
def ZhinxZdinx32Ext : ExtInfo<"_IN32X", "ZdinxGPRPairRV32",
[HasStdExtZhinx, HasStdExtZdinx, IsRV32],
?, ?, FPR32INX, FPR64IN32X, FPR16INX>;
def ZhinxminZdinx32Ext : ExtInfo<"_IN32X", "ZdinxGPRPairRV32",
[HasStdExtZhinxmin, HasStdExtZdinx, IsRV32],
?, ?, FPR32INX, FPR64IN32X, FPR16INX>;
defvar ZfhExts = [ZfhExt, ZhinxExt];
defvar ZfhminExts = [ZfhminExt, ZhinxminExt];
defvar ZfhDExts = [ZfhDExt, ZhinxZdinxExt, ZhinxZdinx32Ext];
defvar ZfhminDExts = [ZfhminDExt, ZhinxminZdinxExt, ZhinxminZdinx32Ext];
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasHalfFPLoadStoreMove] in {
def FLH : FPLoad_r<0b001, "flh", FPR16, WriteFLD16>;
// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
def FSH : FPStore_r<0b001, "fsh", FPR16, WriteFST16>;
} // Predicates = [HasHalfFPLoadStoreMove]
let Predicates = [HasStdExtZhinxmin], isCodeGenOnly = 1 in {
def LH_INX : Load_ri<0b001, "lh", GPRF16>, Sched<[WriteLDH, ReadMemBase]>;
def SH_INX : Store_rri<0b001, "sh", GPRF16>,
Sched<[WriteSTH, ReadStoreData, ReadMemBase]>;
// ADDI with GPRF16 register class to use for copy. This should not be used as
// general ADDI, so the immediate should always be zero.
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveReg = 1,
hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def PseudoMV_FPR16INX : Pseudo<(outs GPRF16:$rd), (ins GPRF16:$rs), []>,
Sched<[WriteIALU, ReadIALU]>;
}
foreach Ext = ZfhExts in {
let SchedRW = [WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16Addend] in {
defm FMADD_H : FPFMA_rrr_frm_m<OPC_MADD, 0b10, "fmadd.h", Ext>;
defm FMSUB_H : FPFMA_rrr_frm_m<OPC_MSUB, 0b10, "fmsub.h", Ext>;
defm FNMSUB_H : FPFMA_rrr_frm_m<OPC_NMSUB, 0b10, "fnmsub.h", Ext>;
defm FNMADD_H : FPFMA_rrr_frm_m<OPC_NMADD, 0b10, "fnmadd.h", Ext>;
}
let SchedRW = [WriteFAdd16, ReadFAdd16, ReadFAdd16] in {
defm FADD_H : FPALU_rr_frm_m<0b0000010, "fadd.h", Ext, Commutable=1>;
defm FSUB_H : FPALU_rr_frm_m<0b0000110, "fsub.h", Ext>;
}
let SchedRW = [WriteFMul16, ReadFMul16, ReadFMul16] in
defm FMUL_H : FPALU_rr_frm_m<0b0001010, "fmul.h", Ext, Commutable=1>;
let SchedRW = [WriteFDiv16, ReadFDiv16, ReadFDiv16] in
defm FDIV_H : FPALU_rr_frm_m<0b0001110, "fdiv.h", Ext>;
defm FSQRT_H : FPUnaryOp_r_frm_m<0b0101110, 0b00000, Ext, Ext.PrimaryTy,
Ext.PrimaryTy, "fsqrt.h">,
Sched<[WriteFSqrt16, ReadFSqrt16]>;
let SchedRW = [WriteFSGNJ16, ReadFSGNJ16, ReadFSGNJ16],
mayRaiseFPException = 0 in {
defm FSGNJ_H : FPALU_rr_m<0b0010010, 0b000, "fsgnj.h", Ext>;
