aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/DirectX/DXILFlattenArrays.cpp
blob: ce43645d005b03be0d6d78158aa1a6687a58cd75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
//===- DXILFlattenArrays.cpp - Flattens DXIL Arrays-----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
///
/// \file This file contains a pass to flatten arrays for the DirectX Backend.
///
//===----------------------------------------------------------------------===//

#include "DXILFlattenArrays.h"
#include "DirectX.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <utility>

#define DEBUG_TYPE "dxil-flatten-arrays"

using namespace llvm;
namespace {

class DXILFlattenArraysLegacy : public ModulePass {

public:
  bool runOnModule(Module &M) override;
  DXILFlattenArraysLegacy() : ModulePass(ID) {}

  static char ID; // Pass identification.
};

struct GEPInfo {
  ArrayType *RootFlattenedArrayType;
  Value *RootPointerOperand;
  SmallMapVector<Value *, APInt, 4> VariableOffsets;
  APInt ConstantOffset;
};

class DXILFlattenArraysVisitor
    : public InstVisitor<DXILFlattenArraysVisitor, bool> {
public:
  DXILFlattenArraysVisitor(
      SmallDenseMap<GlobalVariable *, GlobalVariable *> &GlobalMap)
      : GlobalMap(GlobalMap) {}
  bool visit(Function &F);
  // InstVisitor methods.  They return true if the instruction was scalarized,
  // false if nothing changed.
  bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
  bool visitAllocaInst(AllocaInst &AI);
  bool visitInstruction(Instruction &I) { return false; }
  bool visitSelectInst(SelectInst &SI) { return false; }
  bool visitICmpInst(ICmpInst &ICI) { return false; }
  bool visitFCmpInst(FCmpInst &FCI) { return false; }
  bool visitUnaryOperator(UnaryOperator &UO) { return false; }
  bool visitBinaryOperator(BinaryOperator &BO) { return false; }
  bool visitCastInst(CastInst &CI) { return false; }
  bool visitBitCastInst(BitCastInst &BCI) { return false; }
  bool visitInsertElementInst(InsertElementInst &IEI) { return false; }
  bool visitExtractElementInst(ExtractElementInst &EEI) { return false; }
  bool visitShuffleVectorInst(ShuffleVectorInst &SVI) { return false; }
  bool visitPHINode(PHINode &PHI) { return false; }
  bool visitLoadInst(LoadInst &LI);
  bool visitStoreInst(StoreInst &SI);
  bool visitCallInst(CallInst &ICI) { return false; }
  bool visitFreezeInst(FreezeInst &FI) { return false; }
  static bool isMultiDimensionalArray(Type *T);
  static std::pair<unsigned, Type *> getElementCountAndType(Type *ArrayTy);

private:
  SmallVector<WeakTrackingVH> PotentiallyDeadInstrs;
  SmallDenseMap<GEPOperator *, GEPInfo> GEPChainInfoMap;
  SmallDenseMap<GlobalVariable *, GlobalVariable *> &GlobalMap;
  bool finish();
  ConstantInt *genConstFlattenIndices(ArrayRef<Value *> Indices,
                                      ArrayRef<uint64_t> Dims,
                                      IRBuilder<> &Builder);
  Value *genInstructionFlattenIndices(ArrayRef<Value *> Indices,
                                      ArrayRef<uint64_t> Dims,
                                      IRBuilder<> &Builder);
};
} // namespace

bool DXILFlattenArraysVisitor::finish() {
  GEPChainInfoMap.clear();
  RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
  return true;
}

bool DXILFlattenArraysVisitor::isMultiDimensionalArray(Type *T) {
  if (ArrayType *ArrType = dyn_cast<ArrayType>(T))
    return isa<ArrayType>(ArrType->getElementType());
  return false;
}

std::pair<unsigned, Type *>
DXILFlattenArraysVisitor::getElementCountAndType(Type *ArrayTy) {
  unsigned TotalElements = 1;
  Type *CurrArrayTy = ArrayTy;
  while (auto *InnerArrayTy = dyn_cast<ArrayType>(CurrArrayTy)) {
    TotalElements *= InnerArrayTy->getNumElements();
    CurrArrayTy = InnerArrayTy->getElementType();
  }
  return std::make_pair(TotalElements, CurrArrayTy);
}

