1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
|
//===-- RISCVFrameLowering.cpp - RISC-V Frame Information -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISC-V implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "RISCVFrameLowering.h"
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/CFIInstBuilder.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Support/LEB128.h"
#include <algorithm>
#define DEBUG_TYPE "riscv-frame"
using namespace llvm;
static Align getABIStackAlignment(RISCVABI::ABI ABI) {
if (ABI == RISCVABI::ABI_ILP32E)
return Align(4);
if (ABI == RISCVABI::ABI_LP64E)
return Align(8);
return Align(16);
}
RISCVFrameLowering::RISCVFrameLowering(const RISCVSubtarget &STI)
: TargetFrameLowering(
StackGrowsDown, getABIStackAlignment(STI.getTargetABI()),
/*LocalAreaOffset=*/0,
/*TransientStackAlignment=*/getABIStackAlignment(STI.getTargetABI())),
STI(STI) {}
// The register used to hold the frame pointer.
static constexpr MCPhysReg FPReg = RISCV::X8;
// The register used to hold the stack pointer.
static constexpr MCPhysReg SPReg = RISCV::X2;
// The register used to hold the return address.
static constexpr MCPhysReg RAReg = RISCV::X1;
// LIst of CSRs that are given a fixed location by save/restore libcalls or
// Zcmp/Xqccmp Push/Pop. The order in this table indicates the order the
// registers are saved on the stack. Zcmp uses the reverse order of save/restore
// and Xqccmp on the stack, but this is handled when offsets are calculated.
static const MCPhysReg FixedCSRFIMap[] = {
/*ra*/ RAReg, /*s0*/ FPReg, /*s1*/ RISCV::X9,
/*s2*/ RISCV::X18, /*s3*/ RISCV::X19, /*s4*/ RISCV::X20,
/*s5*/ RISCV::X21, /*s6*/ RISCV::X22, /*s7*/ RISCV::X23,
/*s8*/ RISCV::X24, /*s9*/ RISCV::X25, /*s10*/ RISCV::X26,
/*s11*/ RISCV::X27};
// The number of stack bytes allocated by `QC.C.MIENTER(.NEST)` and popped by
// `QC.C.MILEAVERET`.
static constexpr uint64_t QCIInterruptPushAmount = 96;
static const std::pair<MCPhysReg, int8_t> FixedCSRFIQCIInterruptMap[] = {
/* -1 is a gap for mepc/mnepc */
{/*fp*/ FPReg, -2},
/* -3 is a gap for qc.mcause */
{/*ra*/ RAReg, -4},
/* -5 is reserved */
{/*t0*/ RISCV::X5, -6},
{/*t1*/ RISCV::X6, -7},
{/*t2*/ RISCV::X7, -8},
{/*a0*/ RISCV::X10, -9},
{/*a1*/ RISCV::X11, -10},
{/*a2*/ RISCV::X12, -11},
{/*a3*/ RISCV::X13, -12},
{/*a4*/ RISCV::X14, -13},
{/*a5*/ RISCV::X15, -14},
{/*a6*/ RISCV::X16, -15},
{/*a7*/ RISCV::X17, -16},
{/*t3*/ RISCV::X28, -17},
{/*t4*/ RISCV::X29, -18},
{/*t5*/ RISCV::X30, -19},
{/*t6*/ RISCV::X31, -20},
/* -21, -22, -23, -24 are reserved */
};
// For now we use x3, a.k.a gp, as pointer to shadow call stack.
// User should not use x3 in their asm.
static void emitSCSPrologue(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL) {
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
bool HasHWShadowStack = MF.getFunction().hasFnAttribute("hw-shadow-stack") &&
STI.hasStdExtZicfiss();
bool HasSWShadowStack =
MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
if (!HasHWShadowStack && !HasSWShadowStack)
return;
const llvm::RISCVRegisterInfo *TRI = STI.getRegisterInfo();
// Do not save RA to the SCS if it's not saved to the regular stack,
// i.e. RA is not at risk of being overwritten.
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
if (llvm::none_of(
CSI, [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; }))
return;
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (HasHWShadowStack) {
BuildMI(MBB, MI, DL, TII->get(RISCV::SSPUSH)).addReg(RAReg);
return;
}
Register SCSPReg = RISCVABI::getSCSPReg();
bool IsRV64 = STI.is64Bit();
int64_t SlotSize = STI.getXLen() / 8;
// Store return address to shadow call stack
// addi gp, gp, [4|8]
// s[w|d] ra, -[4|8](gp)
BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI))
.addReg(SCSPReg, RegState::Define)
.addReg(SCSPReg)
.addImm(SlotSize)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RAReg)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameSetup);
// Emit a CFI instruction that causes SlotSize to be subtracted from the value
// of the shadow stack pointer when unwinding past this frame.
char DwarfSCSReg = TRI->getDwarfRegNum(SCSPReg, /*IsEH*/ true);
assert(DwarfSCSReg < 32 && "SCS Register should be < 32 (X3).");
char Offset = static_cast<char>(-SlotSize) & 0x7f;
const char CFIInst[] = {
dwarf::DW_CFA_val_expression,
DwarfSCSReg, // register
2, // length
static_cast<char>(unsigned(dwarf::DW_OP_breg0 + DwarfSCSReg)),
Offset, // addend (sleb128)
};
CFIInstBuilder(MBB, MI, MachineInstr::FrameSetup)
.buildEscape(StringRef(CFIInst, sizeof(CFIInst)));
}
static void emitSCSEpilogue(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL) {
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
bool HasHWShadowStack = MF.getFunction().hasFnAttribute("hw-shadow-stack") &&
STI.hasStdExtZicfiss();
bool HasSWShadowStack =
MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
if (!HasHWShadowStack && !HasSWShadowStack)
return;
// See emitSCSPrologue() above.
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
if (llvm::none_of(
CSI, [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; }))
return;
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (HasHWShadowStack) {
BuildMI(MBB, MI, DL, TII->get(RISCV::SSPOPCHK)).addReg(RAReg);
return;
}
Register SCSPReg = RISCVABI::getSCSPReg();
bool IsRV64 = STI.is64Bit();
int64_t SlotSize = STI.getXLen() / 8;
// Load return address from shadow call stack
// l[w|d] ra, -[4|8](gp)
// addi gp, gp, -[4|8]
BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::LD : RISCV::LW))
.addReg(RAReg, RegState::Define)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameDestroy);
BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI))
.addReg(SCSPReg, RegState::Define)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameDestroy);
// Restore the SCS pointer
CFIInstBuilder(MBB, MI, MachineInstr::FrameDestroy).buildRestore(SCSPReg);
}
// Insert instruction to swap mscratchsw with sp
static void emitSiFiveCLICStackSwap(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->isSiFiveStackSwapInterrupt(MF))
return;
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = STI.getInstrInfo();
assert(STI.hasVendorXSfmclic() && "Stack Swapping Requires XSfmclic");
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRW))
.addReg(SPReg, RegState::Define)
.addImm(RISCVSysReg::sf_mscratchcsw)
.addReg(SPReg, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
// FIXME: CFI Information for this swap.
}
static void
createSiFivePreemptibleInterruptFrameEntries(MachineFunction &MF,
RISCVMachineFunctionInfo &RVFI) {
if (!RVFI.isSiFivePreemptibleInterrupt(MF))
return;
const TargetRegisterClass &RC = RISCV::GPRRegClass;
const TargetRegisterInfo &TRI =
*MF.getSubtarget<RISCVSubtarget>().getRegisterInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
// Create two frame objects for spilling X8 and X9, which will be done in
// `emitSiFiveCLICPreemptibleSaves`. This is in addition to any other stack
// objects we might have for X8 and X9, as they might be saved twice.
for (int I = 0; I < 2; ++I) {
int FI = MFI.CreateStackObject(TRI.getSpillSize(RC), TRI.getSpillAlign(RC),
true);
RVFI.pushInterruptCSRFrameIndex(FI);
}
}
static void emitSiFiveCLICPreemptibleSaves(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->isSiFivePreemptibleInterrupt(MF))
return;
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = STI.getInstrInfo();
// FIXME: CFI Information here is nonexistent/wrong.
// X8 and X9 might be stored into the stack twice, initially into the
// `interruptCSRFrameIndex` here, and then maybe again into their CSI frame
// index.
//
// This is done instead of telling the register allocator that we need two
// VRegs to store the value of `mcause` and `mepc` through the instruction,
// which affects other passes.
TII->storeRegToStackSlot(MBB, MBBI, RISCV::X8, /* IsKill=*/true,
RVFI->getInterruptCSRFrameIndex(0),
&RISCV::GPRRegClass, STI.getRegisterInfo(),
Register(), MachineInstr::FrameSetup);
TII->storeRegToStackSlot(MBB, MBBI, RISCV::X9, /* IsKill=*/true,
RVFI->getInterruptCSRFrameIndex(1),
&RISCV::GPRRegClass, STI.getRegisterInfo(),
Register(), MachineInstr::FrameSetup);
// Put `mcause` into X8 (s0), and `mepc` into X9 (s1). If either of these are
// used in the function, then they will appear in `getUnmanagedCSI` and will
// be saved again.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRS))
.addReg(RISCV::X8, RegState::Define)
.addImm(RISCVSysReg::mcause)
.addReg(RISCV::X0)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRS))
.addReg(RISCV::X9, RegState::Define)
.addImm(RISCVSysReg::mepc)
.addReg(RISCV::X0)
.setMIFlag(MachineInstr::FrameSetup);
// Enable interrupts.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRSI))
.addReg(RISCV::X0, RegState::Define)
.addImm(RISCVSysReg::mstatus)
.addImm(8)
.setMIFlag(MachineInstr::FrameSetup);
}
static void emitSiFiveCLICPreemptibleRestores(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->isSiFivePreemptibleInterrupt(MF))
return;
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = STI.getInstrInfo();
// FIXME: CFI Information here is nonexistent/wrong.
// Disable interrupts.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRCI))
.addReg(RISCV::X0, RegState::Define)
.addImm(RISCVSysReg::mstatus)
.addImm(8)
.setMIFlag(MachineInstr::FrameSetup);
// Restore `mepc` from x9 (s1), and `mcause` from x8 (s0). If either were used
// in the function, they have already been restored once, so now have the
// value stored in `emitSiFiveCLICPreemptibleSaves`.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRW))
.addReg(RISCV::X0, RegState::Define)
.addImm(RISCVSysReg::mepc)
.addReg(RISCV::X9, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRW))
.addReg(RISCV::X0, RegState::Define)
.addImm(RISCVSysReg::mcause)
.addReg(RISCV::X8, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
// X8 and X9 need to be restored to their values on function entry, which we
// saved onto the stack in `emitSiFiveCLICPreemptibleSaves`.