defm FSGNJN_H : FPALU_rr_m<0b0010010, 0b001, "fsgnjn.h", Ext>;
defm FSGNJX_H : FPALU_rr_m<0b0010010, 0b010, "fsgnjx.h", Ext>;
}
let SchedRW = [WriteFMinMax16, ReadFMinMax16, ReadFMinMax16] in {
defm FMIN_H : FPALU_rr_m<0b0010110, 0b000, "fmin.h", Ext, Commutable=1>;
defm FMAX_H : FPALU_rr_m<0b0010110, 0b001, "fmax.h", Ext, Commutable=1>;
}
let IsSignExtendingOpW = 1 in
defm FCVT_W_H : FPUnaryOp_r_frm_m<0b1100010, 0b00000, Ext, GPR, Ext.PrimaryTy,
"fcvt.w.h">,
Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>;
let IsSignExtendingOpW = 1 in
defm FCVT_WU_H : FPUnaryOp_r_frm_m<0b1100010, 0b00001, Ext, GPR, Ext.PrimaryTy,
"fcvt.wu.h">,
Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>;
defm FCVT_H_W : FPUnaryOp_r_frm_m<0b1101010, 0b00000, Ext, Ext.PrimaryTy, GPR,
"fcvt.h.w">,
Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>;
defm FCVT_H_WU : FPUnaryOp_r_frm_m<0b1101010, 0b00001, Ext, Ext.PrimaryTy, GPR,
"fcvt.h.wu">,
Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>;
} // foreach Ext = ZfhExts
foreach Ext = ZfhminExts in {
defm FCVT_H_S : FPUnaryOp_r_frm_m<0b0100010, 0b00000, Ext, Ext.PrimaryTy,
Ext.F32Ty, "fcvt.h.s">,
Sched<[WriteFCvtF32ToF16, ReadFCvtF32ToF16]>;
defm FCVT_S_H : FPUnaryOp_r_frmlegacy_m<0b0100000, 0b00010,Ext, Ext.F32Ty,
Ext.PrimaryTy, "fcvt.s.h">,
Sched<[WriteFCvtF16ToF32, ReadFCvtF16ToF32]>;
} // foreach Ext = ZfhminExts
let Predicates = [HasHalfFPLoadStoreMove] in {
let mayRaiseFPException = 0, IsSignExtendingOpW = 1 in
def FMV_X_H : FPUnaryOp_r<0b1110010, 0b00000, 0b000, GPR, FPR16, "fmv.x.h">,
Sched<[WriteFMovF16ToI16, ReadFMovF16ToI16]>;
let mayRaiseFPException = 0 in
def FMV_H_X : FPUnaryOp_r<0b1111010, 0b00000, 0b000, FPR16, GPR, "fmv.h.x">,
Sched<[WriteFMovI16ToF16, ReadFMovI16ToF16]>;
} // Predicates = [HasHalfFPLoadStoreMove]
foreach Ext = ZfhExts in {
let SchedRW = [WriteFCmp16, ReadFCmp16, ReadFCmp16] in {
defm FEQ_H : FPCmp_rr_m<0b1010010, 0b010, "feq.h", Ext, Commutable=1>;
defm FLT_H : FPCmp_rr_m<0b1010010, 0b001, "flt.h", Ext>;
defm FLE_H : FPCmp_rr_m<0b1010010, 0b000, "fle.h", Ext>;
}
let mayRaiseFPException = 0 in
defm FCLASS_H : FPUnaryOp_r_m<0b1110010, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy,
"fclass.h">,
Sched<[WriteFClass16, ReadFClass16]>;
defm FCVT_L_H : FPUnaryOp_r_frm_m<0b1100010, 0b00010, Ext, GPR, Ext.PrimaryTy,
"fcvt.l.h", [IsRV64]>,
Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>;
defm FCVT_LU_H : FPUnaryOp_r_frm_m<0b1100010, 0b00011, Ext, GPR, Ext.PrimaryTy,