ConstantInt *DXILFlattenArraysVisitor::genConstFlattenIndices(
    ArrayRef<Value *> Indices, ArrayRef<uint64_t> Dims, IRBuilder<> &Builder) {
  assert(Indices.size() == Dims.size() &&
         "Indicies and dimmensions should be the same");
  unsigned FlatIndex = 0;
  unsigned Multiplier = 1;

  for (int I = Indices.size() - 1; I >= 0; --I) {
    unsigned DimSize = Dims[I];
    ConstantInt *CIndex = dyn_cast<ConstantInt>(Indices[I]);
    assert(CIndex && "This function expects all indicies to be ConstantInt");
    FlatIndex += CIndex->getZExtValue() * Multiplier;
    Multiplier *= DimSize;
  }
  return Builder.getInt32(FlatIndex);
}

Value *DXILFlattenArraysVisitor::genInstructionFlattenIndices(
    ArrayRef<Value *> Indices, ArrayRef<uint64_t> Dims, IRBuilder<> &Builder) {
  if (Indices.size() == 1)
    return Indices[0];

  Value *FlatIndex = Builder.getInt32(0);
  unsigned Multiplier = 1;

  for (int I = Indices.size() - 1; I >= 0; --I) {
    unsigned DimSize = Dims[I];
    Value *VMultiplier = Builder.getInt32(Multiplier);
    Value *ScaledIndex = Builder.CreateMul(Indices[I], VMultiplier);
    FlatIndex = Builder.CreateAdd(FlatIndex, ScaledIndex);
    Multiplier *= DimSize;
  }
  return FlatIndex;
}

bool DXILFlattenArraysVisitor::visitLoadInst(LoadInst &LI) {
  unsigned NumOperands = LI.getNumOperands();
  for (unsigned I = 0; I < NumOperands; ++I) {
    Value *CurrOpperand = LI.getOperand(I);
    ConstantExpr *CE = dyn_cast<ConstantExpr>(CurrOpperand);
    if (CE && CE->getOpcode() == Instruction::GetElementPtr) {
      GetElementPtrInst *OldGEP =
          cast<GetElementPtrInst>(CE->getAsInstruction());
      OldGEP->insertBefore(LI.getIterator());

      IRBuilder<> Builder(&LI);
      LoadInst *NewLoad =
          Builder.CreateLoad(LI.getType(), OldGEP, LI.getName());
      NewLoad->setAlignment(LI.getAlign());
      LI.replaceAllUsesWith(NewLoad);
      LI.eraseFromParent();
      visitGetElementPtrInst(*OldGEP);
      return true;
    }
  }
  return false;
}

bool DXILFlattenArraysVisitor::visitStoreInst(StoreInst &SI) {
  unsigned NumOperands = SI.getNumOperands();
  for (unsigned I = 0; I < NumOperands; ++I) {
    Value *CurrOpperand = SI.getOperand(I);
    ConstantExpr *CE = dyn_cast<ConstantExpr>(CurrOpperand);
    if (CE && CE->getOpcode() == Instruction::GetElementPtr) {
      GetElementPtrInst *OldGEP =
          cast<GetElementPtrInst>(CE->getAsInstruction());
      OldGEP->insertBefore(SI.getIterator());

      IRBuilder<> Builder(&SI);
      StoreInst *NewStore = Builder.CreateStore(SI.getValueOperand(), OldGEP);
      NewStore->setAlignment(SI.getAlign());
      SI.replaceAllUsesWith(NewStore);
      SI.eraseFromParent();
      visitGetElementPtrInst(*OldGEP);
      return true;
    }
  }
  return false;
}

bool DXILFlattenArraysVisitor::visitAllocaInst(AllocaInst &AI) {
  if (!isMultiDimensionalArray(AI.getAllocatedType()))
    return false;

  ArrayType *ArrType = cast<ArrayType>(AI.getAllocatedType());
  IRBuilder<> Builder(&AI);
  auto [TotalElements, BaseType] = getElementCountAndType(ArrType);