TII->loadRegFromStackSlot(MBB, MBBI, RISCV::X9,
RVFI->getInterruptCSRFrameIndex(1),
&RISCV::GPRRegClass, STI.getRegisterInfo(),
Register(), MachineInstr::FrameSetup);
TII->loadRegFromStackSlot(MBB, MBBI, RISCV::X8,
RVFI->getInterruptCSRFrameIndex(0),
&RISCV::GPRRegClass, STI.getRegisterInfo(),
Register(), MachineInstr::FrameSetup);
}
// Get the ID of the libcall used for spilling and restoring callee saved
// registers. The ID is representative of the number of registers saved or
// restored by the libcall, except it is zero-indexed - ID 0 corresponds to a
// single register.
static int getLibCallID(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (CSI.empty() || !RVFI->useSaveRestoreLibCalls(MF))
return -1;
MCRegister MaxReg;
for (auto &CS : CSI)
// assignCalleeSavedSpillSlots assigns negative frame indexes to
// registers which can be saved by libcall.
if (CS.getFrameIdx() < 0)
MaxReg = std::max(MaxReg.id(), CS.getReg().id());
if (!MaxReg)
return -1;
switch (MaxReg.id()) {
default:
llvm_unreachable("Something has gone wrong!");
// clang-format off
case /*s11*/ RISCV::X27: return 12;
case /*s10*/ RISCV::X26: return 11;
case /*s9*/ RISCV::X25: return 10;
case /*s8*/ RISCV::X24: return 9;
case /*s7*/ RISCV::X23: return 8;
case /*s6*/ RISCV::X22: return 7;
case /*s5*/ RISCV::X21: return 6;
case /*s4*/ RISCV::X20: return 5;
case /*s3*/ RISCV::X19: return 4;
case /*s2*/ RISCV::X18: return 3;
case /*s1*/ RISCV::X9: return 2;
case /*s0*/ FPReg: return 1;
case /*ra*/ RAReg: return 0;
// clang-format on
}
}
// Get the name of the libcall used for spilling callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getSpillLibCallName(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
static const char *const SpillLibCalls[] = {
"__riscv_save_0",
"__riscv_save_1",
"__riscv_save_2",
"__riscv_save_3",
"__riscv_save_4",
"__riscv_save_5",
"__riscv_save_6",
"__riscv_save_7",
"__riscv_save_8",
"__riscv_save_9",
"__riscv_save_10",
"__riscv_save_11",
"__riscv_save_12"
};
int LibCallID = getLibCallID(MF, CSI);
if (LibCallID == -1)
return nullptr;
return SpillLibCalls[LibCallID];
}
// Get the name of the libcall used for restoring callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getRestoreLibCallName(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
static const char *const RestoreLibCalls[] = {
"__riscv_restore_0",
"__riscv_restore_1",
"__riscv_restore_2",
"__riscv_restore_3",
"__riscv_restore_4",
"__riscv_restore_5",
"__riscv_restore_6",
"__riscv_restore_7",
"__riscv_restore_8",
"__riscv_restore_9",
"__riscv_restore_10",
"__riscv_restore_11",
"__riscv_restore_12"
};
int LibCallID = getLibCallID(MF, CSI);
if (LibCallID == -1)
return nullptr;
return RestoreLibCalls[LibCallID];
}
// Get the max reg of Push/Pop for restoring callee saved registers.
static unsigned getNumPushPopRegs(const std::vector<CalleeSavedInfo> &CSI) {
unsigned NumPushPopRegs = 0;
for (auto &CS : CSI) {
auto *FII = llvm::find_if(FixedCSRFIMap,
[&](MCPhysReg P) { return P == CS.getReg(); });
if (FII != std::end(FixedCSRFIMap)) {
unsigned RegNum = std::distance(std::begin(FixedCSRFIMap), FII);
NumPushPopRegs = std::max(NumPushPopRegs, RegNum + 1);
}
}
assert(NumPushPopRegs != 12 && "x26 requires x27 to also be pushed");
return NumPushPopRegs;
}
// Return true if the specified function should have a dedicated frame
// pointer register. This is true if frame pointer elimination is
// disabled, if it needs dynamic stack realignment, if the function has
// variable sized allocas, or if the frame address is taken.
bool RISCVFrameLowering::hasFPImpl(const MachineFunction &MF) const {
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const MachineFrameInfo &MFI = MF.getFrameInfo();
return MF.getTarget().Options.DisableFramePointerElim(MF) ||
RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
MFI.isFrameAddressTaken();
}
bool RISCVFrameLowering::hasBP(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
// If we do not reserve stack space for outgoing arguments in prologue,
// we will adjust the stack pointer before call instruction. After the
// adjustment, we can not use SP to access the stack objects for the
// arguments. Instead, use BP to access these stack objects.
return (MFI.hasVarSizedObjects() ||
(!hasReservedCallFrame(MF) && (!MFI.isMaxCallFrameSizeComputed() ||
MFI.getMaxCallFrameSize() != 0))) &&
TRI->hasStackRealignment(MF);
}
// Determines the size of the frame and maximum call frame size.
void RISCVFrameLowering::determineFrameLayout(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Get the number of bytes to allocate from the FrameInfo.
uint64_t FrameSize = MFI.getStackSize();
// QCI Interrupts use at least 96 bytes of stack space
if (RVFI->useQCIInterrupt(MF))
FrameSize = std::max(FrameSize, QCIInterruptPushAmount);
// Get the alignment.
Align StackAlign = getStackAlign();
// Make sure the frame is aligned.
FrameSize = alignTo(FrameSize, StackAlign);
// Update frame info.
MFI.setStackSize(FrameSize);
// When using SP or BP to access stack objects, we may require extra padding
// to ensure the bottom of the RVV stack is correctly aligned within the main
// stack. We calculate this as the amount required to align the scalar local
// variable section up to the RVV alignment.
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
if (RVFI->getRVVStackSize() && (!hasFP(MF) || TRI->hasStackRealignment(MF))) {
int ScalarLocalVarSize = FrameSize - RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize();
if (auto RVVPadding =
offsetToAlignment(ScalarLocalVarSize, RVFI->getRVVStackAlign()))
RVFI->setRVVPadding(RVVPadding);
}
}
// Returns the stack size including RVV padding (when required), rounded back
// up to the required stack alignment.
uint64_t RISCVFrameLowering::getStackSizeWithRVVPadding(
const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
return alignTo(MFI.getStackSize() + RVFI->getRVVPadding(), getStackAlign());
}
static SmallVector<CalleeSavedInfo, 8>
getUnmanagedCSI(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
SmallVector<CalleeSavedInfo, 8> NonLibcallCSI;
for (auto &CS : CSI) {
int FI = CS.getFrameIdx();
if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::Default)
NonLibcallCSI.push_back(CS);
}
return NonLibcallCSI;
}
static SmallVector<CalleeSavedInfo, 8>
getRVVCalleeSavedInfo(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
SmallVector<CalleeSavedInfo, 8> RVVCSI;
for (auto &CS : CSI) {
int FI = CS.getFrameIdx();
if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::ScalableVector)
RVVCSI.push_back(CS);
}
return RVVCSI;
}
static SmallVector<CalleeSavedInfo, 8>
getPushOrLibCallsSavedInfo(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
SmallVector<CalleeSavedInfo, 8> PushOrLibCallsCSI;
if (!RVFI->useSaveRestoreLibCalls(MF) && !RVFI->isPushable(MF))
return PushOrLibCallsCSI;
for (const auto &CS : CSI) {
if (RVFI->useQCIInterrupt(MF)) {
// Some registers are saved by both `QC.C.MIENTER(.NEST)` and
// `QC.CM.PUSH(FP)`. In these cases, prioritise the CFI info that points
// to the versions saved by `QC.C.MIENTER(.NEST)` which is what FP
// unwinding would use.
if (llvm::is_contained(llvm::make_first_range(FixedCSRFIQCIInterruptMap),
CS.getReg()))
continue;
}
if (llvm::is_contained(FixedCSRFIMap, CS.getReg()))
PushOrLibCallsCSI.push_back(CS);
}
return PushOrLibCallsCSI;
}
static SmallVector<CalleeSavedInfo, 8>
getQCISavedInfo(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
SmallVector<CalleeSavedInfo, 8> QCIInterruptCSI;
if (!RVFI->useQCIInterrupt(MF))
return QCIInterruptCSI;
for (const auto &CS : CSI) {
if (llvm::is_contained(llvm::make_first_range(FixedCSRFIQCIInterruptMap),
CS.getReg()))
QCIInterruptCSI.push_back(CS);
}
return QCIInterruptCSI;
}
void RISCVFrameLowering::allocateAndProbeStackForRVV(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, int64_t Amount,
MachineInstr::MIFlag Flag, bool EmitCFI, bool DynAllocation) const {
assert(Amount != 0 && "Did not need to adjust stack pointer for RVV.");
// Emit a variable-length allocation probing loop.
// Get VLEN in TargetReg
const RISCVInstrInfo *TII = STI.getInstrInfo();
Register TargetReg = RISCV::X6;
uint32_t NumOfVReg = Amount / RISCV::RVVBytesPerBlock;
BuildMI(MBB, MBBI, DL, TII->get(RISCV::PseudoReadVLENB), TargetReg)
.setMIFlag(Flag);
TII->mulImm(MF, MBB, MBBI, DL, TargetReg, NumOfVReg, Flag);
CFIInstBuilder CFIBuilder(MBB, MBBI, MachineInstr::FrameSetup);
if (EmitCFI) {
// Set the CFA register to TargetReg.
CFIBuilder.buildDefCFA(TargetReg, -Amount);
}
// It will be expanded to a probe loop in `inlineStackProbe`.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::PROBED_STACKALLOC_RVV))
.addReg(TargetReg);
if (EmitCFI) {
// Set the CFA register back to SP.