"fcvt.lu.h", [IsRV64]>,
Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>;
defm FCVT_H_L : FPUnaryOp_r_frm_m<0b1101010, 0b00010, Ext, Ext.PrimaryTy, GPR,
"fcvt.h.l", [IsRV64]>,
Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>;
defm FCVT_H_LU : FPUnaryOp_r_frm_m<0b1101010, 0b00011, Ext, Ext.PrimaryTy, GPR,
"fcvt.h.lu", [IsRV64]>,
Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>;
} // foreach Ext = ZfhExts
foreach Ext = ZfhminDExts in {
defm FCVT_H_D : FPUnaryOp_r_frm_m<0b0100010, 0b00001, Ext, Ext.F16Ty,
Ext.F64Ty, "fcvt.h.d">,
Sched<[WriteFCvtF64ToF16, ReadFCvtF64ToF16]>;
defm FCVT_D_H : FPUnaryOp_r_frmlegacy_m<0b0100001, 0b00010, Ext, Ext.F64Ty,
Ext.F16Ty, "fcvt.d.h">,
Sched<[WriteFCvtF16ToF64, ReadFCvtF16ToF64]>;
} // foreach Ext = ZfhminDExts
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//
let Predicates = [HasHalfFPLoadStoreMove] in {
def : InstAlias<"flh $rd, (${rs1})", (FLH FPR16:$rd, GPR:$rs1, 0), 0>;
def : InstAlias<"fsh $rs2, (${rs1})", (FSH FPR16:$rs2, GPR:$rs1, 0), 0>;
} // Predicates = [HasStdExtZfhmin]
let Predicates = [HasStdExtZfh] in {
def : InstAlias<"fmv.h $rd, $rs", (FSGNJ_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
// fgt.h/fge.h are recognised by the GNU assembler but the canonical
// flt.h/fle.h forms will always be printed. Therefore, set a zero weight.
def : InstAlias<"fgt.h $rd, $rs, $rt",
(FLT_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
def : InstAlias<"fge.h $rd, $rs, $rt",
(FLE_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_H : PseudoQuietFCMP<FPR16>;
def PseudoQuietFLT_H : PseudoQuietFCMP<FPR16>;
}
} // Predicates = [HasStdExtZfh]
let Predicates = [HasHalfFPLoadStoreMove] in {
def PseudoFLH : PseudoFloatLoad<"flh", FPR16>;
def PseudoFSH : PseudoStore<"fsh", FPR16>;
} // Predicates = [HasStdExtZfhmin]
let Predicates = [HasStdExtZhinx] in {
def : InstAlias<"fmv.h $rd, $rs", (FSGNJ_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
def : InstAlias<"fgt.h $rd, $rs, $rt",
(FLT_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>;
def : InstAlias<"fge.h $rd, $rs, $rt",
(FLE_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_H_INX : PseudoQuietFCMP<FPR16INX>;
def PseudoQuietFLT_H_INX : PseudoQuietFCMP<FPR16INX>;
}
} // Predicates = [HasStdExtZhinxmin]
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//
/// Float conversion operations
// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.
