1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
//===----- RISCVCodeGenPrepare.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a RISC-V specific version of CodeGenPrepare.
// It munges the code in the input function to better prepare it for
// SelectionDAG-based code generation. This works around limitations in it's
// basic-block-at-a-time approach.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "RISCVTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
#define DEBUG_TYPE "riscv-codegenprepare"
#define PASS_NAME "RISC-V CodeGenPrepare"
namespace {
class RISCVCodeGenPrepare : public FunctionPass,
public InstVisitor<RISCVCodeGenPrepare, bool> {
const DataLayout *DL;
const DominatorTree *DT;
const RISCVSubtarget *ST;
public:
static char ID;
RISCVCodeGenPrepare() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return PASS_NAME; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetPassConfig>();
}
bool visitInstruction(Instruction &I) { return false; }
bool visitAnd(BinaryOperator &BO);
bool visitIntrinsicInst(IntrinsicInst &I);
bool expandVPStrideLoad(IntrinsicInst &I);
bool widenVPMerge(IntrinsicInst &I);
};
} // end anonymous namespace
// Try to optimize (i64 (and (zext/sext (i32 X), C1))) if C1 has bit 31 set,
// but bits 63:32 are zero. If we know that bit 31 of X is 0, we can fill
// the upper 32 bits with ones.
bool RISCVCodeGenPrepare::visitAnd(BinaryOperator &BO) {
if (!ST->is64Bit())
return false;
if (!BO.getType()->isIntegerTy(64))
return false;
using namespace PatternMatch;
// Left hand side should be a zext nneg.
Value *LHSSrc;
if (!match(BO.getOperand(0), m_NNegZExt(m_Value(LHSSrc))))
return false;
if (!LHSSrc->getType()->isIntegerTy(32))
return false;
// Right hand side should be a constant.
Value *RHS = BO.getOperand(1);
auto *CI = dyn_cast<ConstantInt>(RHS);
if (!CI)
return false;
uint64_t C = CI->getZExtValue();
// Look for constants that fit in 32 bits but not simm12, and can be made
// into simm12 by sign extending bit 31. This will allow use of ANDI.
// TODO: Is worth making simm32?
if (!isUInt<32>(C) || isInt<12>(C) || !isInt<12>(SignExtend64<32>(C)))
return false;
// Sign extend the constant and replace the And operand.
C = SignExtend64<32>(C);
BO.setOperand(1, ConstantInt::get(RHS->getType(), C));
return true;
}
// With EVL tail folding, an AnyOf reduction will generate an i1 vp.merge like
// follows:
//
// loop:
// %phi = phi <vscale x 4 x i1> [ zeroinitializer, %entry ], [ %rec, %loop ]
// %cmp = icmp ...
// %rec = call <vscale x 4 x i1> @llvm.vp.merge(%cmp, i1 true, %phi, %evl)
// ...
// middle:
// %res = call i1 @llvm.vector.reduce.or(<vscale x 4 x i1> %rec)
//
// However RVV doesn't have any tail undisturbed mask instructions and so we
// need a convoluted sequence of mask instructions to lower the i1 vp.merge: see
// llvm/test/CodeGen/RISCV/rvv/vpmerge-sdnode.ll.
//
// To avoid that this widens the i1 vp.merge to an i8 vp.merge, which will
// generate a single vmerge.vim:
//
// loop:
// %phi = phi <vscale x 4 x i8> [ zeroinitializer, %entry ], [ %rec, %loop ]
// %cmp = icmp ...
// %rec = call <vscale x 4 x i8> @llvm.vp.merge(%cmp, i8 true, %phi, %evl)
// %trunc = trunc <vscale x 4 x i8> %rec to <vscale x 4 x i1>
// ...
// middle:
// %res = call i1 @llvm.vector.reduce.or(<vscale x 4 x i1> %rec)
//
// The trunc will normally be sunk outside of the loop, but even if there are
// users inside the loop it is still profitable.
bool RISCVCodeGenPrepare::widenVPMerge(IntrinsicInst &II) {
if (!II.getType()->getScalarType()->isIntegerTy(1))
return false;
Value *Mask, *True, *PhiV, *EVL;
using namespace PatternMatch;
if (!match(&II,
m_Intrinsic<Intrinsic::vp_merge>(m_Value(Mask), m_Value(True),
m_Value(PhiV), m_Value(EVL))))
return false;
auto *Phi = dyn_cast<PHINode>(PhiV);
if (!Phi || !Phi->hasOneUse() || Phi->getNumIncomingValues() != 2 ||
!match(Phi->getIncomingValue(0), m_Zero()) ||
Phi->getIncomingValue(1) != &II)
return false;
Type *WideTy =
VectorType::get(IntegerType::getInt8Ty(II.getContext()),
cast<VectorType>(II.getType())->getElementCount());
IRBuilder<> Builder(Phi);
PHINode *WidePhi = Builder.CreatePHI(WideTy, 2);
WidePhi->addIncoming(ConstantAggregateZero::get(WideTy),
Phi->getIncomingBlock(0));
Builder.SetInsertPoint(&II);
Value *WideTrue = Builder.CreateZExt(True, WideTy);
Value *WideMerge = Builder.CreateIntrinsic(Intrinsic::vp_merge, {WideTy},
{Mask, WideTrue, WidePhi, EVL});
WidePhi->addIncoming(WideMerge, Phi->getIncomingBlock(1));
Value *Trunc = Builder.CreateTrunc(WideMerge, II.getType());
II.replaceAllUsesWith(Trunc);
// Break the cycle and delete the old chain.