CFIBuilder.buildDefCFARegister(SPReg);
}
// SUB SP, SP, T1
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SUB), SPReg)
.addReg(SPReg)
.addReg(TargetReg)
.setMIFlag(Flag);
// If we have a dynamic allocation later we need to probe any residuals.
if (DynAllocation) {
BuildMI(MBB, MBBI, DL, TII->get(STI.is64Bit() ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(MachineInstr::FrameSetup);
}
}
static void appendScalableVectorExpression(const TargetRegisterInfo &TRI,
SmallVectorImpl<char> &Expr,
int FixedOffset, int ScalableOffset,
llvm::raw_string_ostream &Comment) {
unsigned DwarfVLenB = TRI.getDwarfRegNum(RISCV::VLENB, true);
uint8_t Buffer[16];
if (FixedOffset) {
Expr.push_back(dwarf::DW_OP_consts);
Expr.append(Buffer, Buffer + encodeSLEB128(FixedOffset, Buffer));
Expr.push_back((uint8_t)dwarf::DW_OP_plus);
Comment << (FixedOffset < 0 ? " - " : " + ") << std::abs(FixedOffset);
}
Expr.push_back((uint8_t)dwarf::DW_OP_consts);
Expr.append(Buffer, Buffer + encodeSLEB128(ScalableOffset, Buffer));
Expr.push_back((uint8_t)dwarf::DW_OP_bregx);
Expr.append(Buffer, Buffer + encodeULEB128(DwarfVLenB, Buffer));
Expr.push_back(0);
Expr.push_back((uint8_t)dwarf::DW_OP_mul);
Expr.push_back((uint8_t)dwarf::DW_OP_plus);
Comment << (ScalableOffset < 0 ? " - " : " + ") << std::abs(ScalableOffset)
<< " * vlenb";
}
static MCCFIInstruction createDefCFAExpression(const TargetRegisterInfo &TRI,
Register Reg,
uint64_t FixedOffset,
uint64_t ScalableOffset) {
assert(ScalableOffset != 0 && "Did not need to adjust CFA for RVV");
SmallString<64> Expr;
std::string CommentBuffer;
llvm::raw_string_ostream Comment(CommentBuffer);
// Build up the expression (Reg + FixedOffset + ScalableOffset * VLENB).
unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg));
Expr.push_back(0);
if (Reg == SPReg)
Comment << "sp";
else
Comment << printReg(Reg, &TRI);
appendScalableVectorExpression(TRI, Expr, FixedOffset, ScalableOffset,
Comment);
SmallString<64> DefCfaExpr;
uint8_t Buffer[16];
DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression);
DefCfaExpr.append(Buffer, Buffer + encodeULEB128(Expr.size(), Buffer));
DefCfaExpr.append(Expr.str());
return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), SMLoc(),
Comment.str());
}
static MCCFIInstruction createDefCFAOffset(const TargetRegisterInfo &TRI,
Register Reg, uint64_t FixedOffset,
uint64_t ScalableOffset) {
assert(ScalableOffset != 0 && "Did not need to adjust CFA for RVV");
SmallString<64> Expr;
std::string CommentBuffer;
llvm::raw_string_ostream Comment(CommentBuffer);
Comment << printReg(Reg, &TRI) << " @ cfa";
// Build up the expression (FixedOffset + ScalableOffset * VLENB).
appendScalableVectorExpression(TRI, Expr, FixedOffset, ScalableOffset,
Comment);
SmallString<64> DefCfaExpr;
uint8_t Buffer[16];
unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
DefCfaExpr.push_back(dwarf::DW_CFA_expression);
DefCfaExpr.append(Buffer, Buffer + encodeULEB128(DwarfReg, Buffer));
DefCfaExpr.append(Buffer, Buffer + encodeULEB128(Expr.size(), Buffer));
DefCfaExpr.append(Expr.str());
return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), SMLoc(),
Comment.str());
}
// Allocate stack space and probe it if necessary.
void RISCVFrameLowering::allocateStack(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineFunction &MF, uint64_t Offset,
uint64_t RealStackSize, bool EmitCFI,
bool NeedProbe, uint64_t ProbeSize,
bool DynAllocation,
MachineInstr::MIFlag Flag) const {
DebugLoc DL;
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
const RISCVInstrInfo *TII = STI.getInstrInfo();
bool IsRV64 = STI.is64Bit();
CFIInstBuilder CFIBuilder(MBB, MBBI, MachineInstr::FrameSetup);
// Simply allocate the stack if it's not big enough to require a probe.
if (!NeedProbe || Offset <= ProbeSize) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(-Offset),
Flag, getStackAlign());
if (EmitCFI)
CFIBuilder.buildDefCFAOffset(RealStackSize);
if (NeedProbe && DynAllocation) {
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flag);
}
return;
}
// Unroll the probe loop depending on the number of iterations.
if (Offset < ProbeSize * 5) {
uint64_t CurrentOffset = 0;
while (CurrentOffset + ProbeSize <= Offset) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg,
StackOffset::getFixed(-ProbeSize), Flag, getStackAlign());
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flag);
CurrentOffset += ProbeSize;
if (EmitCFI)
CFIBuilder.buildDefCFAOffset(CurrentOffset);
}
uint64_t Residual = Offset - CurrentOffset;
if (Residual) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg,
StackOffset::getFixed(-Residual), Flag, getStackAlign());
if (EmitCFI)
CFIBuilder.buildDefCFAOffset(Offset);
if (DynAllocation) {
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flag);
}
}
return;
}
// Emit a variable-length allocation probing loop.
uint64_t RoundedSize = alignDown(Offset, ProbeSize);
uint64_t Residual = Offset - RoundedSize;
Register TargetReg = RISCV::X6;
// SUB TargetReg, SP, RoundedSize
RI->adjustReg(MBB, MBBI, DL, TargetReg, SPReg,
StackOffset::getFixed(-RoundedSize), Flag, getStackAlign());
if (EmitCFI) {
// Set the CFA register to TargetReg.
CFIBuilder.buildDefCFA(TargetReg, RoundedSize);
}
// It will be expanded to a probe loop in `inlineStackProbe`.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::PROBED_STACKALLOC)).addReg(TargetReg);
if (EmitCFI) {
// Set the CFA register back to SP.
CFIBuilder.buildDefCFARegister(SPReg);
}
if (Residual) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(-Residual),
Flag, getStackAlign());
if (DynAllocation) {
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flag);
}
}
if (EmitCFI)
CFIBuilder.buildDefCFAOffset(Offset);
}
static bool isPush(unsigned Opcode) {
switch (Opcode) {
case RISCV::CM_PUSH:
case RISCV::QC_CM_PUSH:
case RISCV::QC_CM_PUSHFP:
return true;
default:
return false;
}
}
static bool isPop(unsigned Opcode) {
// There are other pops but these are the only ones introduced during this
// pass.
switch (Opcode) {
case RISCV::CM_POP:
case RISCV::QC_CM_POP:
return true;
default:
return false;
}
}
static unsigned getPushOpcode(RISCVMachineFunctionInfo::PushPopKind Kind,
bool UpdateFP) {
switch (Kind) {
case RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp:
return RISCV::CM_PUSH;
case RISCVMachineFunctionInfo::PushPopKind::VendorXqccmp:
return UpdateFP ? RISCV::QC_CM_PUSHFP : RISCV::QC_CM_PUSH;
default:
llvm_unreachable("Unhandled PushPopKind");
}
}
static unsigned getPopOpcode(RISCVMachineFunctionInfo::PushPopKind Kind) {
// There are other pops but they are introduced later by the Push/Pop
// Optimizer.
switch (Kind) {
case RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp:
return RISCV::CM_POP;
case RISCVMachineFunctionInfo::PushPopKind::VendorXqccmp:
return RISCV::QC_CM_POP;
default:
llvm_unreachable("Unhandled PushPopKind");
}
}
void RISCVFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
MachineBasicBlock::iterator MBBI = MBB.begin();
Register BPReg = RISCVABI::getBPReg();
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc DL;
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// SiFive CLIC needs to swap `sp` into `sf.mscratchcsw`
emitSiFiveCLICStackSwap(MF, MBB, MBBI, DL);
// Emit prologue for shadow call stack.
emitSCSPrologue(MF, MBB, MBBI, DL);
// We keep track of the first instruction because it might be a
// `(QC.)CM.PUSH(FP)`, and we may need to adjust the immediate rather than
// inserting an `addi sp, sp, -N*16`
auto PossiblePush = MBBI;
// Skip past all callee-saved register spill instructions.
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
++MBBI;
// Determine the correct frame layout
determineFrameLayout(MF);
const auto &CSI = MFI.getCalleeSavedInfo();
// Skip to before the spills of scalar callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
MBBI = std::prev(MBBI, getRVVCalleeSavedInfo(MF, CSI).size() +
getUnmanagedCSI(MF, CSI).size());
CFIInstBuilder CFIBuilder(MBB, MBBI, MachineInstr::FrameSetup);
// If libcalls are used to spill and restore callee-saved registers, the frame
// has two sections; the opaque section managed by the libcalls, and the
// section managed by MachineFrameInfo which can also hold callee saved
// registers in fixed stack slots, both of which have negative frame indices.
// This gets even more complicated when incoming arguments are passed via the
// stack, as these too have negative frame indices. An example is detailed
// below:
//
// | incoming arg | <- FI[-3]
// | libcallspill |
// | calleespill | <- FI[-2]
// | calleespill | <- FI[-1]
// | this_frame | <- FI[0]
//
// For negative frame indices, the offset from the frame pointer will differ
// depending on which of these groups the frame index applies to.
// The following calculates the correct offset knowing the number of callee
// saved registers spilt by the two methods.
if (int LibCallRegs = getLibCallID(MF, MFI.getCalleeSavedInfo()) + 1) {
// Calculate the size of the frame managed by the libcall. The stack
// alignment of these libcalls should be the same as how we set it in
// getABIStackAlignment.
unsigned LibCallFrameSize =
alignTo((STI.getXLen() / 8) * LibCallRegs, getStackAlign());
RVFI->setLibCallStackSize(LibCallFrameSize);
CFIBuilder.buildDefCFAOffset(LibCallFrameSize);
for (const CalleeSavedInfo &CS : getPushOrLibCallsSavedInfo(MF, CSI))
CFIBuilder.buildOffset(CS.getReg(),
MFI.getObjectOffset(CS.getFrameIdx()));
}
// FIXME (note copied from Lanai): This appears to be overallocating. Needs
// investigation. Get the number of bytes to allocate from the FrameInfo.
uint64_t RealStackSize = getStackSizeWithRVVPadding(MF);
uint64_t StackSize = RealStackSize - RVFI->getReservedSpillsSize();
uint64_t RVVStackSize = RVFI->getRVVStackSize();
// Early exit if there is no need to allocate on the stack
if (RealStackSize == 0 && !MFI.adjustsStack() && RVVStackSize == 0)
return;
// If the stack pointer has been marked as reserved, then produce an error if
// the frame requires stack allocation
if (STI.isRegisterReservedByUser(SPReg))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "Stack pointer required, but has been reserved."});
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
// Split the SP adjustment to reduce the offsets of callee saved spill.
if (FirstSPAdjustAmount) {
StackSize = FirstSPAdjustAmount;
RealStackSize = FirstSPAdjustAmount;
}
if (RVFI->useQCIInterrupt(MF)) {
// The function starts with `QC.C.MIENTER(.NEST)`, so the `(QC.)CM.PUSH(FP)`
// could only be the next instruction.