/// Float arithmetic operations
foreach Ext = ZfhExts in {
defm : PatFprFprDynFrm_m<any_fadd, FADD_H, Ext>;
defm : PatFprFprDynFrm_m<any_fsub, FSUB_H, Ext>;
defm : PatFprFprDynFrm_m<any_fmul, FMUL_H, Ext>;
defm : PatFprFprDynFrm_m<any_fdiv, FDIV_H, Ext>;
}
let Predicates = [HasStdExtZfh] in {
def : Pat<(f16 (any_fsqrt FPR16:$rs1)), (FSQRT_H FPR16:$rs1, FRM_DYN)>;
def : Pat<(f16 (fneg FPR16:$rs1)), (FSGNJN_H $rs1, $rs1)>;
def : Pat<(f16 (fabs FPR16:$rs1)), (FSGNJX_H $rs1, $rs1)>;
def : Pat<(riscv_fclass (f16 FPR16:$rs1)), (FCLASS_H $rs1)>;
def : PatFprFpr<fcopysign, FSGNJ_H, FPR16, f16>;
def : PatFprFpr<riscv_fsgnjx, FSGNJX_H, FPR16, f16>;
def : Pat<(f16 (fcopysign FPR16:$rs1, (f16 (fneg FPR16:$rs2)))),
(FSGNJN_H FPR16:$rs1, FPR16:$rs2)>;
def : Pat<(f16 (fcopysign FPR16:$rs1, FPR32:$rs2)),
(FSGNJ_H $rs1, (f16 (FCVT_H_S $rs2, FRM_DYN)))>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(f16 (any_fma FPR16:$rs1, FPR16:$rs2, FPR16:$rs3)),
(FMADD_H $rs1, $rs2, $rs3, FRM_DYN)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(f16 (any_fma FPR16:$rs1, FPR16:$rs2, (fneg FPR16:$rs3))),
(FMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(f16 (any_fma (fneg FPR16:$rs1), FPR16:$rs2, FPR16:$rs3)),
(FNMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(f16 (any_fma (fneg FPR16:$rs1), FPR16:$rs2, (fneg FPR16:$rs3))),
(FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(f16 (fneg (any_fma_nsz FPR16:$rs1, FPR16:$rs2, FPR16:$rs3))),
(FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZhinx] in {
/// Float conversion operations
// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.
/// Float arithmetic operations
def : Pat<(any_fsqrt FPR16INX:$rs1), (FSQRT_H_INX FPR16INX:$rs1, FRM_DYN)>;
def : Pat<(fneg FPR16INX:$rs1), (FSGNJN_H_INX $rs1, $rs1)>;
def : Pat<(fabs FPR16INX:$rs1), (FSGNJX_H_INX $rs1, $rs1)>;
def : Pat<(riscv_fclass FPR16INX:$rs1), (FCLASS_H_INX $rs1)>;
def : PatFprFpr<fcopysign, FSGNJ_H_INX, FPR16INX, f16>;
def : PatFprFpr<riscv_fsgnjx, FSGNJX_H_INX, FPR16INX, f16>;
def : Pat<(fcopysign FPR16INX:$rs1, (fneg FPR16INX:$rs2)),
(FSGNJN_H_INX FPR16INX:$rs1, FPR16INX:$rs2)>;
def : Pat<(fcopysign FPR16INX:$rs1, FPR32INX:$rs2),
(FSGNJ_H_INX $rs1, (FCVT_H_S_INX $rs2, FRM_DYN))>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3),
(FMADD_H_INX $rs1, $rs2, $rs3, FRM_DYN)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR16INX:$rs1, FPR16INX:$rs2, (fneg FPR16INX:$rs3)),
(FMSUB_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR16INX:$rs1), FPR16INX:$rs2, FPR16INX:$rs3),
(FNMSUB_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR16INX:$rs1), FPR16INX:$rs2, (fneg FPR16INX:$rs3)),
(FNMADD_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(fneg (any_fma_nsz FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3)),
(FNMADD_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtZhinx]
// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
// LLVM's fminnum and fmaxnum
// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
foreach Ext = ZfhExts in {
defm : PatFprFpr_m<fminnum, FMIN_H, Ext>;
defm : PatFprFpr_m<fmaxnum, FMAX_H, Ext>;
defm : PatFprFpr_m<fminimumnum, FMIN_H, Ext>;
defm : PatFprFpr_m<fmaximumnum, FMAX_H, Ext>;
defm : PatFprFpr_m<riscv_fmin, FMIN_H, Ext>;
defm : PatFprFpr_m<riscv_fmax, FMAX_H, Ext>;
def : Pat<(f16 (fcanonicalize FPR16:$rs1)), (FMIN_H $rs1, $rs1)>;
}
/// Setcc
// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
// strict versions of those.