Phi->setIncomingValue(1, Phi->getIncomingValue(0));
llvm::RecursivelyDeleteTriviallyDeadInstructions(&II);
return true;
}
// LLVM vector reduction intrinsics return a scalar result, but on RISC-V vector
// reduction instructions write the result in the first element of a vector
// register. So when a reduction in a loop uses a scalar phi, we end up with
// unnecessary scalar moves:
//
// loop:
// vfmv.s.f v10, fa0
// vfredosum.vs v8, v8, v10
// vfmv.f.s fa0, v8
//
// This mainly affects ordered fadd reductions and VP reductions that have a
// scalar start value, since other types of reduction typically use element-wise
// vectorisation in the loop body. This tries to vectorize any scalar phis that
// feed into these reductions:
//
// loop:
// %phi = phi <float> [ ..., %entry ], [ %acc, %loop ]
// %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %phi,
// <vscale x 2 x float> %vec)
//
// ->
//
// loop:
// %phi = phi <vscale x 2 x float> [ ..., %entry ], [ %acc.vec, %loop ]
// %phi.scalar = extractelement <vscale x 2 x float> %phi, i64 0
// %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %x,
// <vscale x 2 x float> %vec)
// %acc.vec = insertelement <vscale x 2 x float> poison, float %acc.next, i64 0
//
// Which eliminates the scalar -> vector -> scalar crossing during instruction
// selection.
bool RISCVCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
if (expandVPStrideLoad(I))
return true;
if (widenVPMerge(I))
return true;
if (I.getIntrinsicID() != Intrinsic::vector_reduce_fadd &&
!isa<VPReductionIntrinsic>(&I))
return false;
auto *PHI = dyn_cast<PHINode>(I.getOperand(0));
if (!PHI || !PHI->hasOneUse() ||
!llvm::is_contained(PHI->incoming_values(), &I))
return false;
Type *VecTy = I.getOperand(1)->getType();
IRBuilder<> Builder(PHI);
auto *VecPHI = Builder.CreatePHI(VecTy, PHI->getNumIncomingValues());
for (auto *BB : PHI->blocks()) {
Builder.SetInsertPoint(BB->getTerminator());
Value *InsertElt = Builder.CreateInsertElement(
VecTy, PHI->getIncomingValueForBlock(BB), (uint64_t)0);
VecPHI->addIncoming(InsertElt, BB);
}
Builder.SetInsertPoint(&I);
I.setOperand(0, Builder.CreateExtractElement(VecPHI, (uint64_t)0));
PHI->eraseFromParent();
return true;
}
// Always expand zero strided loads so we match more .vx splat patterns, even if
// we have +optimized-zero-stride-loads. RISCVDAGToDAGISel::Select will convert
// it back to a strided load if it's optimized.
bool RISCVCodeGenPrepare::expandVPStrideLoad(IntrinsicInst &II) {
Value *BasePtr, *VL;
using namespace PatternMatch;
if (!match(&II, m_Intrinsic<Intrinsic::experimental_vp_strided_load>(
m_Value(BasePtr), m_Zero(), m_AllOnes(), m_Value(VL))))
return false;
// If SEW>XLEN then a splat will get lowered as a zero strided load anyway, so
// avoid expanding here.
if (II.getType()->getScalarSizeInBits() > ST->getXLen())
return false;
if (!isKnownNonZero(VL, {*DL, DT, nullptr, &II}))
return false;
auto *VTy = cast<VectorType>(II.getType());
IRBuilder<> Builder(&II);
Type *STy = VTy->getElementType();
Value *Val = Builder.CreateLoad(STy, BasePtr);
Value *Res = Builder.CreateIntrinsic(Intrinsic::experimental_vp_splat, {VTy},
{Val, II.getOperand(2), VL});
II.replaceAllUsesWith(Res);
II.eraseFromParent();
return true;
}
bool RISCVCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<RISCVTargetMachine>();
ST = &TM.getSubtarget<RISCVSubtarget>(F);
DL = &F.getDataLayout();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
bool MadeChange = false;
for (auto &BB : F)
for (Instruction &I : llvm::make_early_inc_range(BB))
MadeChange |= visit(I);
return MadeChange;
}
INITIALIZE_PASS_BEGIN(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
char RISCVCodeGenPrepare::ID = 0;
FunctionPass *llvm::createRISCVCodeGenPreparePass() {
return new RISCVCodeGenPrepare();
}
|