++PossiblePush;
// Insert the CFI metadata before where we think the `(QC.)CM.PUSH(FP)`
// could be. The PUSH will also get its own CFI metadata for its own
// modifications, which should come after the PUSH.
CFIInstBuilder PushCFIBuilder(MBB, PossiblePush, MachineInstr::FrameSetup);
PushCFIBuilder.buildDefCFAOffset(QCIInterruptPushAmount);
for (const CalleeSavedInfo &CS : getQCISavedInfo(MF, CSI))
PushCFIBuilder.buildOffset(CS.getReg(),
MFI.getObjectOffset(CS.getFrameIdx()));
}
if (RVFI->isPushable(MF) && PossiblePush != MBB.end() &&
isPush(PossiblePush->getOpcode())) {
// Use available stack adjustment in push instruction to allocate additional
// stack space. Align the stack size down to a multiple of 16. This is
// needed for RVE.
// FIXME: Can we increase the stack size to a multiple of 16 instead?
uint64_t StackAdj =
std::min(alignDown(StackSize, 16), static_cast<uint64_t>(48));
PossiblePush->getOperand(1).setImm(StackAdj);
StackSize -= StackAdj;
CFIBuilder.buildDefCFAOffset(RealStackSize - StackSize);
for (const CalleeSavedInfo &CS : getPushOrLibCallsSavedInfo(MF, CSI))
CFIBuilder.buildOffset(CS.getReg(),
MFI.getObjectOffset(CS.getFrameIdx()));
}
// Allocate space on the stack if necessary.
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
const RISCVTargetLowering *TLI = Subtarget.getTargetLowering();
bool NeedProbe = TLI->hasInlineStackProbe(MF);
uint64_t ProbeSize = TLI->getStackProbeSize(MF, getStackAlign());
bool DynAllocation =
MF.getInfo<RISCVMachineFunctionInfo>()->hasDynamicAllocation();
if (StackSize != 0)
allocateStack(MBB, MBBI, MF, StackSize, RealStackSize, /*EmitCFI=*/true,
NeedProbe, ProbeSize, DynAllocation,
MachineInstr::FrameSetup);
// Save SiFive CLIC CSRs into Stack
emitSiFiveCLICPreemptibleSaves(MF, MBB, MBBI, DL);
// The frame pointer is callee-saved, and code has been generated for us to
// save it to the stack. We need to skip over the storing of callee-saved
// registers as the frame pointer must be modified after it has been saved
// to the stack, not before.
// FIXME: assumes exactly one instruction is used to save each callee-saved
// register.
std::advance(MBBI, getUnmanagedCSI(MF, CSI).size());
CFIBuilder.setInsertPoint(MBBI);
// Iterate over list of callee-saved registers and emit .cfi_offset
// directives.
for (const CalleeSavedInfo &CS : getUnmanagedCSI(MF, CSI))
CFIBuilder.buildOffset(CS.getReg(), MFI.getObjectOffset(CS.getFrameIdx()));
// Generate new FP.
if (hasFP(MF)) {
if (STI.isRegisterReservedByUser(FPReg))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "Frame pointer required, but has been reserved."});
// The frame pointer does need to be reserved from register allocation.
assert(MF.getRegInfo().isReserved(FPReg) && "FP not reserved");
// Some stack management variants automatically keep FP updated, so we don't
// need an instruction to do so.
if (!RVFI->hasImplicitFPUpdates(MF)) {
RI->adjustReg(
MBB, MBBI, DL, FPReg, SPReg,
StackOffset::getFixed(RealStackSize - RVFI->getVarArgsSaveSize()),
MachineInstr::FrameSetup, getStackAlign());
}
CFIBuilder.buildDefCFA(FPReg, RVFI->getVarArgsSaveSize());
}
uint64_t SecondSPAdjustAmount = 0;
// Emit the second SP adjustment after saving callee saved registers.
if (FirstSPAdjustAmount) {
SecondSPAdjustAmount = getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
allocateStack(MBB, MBBI, MF, SecondSPAdjustAmount,
getStackSizeWithRVVPadding(MF), !hasFP(MF), NeedProbe,
ProbeSize, DynAllocation, MachineInstr::FrameSetup);
}
if (RVVStackSize) {
if (NeedProbe) {
allocateAndProbeStackForRVV(MF, MBB, MBBI, DL, RVVStackSize,
MachineInstr::FrameSetup, !hasFP(MF),
DynAllocation);
} else {
// We must keep the stack pointer aligned through any intermediate
// updates.
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg,
StackOffset::getScalable(-RVVStackSize),
MachineInstr::FrameSetup, getStackAlign());
}
if (!hasFP(MF)) {
// Emit .cfi_def_cfa_expression "sp + StackSize + RVVStackSize * vlenb".
CFIBuilder.insertCFIInst(createDefCFAExpression(
*RI, SPReg, getStackSizeWithRVVPadding(MF), RVVStackSize / 8));
}
std::advance(MBBI, getRVVCalleeSavedInfo(MF, CSI).size());
emitCalleeSavedRVVPrologCFI(MBB, MBBI, hasFP(MF));
}
if (hasFP(MF)) {
// Realign Stack
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
if (RI->hasStackRealignment(MF)) {
Align MaxAlignment = MFI.getMaxAlign();
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (isInt<12>(-(int)MaxAlignment.value())) {
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ANDI), SPReg)
.addReg(SPReg)
.addImm(-(int)MaxAlignment.value())
.setMIFlag(MachineInstr::FrameSetup);
} else {
unsigned ShiftAmount = Log2(MaxAlignment);
Register VR =
MF.getRegInfo().createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SRLI), VR)
.addReg(SPReg)
.addImm(ShiftAmount)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SLLI), SPReg)
.addReg(VR)
.addImm(ShiftAmount)
.setMIFlag(MachineInstr::FrameSetup);
}
if (NeedProbe && RVVStackSize == 0) {
// Do a probe if the align + size allocated just passed the probe size
// and was not yet probed.
if (SecondSPAdjustAmount < ProbeSize &&
SecondSPAdjustAmount + MaxAlignment.value() >= ProbeSize) {
bool IsRV64 = STI.is64Bit();
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(MachineInstr::FrameSetup);
}
}
// FP will be used to restore the frame in the epilogue, so we need
// another base register BP to record SP after re-alignment. SP will
// track the current stack after allocating variable sized objects.
if (hasBP(MF)) {
// move BP, SP
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), BPReg)
.addReg(SPReg)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
}
}
}
}
void RISCVFrameLowering::deallocateStack(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL,
uint64_t &StackSize,
int64_t CFAOffset) const {
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(StackSize),
MachineInstr::FrameDestroy, getStackAlign());
StackSize = 0;
CFIInstBuilder(MBB, MBBI, MachineInstr::FrameDestroy)
.buildDefCFAOffset(CFAOffset);
}
void RISCVFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// Get the insert location for the epilogue. If there were no terminators in
// the block, get the last instruction.
MachineBasicBlock::iterator MBBI = MBB.end();
DebugLoc DL;
if (!MBB.empty()) {
MBBI = MBB.getLastNonDebugInstr();
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
MBBI = MBB.getFirstTerminator();
// Skip to before the restores of all callee-saved registers.
while (MBBI != MBB.begin() &&
std::prev(MBBI)->getFlag(MachineInstr::FrameDestroy))
--MBBI;
}
const auto &CSI = MFI.getCalleeSavedInfo();
// Skip to before the restores of scalar callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
auto FirstScalarCSRRestoreInsn =
std::next(MBBI, getRVVCalleeSavedInfo(MF, CSI).size());
CFIInstBuilder CFIBuilder(MBB, FirstScalarCSRRestoreInsn,
MachineInstr::FrameDestroy);
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
uint64_t RealStackSize = FirstSPAdjustAmount ? FirstSPAdjustAmount
: getStackSizeWithRVVPadding(MF);
uint64_t StackSize = FirstSPAdjustAmount ? FirstSPAdjustAmount
: getStackSizeWithRVVPadding(MF) -
RVFI->getReservedSpillsSize();
uint64_t FPOffset = RealStackSize - RVFI->getVarArgsSaveSize();
uint64_t RVVStackSize = RVFI->getRVVStackSize();
bool RestoreSPFromFP = RI->hasStackRealignment(MF) ||
MFI.hasVarSizedObjects() || !hasReservedCallFrame(MF);
if (RVVStackSize) {
// If RestoreSPFromFP the stack pointer will be restored using the frame
// pointer value.
if (!RestoreSPFromFP)
RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, SPReg,
StackOffset::getScalable(RVVStackSize),
MachineInstr::FrameDestroy, getStackAlign());
if (!hasFP(MF))
CFIBuilder.buildDefCFA(SPReg, RealStackSize);
emitCalleeSavedRVVEpilogCFI(MBB, FirstScalarCSRRestoreInsn);
}
if (FirstSPAdjustAmount) {
uint64_t SecondSPAdjustAmount =
getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
// If RestoreSPFromFP the stack pointer will be restored using the frame
// pointer value.
if (!RestoreSPFromFP)
RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, SPReg,
StackOffset::getFixed(SecondSPAdjustAmount),
MachineInstr::FrameDestroy, getStackAlign());
if (!hasFP(MF))
CFIBuilder.buildDefCFAOffset(FirstSPAdjustAmount);
}
// Restore the stack pointer using the value of the frame pointer. Only
// necessary if the stack pointer was modified, meaning the stack size is
// unknown.
//
// In order to make sure the stack point is right through the EH region,
// we also need to restore stack pointer from the frame pointer if we
// don't preserve stack space within prologue/epilogue for outgoing variables,
// normally it's just checking the variable sized object is present or not
// is enough, but we also don't preserve that at prologue/epilogue when
// have vector objects in stack.
if (RestoreSPFromFP) {
assert(hasFP(MF) && "frame pointer should not have been eliminated");
RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, FPReg,
StackOffset::getFixed(-FPOffset), MachineInstr::FrameDestroy,
getStackAlign());
}
if (hasFP(MF))
CFIBuilder.buildDefCFA(SPReg, RealStackSize);
// Skip to after the restores of scalar callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
MBBI = std::next(FirstScalarCSRRestoreInsn, getUnmanagedCSI(MF, CSI).size());
CFIBuilder.setInsertPoint(MBBI);
if (getLibCallID(MF, CSI) != -1) {
// tail __riscv_restore_[0-12] instruction is considered as a terminator,
// therefore it is unnecessary to place any CFI instructions after it. Just
// deallocate stack if needed and return.
if (StackSize != 0)
deallocateStack(MF, MBB, MBBI, DL, StackSize,
RVFI->getLibCallStackSize());
// Emit epilogue for shadow call stack.
emitSCSEpilogue(MF, MBB, MBBI, DL);
return;
}
// Recover callee-saved registers.
for (const CalleeSavedInfo &CS : getUnmanagedCSI(MF, CSI))
CFIBuilder.buildRestore(CS.getReg());
if (RVFI->isPushable(MF) && MBBI != MBB.end() && isPop(MBBI->getOpcode())) {
// Use available stack adjustment in pop instruction to deallocate stack
// space. Align the stack size down to a multiple of 16. This is needed for
// RVE.