// Match non-signaling FEQ_D
foreach Ext = ZfhExts in {
defm : PatSetCC_m<any_fsetcc, SETEQ, FEQ_H, Ext>;
defm : PatSetCC_m<any_fsetcc, SETOEQ, FEQ_H, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETLT, PseudoQuietFLT_H, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETOLT, PseudoQuietFLT_H, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETLE, PseudoQuietFLE_H, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETOLE, PseudoQuietFLE_H, Ext>;
}
let Predicates = [HasStdExtZfh] in {
// Match signaling FEQ_H
def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), FPR16:$rs2, SETEQ)),
(AND (XLenVT (FLE_H $rs1, $rs2)),
(XLenVT (FLE_H $rs2, $rs1)))>;
def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), FPR16:$rs2, SETOEQ)),
(AND (XLenVT (FLE_H $rs1, $rs2)),
(XLenVT (FLE_H $rs2, $rs1)))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), (f16 FPR16:$rs1), SETEQ)),
(FLE_H $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), (f16 FPR16:$rs1), SETOEQ)),
(FLE_H $rs1, $rs1)>;
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZhinx] in {
// Match signaling FEQ_H
def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs2, SETEQ)),
(AND (XLenVT (FLE_H_INX $rs1, $rs2)),
(XLenVT (FLE_H_INX $rs2, $rs1)))>;
def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs2, SETOEQ)),
(AND (XLenVT (FLE_H_INX $rs1, $rs2)),
(XLenVT (FLE_H_INX $rs2, $rs1)))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs1, SETEQ)),
(FLE_H_INX $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs1, SETOEQ)),
(FLE_H_INX $rs1, $rs1)>;
} // Predicates = [HasStdExtZhinx]
foreach Ext = ZfhExts in {
defm : PatSetCC_m<any_fsetccs, SETLT, FLT_H, Ext>;
defm : PatSetCC_m<any_fsetccs, SETOLT, FLT_H, Ext>;
defm : PatSetCC_m<any_fsetccs, SETLE, FLE_H, Ext>;
defm : PatSetCC_m<any_fsetccs, SETOLE, FLE_H, Ext>;
}
let Predicates = [HasStdExtZfh] in {
def PseudoFROUND_H : PseudoFROUND<FPR16, f16>;
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZhinx] in {
def PseudoFROUND_H_INX : PseudoFROUND<FPR16INX, f16>;
} // Predicates = [HasStdExtZhinx]
let Predicates = [HasStdExtZfhmin] in {
defm Select_FPR16 : SelectCC_GPR_rrirr<FPR16, f16>;
/// Loads
def : LdPat<load, FLH, f16>;
/// Stores
def : StPat<store, FSH, FPR16, f16>;
} // Predicates = [HasStdExtZfhmin]
let Predicates = [HasStdExtZhinxmin] in {
defm Select_FPR16INX : SelectCC_GPR_rrirr<FPR16INX, f16>;
/// Loads
def : LdPat<load, LH_INX, f16>;
/// Stores
def : StPat<store, SH_INX, GPRF16, f16>;
} // Predicates = [HasStdExtZhinxmin]
let Predicates = [HasStdExtZfhmin] in {
/// Float conversion operations
// f32 -> f16, f16 -> f32
def : Pat<(f16 (any_fpround FPR32:$rs1)), (FCVT_H_S FPR32:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend (f16 FPR16:$rs1)), (FCVT_S_H FPR16:$rs1, FRM_RNE)>;
// Moves (no conversion)
def : Pat<(f16 (riscv_fmv_h_x GPR:$src)), (FMV_H_X GPR:$src)>;
def : Pat<(riscv_fmv_x_anyexth (f16 FPR16:$src)), (FMV_X_H FPR16:$src)>;
def : Pat<(riscv_fmv_x_signexth (f16 FPR16:$src)), (FMV_X_H FPR16:$src)>;
def : Pat<(fcopysign FPR32:$rs1, (f16 FPR16:$rs2)), (FSGNJ_S $rs1, (FCVT_S_H $rs2, FRM_RNE))>;