// FIXME: Can we increase the stack size to a multiple of 16 instead?
uint64_t StackAdj =
std::min(alignDown(StackSize, 16), static_cast<uint64_t>(48));
MBBI->getOperand(1).setImm(StackAdj);
StackSize -= StackAdj;
if (StackSize != 0)
deallocateStack(MF, MBB, MBBI, DL, StackSize,
/*stack_adj of cm.pop instr*/ RealStackSize - StackSize);
auto NextI = next_nodbg(MBBI, MBB.end());
if (NextI == MBB.end() || NextI->getOpcode() != RISCV::PseudoRET) {
++MBBI;
CFIBuilder.setInsertPoint(MBBI);
for (const CalleeSavedInfo &CS : getPushOrLibCallsSavedInfo(MF, CSI))
CFIBuilder.buildRestore(CS.getReg());
// Update CFA Offset. If this is a QCI interrupt function, there will be a
// leftover offset which is deallocated by `QC.C.MILEAVERET`, otherwise
// getQCIInterruptStackSize() will be 0.
CFIBuilder.buildDefCFAOffset(RVFI->getQCIInterruptStackSize());
}
}
emitSiFiveCLICPreemptibleRestores(MF, MBB, MBBI, DL);
// Deallocate stack if StackSize isn't a zero yet. If this is a QCI interrupt
// function, there will be a leftover offset which is deallocated by
// `QC.C.MILEAVERET`, otherwise getQCIInterruptStackSize() will be 0.
if (StackSize != 0)
deallocateStack(MF, MBB, MBBI, DL, StackSize,
RVFI->getQCIInterruptStackSize());
// Emit epilogue for shadow call stack.
emitSCSEpilogue(MF, MBB, MBBI, DL);
// SiFive CLIC needs to swap `sf.mscratchcsw` into `sp`
emitSiFiveCLICStackSwap(MF, MBB, MBBI, DL);
}
StackOffset
RISCVFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
Register &FrameReg) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Callee-saved registers should be referenced relative to the stack
// pointer (positive offset), otherwise use the frame pointer (negative
// offset).
const auto &CSI = getUnmanagedCSI(MF, MFI.getCalleeSavedInfo());
int MinCSFI = 0;
int MaxCSFI = -1;
StackOffset Offset;
auto StackID = MFI.getStackID(FI);
assert((StackID == TargetStackID::Default ||
StackID == TargetStackID::ScalableVector) &&
"Unexpected stack ID for the frame object.");
if (StackID == TargetStackID::Default) {
assert(getOffsetOfLocalArea() == 0 && "LocalAreaOffset is not 0!");
Offset = StackOffset::getFixed(MFI.getObjectOffset(FI) +
MFI.getOffsetAdjustment());
} else if (StackID == TargetStackID::ScalableVector) {
Offset = StackOffset::getScalable(MFI.getObjectOffset(FI));
}
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
if (CSI.size()) {
MinCSFI = CSI[0].getFrameIdx();
MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
}
if (FI >= MinCSFI && FI <= MaxCSFI) {
FrameReg = SPReg;
if (FirstSPAdjustAmount)
Offset += StackOffset::getFixed(FirstSPAdjustAmount);
else
Offset += StackOffset::getFixed(getStackSizeWithRVVPadding(MF));
return Offset;
}
if (RI->hasStackRealignment(MF) && !MFI.isFixedObjectIndex(FI)) {
// If the stack was realigned, the frame pointer is set in order to allow
// SP to be restored, so we need another base register to record the stack
// after realignment.
// |--------------------------| -- <-- FP
// | callee-allocated save | | <----|
// | area for register varargs| | |
// |--------------------------| | |
// | callee-saved registers | | |
// |--------------------------| -- |
// | realignment (the size of | | |
// | this area is not counted | | |
// | in MFI.getStackSize()) | | |
// |--------------------------| -- |-- MFI.getStackSize()
// | RVV alignment padding | | |
// | (not counted in | | |
// | MFI.getStackSize() but | | |
// | counted in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | RVV objects | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize() or in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- BP (if var sized objects present)
// | VarSize objects | |
// |--------------------------| -- <-- SP
if (hasBP(MF)) {
FrameReg = RISCVABI::getBPReg();
} else {
// VarSize objects must be empty in this case!
assert(!MFI.hasVarSizedObjects());
FrameReg = SPReg;
}
} else {
FrameReg = RI->getFrameRegister(MF);
}
if (FrameReg == FPReg) {
Offset += StackOffset::getFixed(RVFI->getVarArgsSaveSize());
// When using FP to access scalable vector objects, we need to minus
// the frame size.
//
// |--------------------------| -- <-- FP
// | callee-allocated save | |
// | area for register varargs| |
// |--------------------------| |
// | callee-saved registers | |
// |--------------------------| | MFI.getStackSize()
// | scalar local variables | |
// |--------------------------| -- (Offset of RVV objects is from here.)
// | RVV objects |
// |--------------------------|
// | VarSize objects |
// |--------------------------| <-- SP
if (StackID == TargetStackID::ScalableVector) {
assert(!RI->hasStackRealignment(MF) &&
"Can't index across variable sized realign");
// We don't expect any extra RVV alignment padding, as the stack size
// and RVV object sections should be correct aligned in their own
// right.
assert(MFI.getStackSize() == getStackSizeWithRVVPadding(MF) &&
"Inconsistent stack layout");
Offset -= StackOffset::getFixed(MFI.getStackSize());
}
return Offset;
}
// This case handles indexing off both SP and BP.
// If indexing off SP, there must not be any var sized objects
assert(FrameReg == RISCVABI::getBPReg() || !MFI.hasVarSizedObjects());
// When using SP to access frame objects, we need to add RVV stack size.
//
// |--------------------------| -- <-- FP
// | callee-allocated save | | <----|
// | area for register varargs| | |
// |--------------------------| | |
// | callee-saved registers | | |
// |--------------------------| -- |
// | RVV alignment padding | | |
// | (not counted in | | |
// | MFI.getStackSize() but | | |
// | counted in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | RVV objects | | |-- MFI.getStackSize()
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- BP (if var sized objects present)
// | VarSize objects | |
// |--------------------------| -- <-- SP
//
// The total amount of padding surrounding RVV objects is described by
// RVV->getRVVPadding() and it can be zero. It allows us to align the RVV
// objects to the required alignment.
if (MFI.getStackID(FI) == TargetStackID::Default) {
if (MFI.isFixedObjectIndex(FI)) {
assert(!RI->hasStackRealignment(MF) &&
"Can't index across variable sized realign");
Offset += StackOffset::get(getStackSizeWithRVVPadding(MF),
RVFI->getRVVStackSize());
} else {
Offset += StackOffset::getFixed(MFI.getStackSize());
}
} else if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
// Ensure the base of the RVV stack is correctly aligned: add on the
// alignment padding.
int ScalarLocalVarSize = MFI.getStackSize() -
RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize() + RVFI->getRVVPadding();
Offset += StackOffset::get(ScalarLocalVarSize, RVFI->getRVVStackSize());
}
return Offset;
}
void RISCVFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// Unconditionally spill RA and FP only if the function uses a frame
// pointer.
if (hasFP(MF)) {
SavedRegs.set(RAReg);
SavedRegs.set(FPReg);
}
// Mark BP as used if function has dedicated base pointer.
if (hasBP(MF))
SavedRegs.set(RISCVABI::getBPReg());
// When using cm.push/pop we must save X27 if we save X26.
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (RVFI->isPushable(MF) && SavedRegs.test(RISCV::X26))
SavedRegs.set(RISCV::X27);
// SiFive Preemptible Interrupt Handlers need additional frame entries
createSiFivePreemptibleInterruptFrameEntries(MF, *RVFI);
}
std::pair<int64_t, Align>
RISCVFrameLowering::assignRVVStackObjectOffsets(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
// Create a buffer of RVV objects to allocate.
SmallVector<int, 8> ObjectsToAllocate;
auto pushRVVObjects = [&](int FIBegin, int FIEnd) {
for (int I = FIBegin, E = FIEnd; I != E; ++I) {
unsigned StackID = MFI.getStackID(I);
if (StackID != TargetStackID::ScalableVector)
continue;
if (MFI.isDeadObjectIndex(I))
continue;
ObjectsToAllocate.push_back(I);
}
};
// First push RVV Callee Saved object, then push RVV stack object
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
const auto &RVVCSI = getRVVCalleeSavedInfo(MF, CSI);
if (!RVVCSI.empty())
pushRVVObjects(RVVCSI[0].getFrameIdx(),
RVVCSI[RVVCSI.size() - 1].getFrameIdx() + 1);
pushRVVObjects(0, MFI.getObjectIndexEnd() - RVVCSI.size());
// The minimum alignment is 16 bytes.
Align RVVStackAlign(16);
const auto &ST = MF.getSubtarget<RISCVSubtarget>();
if (!ST.hasVInstructions()) {
assert(ObjectsToAllocate.empty() &&
"Can't allocate scalable-vector objects without V instructions");
return std::make_pair(0, RVVStackAlign);
}
// Allocate all RVV locals and spills
int64_t Offset = 0;
for (int FI : ObjectsToAllocate) {
// ObjectSize in bytes.
int64_t ObjectSize = MFI.getObjectSize(FI);
auto ObjectAlign =
std::max(Align(RISCV::RVVBytesPerBlock), MFI.getObjectAlign(FI));
// If the data type is the fractional vector type, reserve one vector
// register for it.
if (ObjectSize < RISCV::RVVBytesPerBlock)
ObjectSize = RISCV::RVVBytesPerBlock;
Offset = alignTo(Offset + ObjectSize, ObjectAlign);
MFI.setObjectOffset(FI, -Offset);
// Update the maximum alignment of the RVV stack section
RVVStackAlign = std::max(RVVStackAlign, ObjectAlign);
}
uint64_t StackSize = Offset;
// Ensure the alignment of the RVV stack. Since we want the most-aligned
// object right at the bottom (i.e., any padding at the top of the frame),
// readjust all RVV objects down by the alignment padding.
// Stack size and offsets are multiples of vscale, stack alignment is in
// bytes, we can divide stack alignment by minimum vscale to get a maximum
// stack alignment multiple of vscale.
auto VScale =
std::max<uint64_t>(ST.getRealMinVLen() / RISCV::RVVBitsPerBlock, 1);
if (auto RVVStackAlignVScale = RVVStackAlign.value() / VScale) {
if (auto AlignmentPadding =
offsetToAlignment(StackSize, Align(RVVStackAlignVScale))) {
StackSize += AlignmentPadding;
for (int FI : ObjectsToAllocate)
MFI.setObjectOffset(FI, MFI.getObjectOffset(FI) - AlignmentPadding);
}
}
return std::make_pair(StackSize, RVVStackAlign);
}
static unsigned getScavSlotsNumForRVV(MachineFunction &MF) {
// For RVV spill, scalable stack offsets computing requires up to two scratch
// registers
static constexpr unsigned ScavSlotsNumRVVSpillScalableObject = 2;
// For RVV spill, non-scalable stack offsets computing requires up to one
// scratch register.
static constexpr unsigned ScavSlotsNumRVVSpillNonScalableObject = 1;
// ADDI instruction's destination register can be used for computing
// offsets. So Scalable stack offsets require up to one scratch register.
static constexpr unsigned ScavSlotsADDIScalableObject = 1;
static constexpr unsigned MaxScavSlotsNumKnown =
std::max({ScavSlotsADDIScalableObject, ScavSlotsNumRVVSpillScalableObject,
ScavSlotsNumRVVSpillNonScalableObject});
unsigned MaxScavSlotsNum = 0;
if (!MF.getSubtarget<RISCVSubtarget>().hasVInstructions())
return false;
for (const MachineBasicBlock &MBB : MF)
for (const MachineInstr &MI : MBB) {
bool IsRVVSpill = RISCV::isRVVSpill(MI);
for (auto &MO : MI.operands()) {
if (!MO.isFI())
continue;
bool IsScalableVectorID = MF.getFrameInfo().getStackID(MO.getIndex()) ==
TargetStackID::ScalableVector;
if (IsRVVSpill) {
MaxScavSlotsNum = std::max(
MaxScavSlotsNum, IsScalableVectorID
? ScavSlotsNumRVVSpillScalableObject
: ScavSlotsNumRVVSpillNonScalableObject);
} else if (MI.getOpcode() == RISCV::ADDI && IsScalableVectorID) {
MaxScavSlotsNum =
std::max(MaxScavSlotsNum, ScavSlotsADDIScalableObject);
}
}
if (MaxScavSlotsNum == MaxScavSlotsNumKnown)
return MaxScavSlotsNumKnown;
}
return MaxScavSlotsNum;
}
static bool hasRVVFrameObject(const MachineFunction &MF) {
// Originally, the function will scan all the stack objects to check whether
// if there is any scalable vector object on the stack or not. However, it
// causes errors in the register allocator. In issue 53016, it returns false
// before RA because there is no RVV stack objects. After RA, it returns true
// because there are spilling slots for RVV values during RA. It will not
// reserve BP during register allocation and generate BP access in the PEI
// pass due to the inconsistent behavior of the function.
//
// The function is changed to use hasVInstructions() as the return value. It
// is not precise, but it can make the register allocation correct.
//
// FIXME: Find a better way to make the decision or revisit the solution in
// D103622.
//
// Refer to https://github.com/llvm/llvm-project/issues/53016.
return MF.getSubtarget<RISCVSubtarget>().hasVInstructions();
}
static unsigned estimateFunctionSizeInBytes(const MachineFunction &MF,
const RISCVInstrInfo &TII) {
unsigned FnSize = 0;
for (auto &MBB : MF) {
for (auto &MI : MBB) {
// Far branches over 20-bit offset will be relaxed in branch relaxation
// pass. In the worst case, conditional branches will be relaxed into
// the following instruction sequence. Unconditional branches are
// relaxed in the same way, with the exception that there is no first
// branch instruction.
//
// foo
// bne t5, t6, .rev_cond # `TII->getInstSizeInBytes(MI)` bytes
// sd s11, 0(sp) # 4 bytes, or 2 bytes with Zca
// jump .restore, s11 # 8 bytes
// .rev_cond
// bar
// j .dest_bb # 4 bytes, or 2 bytes with Zca
// .restore:
// ld s11, 0(sp) # 4 bytes, or 2 bytes with Zca
// .dest:
// baz
if (MI.isConditionalBranch())
FnSize += TII.getInstSizeInBytes(MI);
if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
if (MF.getSubtarget<RISCVSubtarget>().hasStdExtZca())
FnSize += 2 + 8 + 2 + 2;
else
FnSize += 4 + 8 + 4 + 4;
continue;
}
FnSize += TII.getInstSizeInBytes(MI);
}
}
return FnSize;
}
void RISCVFrameLowering::processFunctionBeforeFrameFinalized(
MachineFunction &MF, RegScavenger *RS) const {
const RISCVRegisterInfo *RegInfo =
MF.getSubtarget<RISCVSubtarget>().getRegisterInfo();
const RISCVInstrInfo *TII = MF.getSubtarget<RISCVSubtarget>().getInstrInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
int64_t RVVStackSize;
Align RVVStackAlign;
std::tie(RVVStackSize, RVVStackAlign) = assignRVVStackObjectOffsets(MF);
RVFI->setRVVStackSize(RVVStackSize);
RVFI->setRVVStackAlign(RVVStackAlign);
if (hasRVVFrameObject(MF)) {
// Ensure the entire stack is aligned to at least the RVV requirement: some
// scalable-vector object alignments are not considered by the
// target-independent code.
MFI.ensureMaxAlignment(RVVStackAlign);
}
unsigned ScavSlotsNum = 0;
// estimateStackSize has been observed to under-estimate the final stack
// size, so give ourselves wiggle-room by checking for stack size
// representable an 11-bit signed field rather than 12-bits.
if (!isInt<11>(MFI.estimateStackSize(MF)))
ScavSlotsNum = 1;
// Far branches over 20-bit offset require a spill slot for scratch register.
bool IsLargeFunction = !isInt<20>(estimateFunctionSizeInBytes(MF, *TII));
if (IsLargeFunction)
ScavSlotsNum = std::max(ScavSlotsNum, 1u);
// RVV loads & stores have no capacity to hold the immediate address offsets
// so we must always reserve an emergency spill slot if the MachineFunction
// contains any RVV spills.
ScavSlotsNum = std::max(ScavSlotsNum, getScavSlotsNumForRVV(MF));
for (unsigned I = 0; I < ScavSlotsNum; I++) {
int FI = MFI.CreateSpillStackObject(RegInfo->getSpillSize(*RC),
RegInfo->getSpillAlign(*RC));
RS->addScavengingFrameIndex(FI);
if (IsLargeFunction && RVFI->getBranchRelaxationScratchFrameIndex() == -1)
RVFI->setBranchRelaxationScratchFrameIndex(FI);
}
unsigned Size = RVFI->getReservedSpillsSize();
for (const auto &Info : MFI.getCalleeSavedInfo()) {
int FrameIdx = Info.getFrameIdx();
if (FrameIdx < 0 || MFI.getStackID(FrameIdx) != TargetStackID::Default)
continue;
Size += MFI.getObjectSize(FrameIdx);
}
RVFI->setCalleeSavedStackSize(Size);
}
// Not preserve stack space within prologue for outgoing variables when the
// function contains variable size objects or there are vector objects accessed
// by the frame pointer.
// Let eliminateCallFramePseudoInstr preserve stack space for it.
bool RISCVFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
return !MF.getFrameInfo().hasVarSizedObjects() &&
!(hasFP(MF) && hasRVVFrameObject(MF));
}
// Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions.
MachineBasicBlock::iterator RISCVFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
DebugLoc DL = MI->getDebugLoc();
if (!hasReservedCallFrame(MF)) {
// If space has not been reserved for a call frame, ADJCALLSTACKDOWN and
// ADJCALLSTACKUP must be converted to instructions manipulating the stack
// pointer. This is necessary when there is a variable length stack
// allocation (e.g. alloca), which means it's not possible to allocate
// space for outgoing arguments from within the function prologue.
int64_t Amount = MI->getOperand(0).getImm();
if (Amount != 0) {
// Ensure the stack remains aligned after adjustment.
Amount = alignSPAdjust(Amount);
if (MI->getOpcode() == RISCV::ADJCALLSTACKDOWN)
Amount = -Amount;
const RISCVTargetLowering *TLI =
MF.getSubtarget<RISCVSubtarget>().getTargetLowering();
int64_t ProbeSize = TLI->getStackProbeSize(MF, getStackAlign());
if (TLI->hasInlineStackProbe(MF) && -Amount >= ProbeSize) {
// When stack probing is enabled, the decrement of SP may need to be
// probed. We can handle both the decrement and the probing in
// allocateStack.
bool DynAllocation =
MF.getInfo<RISCVMachineFunctionInfo>()->hasDynamicAllocation();
allocateStack(MBB, MI, MF, -Amount, -Amount, !hasFP(MF),
/*NeedProbe=*/true, ProbeSize, DynAllocation,
MachineInstr::NoFlags);
} else {
const RISCVRegisterInfo &RI = *STI.getRegisterInfo();
RI.adjustReg(MBB, MI, DL, SPReg, SPReg, StackOffset::getFixed(Amount),
MachineInstr::NoFlags, getStackAlign());
}
}
}
return MBB.erase(MI);
}
// We would like to split the SP adjustment to reduce prologue/epilogue
// as following instructions. In this way, the offset of the callee saved
// register could fit in a single store. Supposed that the first sp adjust
// amount is 2032.
// add sp,sp,-2032
// sw ra,2028(sp)
// sw s0,2024(sp)
// sw s1,2020(sp)
// sw s3,2012(sp)
// sw s4,2008(sp)
// add sp,sp,-64
uint64_t
RISCVFrameLowering::getFirstSPAdjustAmount(const MachineFunction &MF) const {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
uint64_t StackSize = getStackSizeWithRVVPadding(MF);
// Disable SplitSPAdjust if save-restore libcall, push/pop or QCI interrupts
// are used. The callee-saved registers will be pushed by the save-restore
// libcalls, so we don't have to split the SP adjustment in this case.
if (RVFI->getReservedSpillsSize())
return 0;
// Return the FirstSPAdjustAmount if the StackSize can not fit in a signed
// 12-bit and there exists a callee-saved register needing to be pushed.
if (!isInt<12>(StackSize) && (CSI.size() > 0)) {
// FirstSPAdjustAmount is chosen at most as (2048 - StackAlign) because
// 2048 will cause sp = sp + 2048 in the epilogue to be split into multiple
// instructions. Offsets smaller than 2048 can fit in a single load/store
// instruction, and we have to stick with the stack alignment. 2048 has
// 16-byte alignment. The stack alignment for RV32 and RV64 is 16 and for
// RV32E it is 4. So (2048 - StackAlign) will satisfy the stack alignment.
const uint64_t StackAlign = getStackAlign().value();
// Amount of (2048 - StackAlign) will prevent callee saved and restored
// instructions be compressed, so try to adjust the amount to the largest
// offset that stack compression instructions accept when target supports
// compression instructions.
if (STI.hasStdExtZca()) {
// The compression extensions may support the following instructions:
// riscv32: c.lwsp rd, offset[7:2] => 2^(6 + 2)
// c.swsp rs2, offset[7:2] => 2^(6 + 2)
// c.flwsp rd, offset[7:2] => 2^(6 + 2)
// c.fswsp rs2, offset[7:2] => 2^(6 + 2)
// riscv64: c.ldsp rd, offset[8:3] => 2^(6 + 3)
// c.sdsp rs2, offset[8:3] => 2^(6 + 3)
// c.fldsp rd, offset[8:3] => 2^(6 + 3)
// c.fsdsp rs2, offset[8:3] => 2^(6 + 3)
const uint64_t RVCompressLen = STI.getXLen() * 8;
// Compared with amount (2048 - StackAlign), StackSize needs to
// satisfy the following conditions to avoid using more instructions
// to adjust the sp after adjusting the amount, such as
// StackSize meets the condition (StackSize <= 2048 + RVCompressLen),
// case1: Amount is 2048 - StackAlign: use addi + addi to adjust sp.