} // Predicates = [HasStdExtZfhmin]
let Predicates = [HasStdExtZhinxmin] in {
/// Float conversion operations
// f32 -> f16, f16 -> f32
def : Pat<(any_fpround FPR32INX:$rs1), (FCVT_H_S_INX FPR32INX:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_S_H_INX FPR16INX:$rs1, FRM_RNE)>;
// Moves (no conversion)
def : Pat<(f16 (riscv_fmv_h_x GPR:$src)), (EXTRACT_SUBREG GPR:$src, sub_16)>;
def : Pat<(riscv_fmv_x_anyexth FPR16INX:$src), (INSERT_SUBREG (XLenVT (IMPLICIT_DEF)), FPR16INX:$src, sub_16)>;
def : Pat<(fcopysign FPR32INX:$rs1, FPR16INX:$rs2), (FSGNJ_S_INX $rs1, (FCVT_S_H_INX $rs2, FRM_RNE))>;
} // Predicates = [HasStdExtZhinxmin]
let Predicates = [HasStdExtZfh, IsRV32] in {
// half->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_W_H $rs1, 0b001)>;
def : Pat<(i32 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_WU_H $rs1, 0b001)>;
// Saturating half->[u]int32.
def : Pat<(i32 (riscv_fcvt_x (f16 FPR16:$rs1), timm:$frm)), (FCVT_W_H $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu (f16 FPR16:$rs1), timm:$frm)), (FCVT_WU_H $rs1, timm:$frm)>;
// half->int32 with current rounding mode.
def : Pat<(i32 (any_lrint (f16 FPR16:$rs1))), (FCVT_W_H $rs1, FRM_DYN)>;
// half->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround (f16 FPR16:$rs1))), (FCVT_W_H $rs1, FRM_RMM)>;
// [u]int->half. Match GCC and default to using dynamic rounding mode.
def : Pat<(f16 (any_sint_to_fp (i32 GPR:$rs1))), (FCVT_H_W $rs1, FRM_DYN)>;
def : Pat<(f16 (any_uint_to_fp (i32 GPR:$rs1))), (FCVT_H_WU $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZhinx, IsRV32] in {
// half->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, 0b001)>;
def : Pat<(i32 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_WU_H_INX $rs1, 0b001)>;
// Saturating float->[u]int32.
def : Pat<(i32 (riscv_fcvt_x FPR16INX:$rs1, timm:$frm)), (FCVT_W_H_INX $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu FPR16INX:$rs1, timm:$frm)), (FCVT_WU_H_INX $rs1, timm:$frm)>;
// half->int32 with current rounding mode.
def : Pat<(i32 (any_lrint FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, FRM_DYN)>;
// half->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, FRM_RMM)>;
// [u]int->half. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_H_W_INX $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_H_WU_INX $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZhinx, IsRV32]
let Predicates = [HasStdExtZfh, IsRV64] in {
// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 (f16 FPR16:$rs1), timm:$frm), (FCVT_W_H $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 (f16 FPR16:$rs1), timm:$frm), (FCVT_WU_H $rs1, timm:$frm)>;
// half->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, 0b001)>;
def : Pat<(i64 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_LU_H $rs1, 0b001)>;
// Saturating half->[u]int64.
def : Pat<(i64 (riscv_fcvt_x (f16 FPR16:$rs1), timm:$frm)), (FCVT_L_H $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu (f16 FPR16:$rs1), timm:$frm)), (FCVT_LU_H $rs1, timm:$frm)>;
// half->int64 with current rounding mode.