// case2: Amount is RVCompressLen: use addi + addi to adjust sp.
auto CanCompress = [&](uint64_t CompressLen) -> bool {
if (StackSize <= 2047 + CompressLen ||
(StackSize > 2048 * 2 - StackAlign &&
StackSize <= 2047 * 2 + CompressLen) ||
StackSize > 2048 * 3 - StackAlign)
return true;
return false;
};
// In the epilogue, addi sp, sp, 496 is used to recover the sp and it
// can be compressed(C.ADDI16SP, offset can be [-512, 496]), but
// addi sp, sp, 512 can not be compressed. So try to use 496 first.
const uint64_t ADDI16SPCompressLen = 496;
if (STI.is64Bit() && CanCompress(ADDI16SPCompressLen))
return ADDI16SPCompressLen;
if (CanCompress(RVCompressLen))
return RVCompressLen;
}
return 2048 - StackAlign;
}
return 0;
}
bool RISCVFrameLowering::assignCalleeSavedSpillSlots(
MachineFunction &MF, const TargetRegisterInfo *TRI,
std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
unsigned &MaxCSFrameIndex) const {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Preemptible Interrupts have two additional Callee-save Frame Indexes,
// not tracked by `CSI`.
if (RVFI->isSiFivePreemptibleInterrupt(MF)) {
for (int I = 0; I < 2; ++I) {
int FI = RVFI->getInterruptCSRFrameIndex(I);
MinCSFrameIndex = std::min<unsigned>(MinCSFrameIndex, FI);
MaxCSFrameIndex = std::max<unsigned>(MaxCSFrameIndex, FI);
}
}
// Early exit if no callee saved registers are modified!
if (CSI.empty())
return true;
if (RVFI->useQCIInterrupt(MF)) {
RVFI->setQCIInterruptStackSize(QCIInterruptPushAmount);
}
if (RVFI->isPushable(MF)) {
// Determine how many GPRs we need to push and save it to RVFI.
unsigned PushedRegNum = getNumPushPopRegs(CSI);
// `QC.C.MIENTER(.NEST)` will save `ra` and `s0`, so we should only push if
// we want to push more than 2 registers. Otherwise, we should push if we
// want to push more than 0 registers.
unsigned OnlyPushIfMoreThan = RVFI->useQCIInterrupt(MF) ? 2 : 0;
if (PushedRegNum > OnlyPushIfMoreThan) {
RVFI->setRVPushRegs(PushedRegNum);
RVFI->setRVPushStackSize(alignTo((STI.getXLen() / 8) * PushedRegNum, 16));
}
}
MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
for (auto &CS : CSI) {
MCRegister Reg = CS.getReg();
const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
unsigned Size = RegInfo->getSpillSize(*RC);
if (RVFI->useQCIInterrupt(MF)) {
const auto *FFI = llvm::find_if(FixedCSRFIQCIInterruptMap, [&](auto P) {
return P.first == CS.getReg();
});
if (FFI != std::end(FixedCSRFIQCIInterruptMap)) {
int64_t Offset = FFI->second * (int64_t)Size;
int FrameIdx = MFI.CreateFixedSpillStackObject(Size, Offset);
assert(FrameIdx < 0);
CS.setFrameIdx(FrameIdx);
continue;
}
}
if (RVFI->useSaveRestoreLibCalls(MF) || RVFI->isPushable(MF)) {
const auto *FII = llvm::find_if(
FixedCSRFIMap, [&](MCPhysReg P) { return P == CS.getReg(); });
unsigned RegNum = std::distance(std::begin(FixedCSRFIMap), FII);
if (FII != std::end(FixedCSRFIMap)) {
int64_t Offset;
if (RVFI->getPushPopKind(MF) ==
RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp)
Offset = -int64_t(RVFI->getRVPushRegs() - RegNum) * Size;
else
Offset = -int64_t(RegNum + 1) * Size;
if (RVFI->useQCIInterrupt(MF))
Offset -= QCIInterruptPushAmount;
int FrameIdx = MFI.CreateFixedSpillStackObject(Size, Offset);
assert(FrameIdx < 0);
CS.setFrameIdx(FrameIdx);
continue;
}
}
// Not a fixed slot.
Align Alignment = RegInfo->getSpillAlign(*RC);
// We may not be able to satisfy the desired alignment specification of
// the TargetRegisterClass if the stack alignment is smaller. Use the
// min.
Alignment = std::min(Alignment, getStackAlign());
int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
if ((unsigned)FrameIdx < MinCSFrameIndex)
MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex)
MaxCSFrameIndex = FrameIdx;
CS.setFrameIdx(FrameIdx);
if (RISCVRegisterInfo::isRVVRegClass(RC))
MFI.setStackID(FrameIdx, TargetStackID::ScalableVector);
}
if (RVFI->useQCIInterrupt(MF)) {
// Allocate a fixed object that covers the entire QCI stack allocation,
// because there are gaps which are reserved for future use.
MFI.CreateFixedSpillStackObject(
QCIInterruptPushAmount, -static_cast<int64_t>(QCIInterruptPushAmount));
}
if (RVFI->isPushable(MF)) {
int64_t QCIOffset = RVFI->useQCIInterrupt(MF) ? QCIInterruptPushAmount : 0;
// Allocate a fixed object that covers the full push.
if (int64_t PushSize = RVFI->getRVPushStackSize())
MFI.CreateFixedSpillStackObject(PushSize, -PushSize - QCIOffset);
} else if (int LibCallRegs = getLibCallID(MF, CSI) + 1) {
int64_t LibCallFrameSize =
alignTo((STI.getXLen() / 8) * LibCallRegs, getStackAlign());
MFI.CreateFixedSpillStackObject(LibCallFrameSize, -LibCallFrameSize);
}
return true;
}
bool RISCVFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end() && !MI->isDebugInstr())
DL = MI->getDebugLoc();
RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useQCIInterrupt(*MF)) {
// Emit QC.C.MIENTER(.NEST)
BuildMI(
MBB, MI, DL,
TII.get(RVFI->getInterruptStackKind(*MF) ==
RISCVMachineFunctionInfo::InterruptStackKind::QCINest
? RISCV::QC_C_MIENTER_NEST
: RISCV::QC_C_MIENTER))
.setMIFlag(MachineInstr::FrameSetup);
for (auto [Reg, _Offset] : FixedCSRFIQCIInterruptMap)
MBB.addLiveIn(Reg);
}
if (RVFI->isPushable(*MF)) {
// Emit CM.PUSH with base StackAdj & evaluate Push stack
unsigned PushedRegNum = RVFI->getRVPushRegs();
if (PushedRegNum > 0) {
// Use encoded number to represent registers to spill.
unsigned Opcode = getPushOpcode(
RVFI->getPushPopKind(*MF), hasFP(*MF) && !RVFI->useQCIInterrupt(*MF));
unsigned RegEnc = RISCVZC::encodeRegListNumRegs(PushedRegNum);
MachineInstrBuilder PushBuilder =
BuildMI(MBB, MI, DL, TII.get(Opcode))
.setMIFlag(MachineInstr::FrameSetup);
PushBuilder.addImm(RegEnc);
PushBuilder.addImm(0);
for (unsigned i = 0; i < PushedRegNum; i++)
PushBuilder.addUse(FixedCSRFIMap[i], RegState::Implicit);
}
} else if (const char *SpillLibCall = getSpillLibCallName(*MF, CSI)) {
// Add spill libcall via non-callee-saved register t0.
BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoCALLReg), RISCV::X5)
.addExternalSymbol(SpillLibCall, RISCVII::MO_CALL)
.setMIFlag(MachineInstr::FrameSetup);
// Add registers spilled in libcall as liveins.
for (auto &CS : CSI)
MBB.addLiveIn(CS.getReg());
}
// Manually spill values not spilled by libcall & Push/Pop.
const auto &UnmanagedCSI = getUnmanagedCSI(*MF, CSI);
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, CSI);
auto storeRegsToStackSlots = [&](decltype(UnmanagedCSI) CSInfo) {
for (auto &CS : CSInfo) {
// Insert the spill to the stack frame.