def : Pat<(i64 (any_lrint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llrint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_DYN)>;
// half->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_RMM)>;
def : Pat<(i64 (any_llround (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_RMM)>;
// [u]int->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(f16 (any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1))))), (FCVT_H_W $rs1, FRM_DYN)>;
def : Pat<(f16 (any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1))))), (FCVT_H_WU $rs1, FRM_DYN)>;
def : Pat<(f16 (any_sint_to_fp (i64 GPR:$rs1))), (FCVT_H_L $rs1, FRM_DYN)>;
def : Pat<(f16 (any_uint_to_fp (i64 GPR:$rs1))), (FCVT_H_LU $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZfh, IsRV64]
let Predicates = [HasStdExtZhinx, IsRV64] in {
// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 FPR16INX:$rs1, timm:$frm), (FCVT_W_H_INX $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 FPR16INX:$rs1, timm:$frm), (FCVT_WU_H_INX $rs1, timm:$frm)>;
// half->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, 0b001)>;
def : Pat<(i64 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_LU_H_INX $rs1, 0b001)>;
// Saturating float->[u]int64.
def : Pat<(i64 (riscv_fcvt_x FPR16INX:$rs1, timm:$frm)), (FCVT_L_H_INX $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu FPR16INX:$rs1, timm:$frm)), (FCVT_LU_H_INX $rs1, timm:$frm)>;
// half->int64 with current rounding mode.
def : Pat<(i64 (any_lrint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llrint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_DYN)>;
// half->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_RMM)>;
def : Pat<(i64 (any_llround FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_RMM)>;
// [u]int->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_H_W_INX $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_H_WU_INX $rs1, FRM_DYN)>;
def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_H_L_INX $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_H_LU_INX $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZhinx, IsRV64]
let Predicates = [HasStdExtZfhmin, HasStdExtD] in {
/// Float conversion operations
// f64 -> f16, f16 -> f64
def : Pat<(f16 (any_fpround FPR64:$rs1)), (FCVT_H_D FPR64:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend (f16 FPR16:$rs1)), (FCVT_D_H FPR16:$rs1, FRM_RNE)>;
/// Float arithmetic operations
def : Pat<(f16 (fcopysign FPR16:$rs1, FPR64:$rs2)),
(FSGNJ_H $rs1, (f16 (FCVT_H_D $rs2, FRM_DYN)))>;
def : Pat<(fcopysign FPR64:$rs1, (f16 FPR16:$rs2)), (FSGNJ_D $rs1, (FCVT_D_H $rs2, FRM_RNE))>;
} // Predicates = [HasStdExtZfhmin, HasStdExtD]
let Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32] in {
/// Float conversion operations
// f64 -> f16, f16 -> f64
def : Pat<(any_fpround FPR64IN32X:$rs1), (FCVT_H_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_D_H_IN32X FPR16INX:$rs1, FRM_RNE)>;
/// Float arithmetic operations
def : Pat<(fcopysign FPR16INX:$rs1, FPR64IN32X:$rs2),
(FSGNJ_H_INX $rs1, (FCVT_H_D_IN32X $rs2, 0b111))>;
def : Pat<(fcopysign FPR64IN32X:$rs1, FPR16INX:$rs2), (FSGNJ_D_IN32X $rs1, (FCVT_D_H_IN32X $rs2, FRM_RNE))>;
} // Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32]
let Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64] in {
/// Float conversion operations
// f64 -> f16, f16 -> f64
def : Pat<(any_fpround FPR64INX:$rs1), (FCVT_H_D_INX FPR64INX:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_D_H_INX FPR16INX:$rs1, FRM_RNE)>;
/// Float arithmetic operations
def : Pat<(fcopysign FPR16INX:$rs1, FPR64INX:$rs2),
(FSGNJ_H_INX $rs1, (FCVT_H_D_INX $rs2, 0b111))>;
def : Pat<(fcopysign FPR64INX:$rs1, FPR16INX:$rs2), (FSGNJ_D_INX $rs1, (f64 (FCVT_D_H_INX $rs2, FRM_RNE)))>;
} // Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64]
|