MCRegister Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(MBB, MI, Reg, !MBB.isLiveIn(Reg),
CS.getFrameIdx(), RC, TRI, Register(),
MachineInstr::FrameSetup);
}
};
storeRegsToStackSlots(UnmanagedCSI);
storeRegsToStackSlots(RVVCSI);
return true;
}
static unsigned getCalleeSavedRVVNumRegs(const Register &BaseReg) {
return RISCV::VRRegClass.contains(BaseReg) ? 1
: RISCV::VRM2RegClass.contains(BaseReg) ? 2
: RISCV::VRM4RegClass.contains(BaseReg) ? 4
: 8;
}
static MCRegister getRVVBaseRegister(const RISCVRegisterInfo &TRI,
const Register &Reg) {
MCRegister BaseReg = TRI.getSubReg(Reg, RISCV::sub_vrm1_0);
// If it's not a grouped vector register, it doesn't have subregister, so
// the base register is just itself.
if (BaseReg == RISCV::NoRegister)
BaseReg = Reg;
return BaseReg;
}
void RISCVFrameLowering::emitCalleeSavedRVVPrologCFI(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, bool HasFP) const {
MachineFunction *MF = MBB.getParent();
const MachineFrameInfo &MFI = MF->getFrameInfo();
RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
const RISCVRegisterInfo &TRI = *STI.getRegisterInfo();
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, MFI.getCalleeSavedInfo());
if (RVVCSI.empty())
return;
uint64_t FixedSize = getStackSizeWithRVVPadding(*MF);
if (!HasFP) {
uint64_t ScalarLocalVarSize =
MFI.getStackSize() - RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize() + RVFI->getRVVPadding();
FixedSize -= ScalarLocalVarSize;
}
CFIInstBuilder CFIBuilder(MBB, MI, MachineInstr::FrameSetup);
for (auto &CS : RVVCSI) {
// Insert the spill to the stack frame.
int FI = CS.getFrameIdx();
MCRegister BaseReg = getRVVBaseRegister(TRI, CS.getReg());
unsigned NumRegs = getCalleeSavedRVVNumRegs(CS.getReg());
for (unsigned i = 0; i < NumRegs; ++i) {
CFIBuilder.insertCFIInst(createDefCFAOffset(
TRI, BaseReg + i, -FixedSize, MFI.getObjectOffset(FI) / 8 + i));
}
}
}
void RISCVFrameLowering::emitCalleeSavedRVVEpilogCFI(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const {
MachineFunction *MF = MBB.getParent();
const MachineFrameInfo &MFI = MF->getFrameInfo();
const RISCVRegisterInfo &TRI = *STI.getRegisterInfo();
CFIInstBuilder CFIHelper(MBB, MI, MachineInstr::FrameDestroy);
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, MFI.getCalleeSavedInfo());
for (auto &CS : RVVCSI) {
MCRegister BaseReg = getRVVBaseRegister(TRI, CS.getReg());
unsigned NumRegs = getCalleeSavedRVVNumRegs(CS.getReg());
for (unsigned i = 0; i < NumRegs; ++i)
CFIHelper.buildRestore(BaseReg + i);
}
}
bool RISCVFrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end() && !MI->isDebugInstr())
DL = MI->getDebugLoc();
// Manually restore values not restored by libcall & Push/Pop.
// Reverse the restore order in epilog. In addition, the return
// address will be restored first in the epilogue. It increases
// the opportunity to avoid the load-to-use data hazard between
// loading RA and return by RA. loadRegFromStackSlot can insert
// multiple instructions.
const auto &UnmanagedCSI = getUnmanagedCSI(*MF, CSI);
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, CSI);
auto loadRegFromStackSlot = [&](decltype(UnmanagedCSI) CSInfo) {
for (auto &CS : CSInfo) {
MCRegister Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.loadRegFromStackSlot(MBB, MI, Reg, CS.getFrameIdx(), RC, TRI,
Register(), MachineInstr::FrameDestroy);
assert(MI != MBB.begin() &&
"loadRegFromStackSlot didn't insert any code!");
}
};
loadRegFromStackSlot(RVVCSI);
loadRegFromStackSlot(UnmanagedCSI);
RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useQCIInterrupt(*MF)) {
// Don't emit anything here because restoration is handled by
// QC.C.MILEAVERET which we already inserted to return.
assert(MI->getOpcode() == RISCV::QC_C_MILEAVERET &&
"Unexpected QCI Interrupt Return Instruction");
}
if (RVFI->isPushable(*MF)) {
unsigned PushedRegNum = RVFI->getRVPushRegs();
if (PushedRegNum > 0) {
unsigned Opcode = getPopOpcode(RVFI->getPushPopKind(*MF));
unsigned RegEnc = RISCVZC::encodeRegListNumRegs(PushedRegNum);
MachineInstrBuilder PopBuilder =
BuildMI(MBB, MI, DL, TII.get(Opcode))
.setMIFlag(MachineInstr::FrameDestroy);
// Use encoded number to represent registers to restore.
PopBuilder.addImm(RegEnc);
PopBuilder.addImm(0);
for (unsigned i = 0; i < RVFI->getRVPushRegs(); i++)
PopBuilder.addDef(FixedCSRFIMap[i], RegState::ImplicitDefine);
}
} else {
const char *RestoreLibCall = getRestoreLibCallName(*MF, CSI);
if (RestoreLibCall) {
// Add restore libcall via tail call.
MachineBasicBlock::iterator NewMI =
BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoTAIL))
.addExternalSymbol(RestoreLibCall, RISCVII::MO_CALL)
.setMIFlag(MachineInstr::FrameDestroy);
// Remove trailing returns, since the terminator is now a tail call to the
// restore function.
if (MI != MBB.end() && MI->getOpcode() == RISCV::PseudoRET) {
NewMI->copyImplicitOps(*MF, *MI);
MI->eraseFromParent();
}
}
}
return true;
}
bool RISCVFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
// Keep the conventional code flow when not optimizing.
if (MF.getFunction().hasOptNone())
return false;
return true;
}
bool RISCVFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
const MachineFunction *MF = MBB.getParent();
const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
// Make sure VTYPE and VL are not live-in since we will use vsetvli in the
// prologue to get the VLEN, and that will clobber these registers.
//
// We may do also check the stack contains objects with scalable vector type,
// but this will require iterating over all the stack objects, but this may
// not worth since the situation is rare, we could do further check in future
// if we find it is necessary.
if (STI.preferVsetvliOverReadVLENB() &&
(MBB.isLiveIn(RISCV::VTYPE) || MBB.isLiveIn(RISCV::VL)))
return false;
if (!RVFI->useSaveRestoreLibCalls(*MF))
return true;
// Inserting a call to a __riscv_save libcall requires the use of the register
// t0 (X5) to hold the return address. Therefore if this register is already
// used we can't insert the call.
RegScavenger RS;
RS.enterBasicBlock(*TmpMBB);
return !RS.isRegUsed(RISCV::X5);
}
bool RISCVFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
const MachineFunction *MF = MBB.getParent();
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
// We do not want QC.C.MILEAVERET to be subject to shrink-wrapping - it must
// come in the final block of its function as it both pops and returns.
if (RVFI->useQCIInterrupt(*MF))
return MBB.succ_empty();
if (!RVFI->useSaveRestoreLibCalls(*MF))
return true;
// Using the __riscv_restore libcalls to restore CSRs requires a tail call.
// This means if we still need to continue executing code within this function
// the restore cannot take place in this basic block.
if (MBB.succ_size() > 1)
return false;
MachineBasicBlock *SuccMBB =
MBB.succ_empty() ? TmpMBB->getFallThrough() : *MBB.succ_begin();
// Doing a tail call should be safe if there are no successors, because either
// we have a returning block or the end of the block is unreachable, so the
// restore will be eliminated regardless.
if (!SuccMBB)
return true;
// The successor can only contain a return, since we would effectively be
// replacing the successor with our own tail return at the end of our block.
return SuccMBB->isReturnBlock() && SuccMBB->size() == 1;
}
bool RISCVFrameLowering::isSupportedStackID(TargetStackID::Value ID) const {
switch (ID) {
case TargetStackID::Default:
case TargetStackID::ScalableVector:
return true;
case TargetStackID::NoAlloc:
case TargetStackID::SGPRSpill:
case TargetStackID::WasmLocal:
return false;
}
llvm_unreachable("Invalid TargetStackID::Value");
}
TargetStackID::Value RISCVFrameLowering::getStackIDForScalableVectors() const {
return TargetStackID::ScalableVector;
}
// Synthesize the probe loop.
static void emitStackProbeInline(MachineBasicBlock::iterator MBBI, DebugLoc DL,
Register TargetReg, bool IsRVV) {
assert(TargetReg != RISCV::X2 && "New top of stack cannot already be in SP");
MachineBasicBlock &MBB = *MBBI->getParent();
MachineFunction &MF = *MBB.getParent();
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = Subtarget.getInstrInfo();
bool IsRV64 = Subtarget.is64Bit();
Align StackAlign = Subtarget.getFrameLowering()->getStackAlign();
const RISCVTargetLowering *TLI = Subtarget.getTargetLowering();
uint64_t ProbeSize = TLI->getStackProbeSize(MF, StackAlign);
MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
MachineBasicBlock *LoopTestMBB =
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MF.insert(MBBInsertPoint, LoopTestMBB);
MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MF.insert(MBBInsertPoint, ExitMBB);
MachineInstr::MIFlag Flags = MachineInstr::FrameSetup;
Register ScratchReg = RISCV::X7;
// ScratchReg = ProbeSize
TII->movImm(MBB, MBBI, DL, ScratchReg, ProbeSize, Flags);
// LoopTest:
// SUB SP, SP, ProbeSize
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::SUB), SPReg)
.addReg(SPReg)
.addReg(ScratchReg)
.setMIFlags(Flags);
// s[d|w] zero, 0(sp)
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL,
TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flags);
if (IsRVV) {
// SUB TargetReg, TargetReg, ProbeSize
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::SUB),
TargetReg)
.addReg(TargetReg)
.addReg(ScratchReg)
.setMIFlags(Flags);
// BGE TargetReg, ProbeSize, LoopTest
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::BGE))
.addReg(TargetReg)
.addReg(ScratchReg)
.addMBB(LoopTestMBB)
.setMIFlags(Flags);
} else {
// BNE SP, TargetReg, LoopTest
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::BNE))
.addReg(SPReg)
.addReg(TargetReg)
.addMBB(LoopTestMBB)
.setMIFlags(Flags);
}
ExitMBB->splice(ExitMBB->end(), &MBB, std::next(MBBI), MBB.end());
ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
LoopTestMBB->addSuccessor(ExitMBB);
LoopTestMBB->addSuccessor(LoopTestMBB);
MBB.addSuccessor(LoopTestMBB);
// Update liveins.
fullyRecomputeLiveIns({ExitMBB, LoopTestMBB});
}
void RISCVFrameLowering::inlineStackProbe(MachineFunction &MF,
MachineBasicBlock &MBB) const {
// Get the instructions that need to be replaced. We emit at most two of
// these. Remember them in order to avoid complications coming from the need
// to traverse the block while potentially creating more blocks.
SmallVector<MachineInstr *, 4> ToReplace;
for (MachineInstr &MI : MBB) {
unsigned Opc = MI.getOpcode();
if (Opc == RISCV::PROBED_STACKALLOC ||
Opc == RISCV::PROBED_STACKALLOC_RVV) {
ToReplace.push_back(&MI);
}
}
for (MachineInstr *MI : ToReplace) {
if (MI->getOpcode() == RISCV::PROBED_STACKALLOC ||
MI->getOpcode() == RISCV::PROBED_STACKALLOC_RVV) {
MachineBasicBlock::iterator MBBI = MI->getIterator();
DebugLoc DL = MBB.findDebugLoc(MBBI);
Register TargetReg = MI->getOperand(0).getReg();
emitStackProbeInline(MBBI, DL, TargetReg,
(MI->getOpcode() == RISCV::PROBED_STACKALLOC_RVV));
MBBI->eraseFromParent();
}
}
}
|