  ArrayType *FattenedArrayType = ArrayType::get(BaseType, TotalElements);
  AllocaInst *FlatAlloca =
      Builder.CreateAlloca(FattenedArrayType, nullptr, AI.getName() + ".1dim");
  FlatAlloca->setAlignment(AI.getAlign());
  AI.replaceAllUsesWith(FlatAlloca);
  AI.eraseFromParent();
  return true;
}

bool DXILFlattenArraysVisitor::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  // Do not visit GEPs more than once
  if (GEPChainInfoMap.contains(cast<GEPOperator>(&GEP)))
    return false;

  Value *PtrOperand = GEP.getPointerOperand();
  // It shouldn't(?) be possible for the pointer operand of a GEP to be a PHI
  // node unless HLSL has pointers. If this assumption is incorrect or HLSL gets
  // pointer types, then the handling of this case can be implemented later.
  assert(!isa<PHINode>(PtrOperand) &&
         "Pointer operand of GEP should not be a PHI Node");

  // Replace a GEP ConstantExpr pointer operand with a GEP instruction so that
  // it can be visited
  if (auto *PtrOpGEPCE = dyn_cast<ConstantExpr>(PtrOperand);
      PtrOpGEPCE && PtrOpGEPCE->getOpcode() == Instruction::GetElementPtr) {
    GetElementPtrInst *OldGEPI =
        cast<GetElementPtrInst>(PtrOpGEPCE->getAsInstruction());
    OldGEPI->insertBefore(GEP.getIterator());

    IRBuilder<> Builder(&GEP);
    SmallVector<Value *> Indices(GEP.indices());
    Value *NewGEP =
        Builder.CreateGEP(GEP.getSourceElementType(), OldGEPI, Indices,
                          GEP.getName(), GEP.getNoWrapFlags());
    assert(isa<GetElementPtrInst>(NewGEP) &&
           "Expected newly-created GEP to be an instruction");
    GetElementPtrInst *NewGEPI = cast<GetElementPtrInst>(NewGEP);

    GEP.replaceAllUsesWith(NewGEPI);
    GEP.eraseFromParent();
    visitGetElementPtrInst(*OldGEPI);
    visitGetElementPtrInst(*NewGEPI);
    return true;
  }

  // Construct GEPInfo for this GEP
  GEPInfo Info;

  // Obtain the variable and constant byte offsets computed by this GEP
  const DataLayout &DL = GEP.getDataLayout();
  unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP.getType());
  Info.ConstantOffset = {BitWidth, 0};
  [[maybe_unused]] bool Success = GEP.collectOffset(
      DL, BitWidth, Info.VariableOffsets, Info.ConstantOffset);
  assert(Success && "Failed to collect offsets for GEP");

  // If there is a parent GEP, inherit the root array type and pointer, and
  // merge the byte offsets. Otherwise, this GEP is itself the root of a GEP
  // chain and we need to deterine the root array type
  if (auto *PtrOpGEP = dyn_cast<GEPOperator>(PtrOperand)) {
    assert(GEPChainInfoMap.contains(PtrOpGEP) &&
           "Expected parent GEP to be visited before this GEP");
    GEPInfo &PGEPInfo = GEPChainInfoMap[PtrOpGEP];
    Info.RootFlattenedArrayType = PGEPInfo.RootFlattenedArrayType;
    Info.RootPointerOperand = PGEPInfo.RootPointerOperand;
    for (auto &VariableOffset : PGEPInfo.VariableOffsets)
      Info.VariableOffsets.insert(VariableOffset);
    Info.ConstantOffset += PGEPInfo.ConstantOffset;
  } else {
    Info.RootPointerOperand = PtrOperand;

    // We should try to determine the type of the root from the pointer rather
    // than the GEP's source element type because this could be a scalar GEP
    // into an array-typed pointer from an Alloca or Global Variable.
    Type *RootTy = GEP.getSourceElementType();
    if (auto *GlobalVar = dyn_cast<GlobalVariable>(PtrOperand)) {
      if (GlobalMap.contains(GlobalVar))
        GlobalVar = GlobalMap[GlobalVar];
      Info.RootPointerOperand = GlobalVar;
      RootTy = GlobalVar->getValueType();
    } else if (auto *Alloca = dyn_cast<AllocaInst>(PtrOperand))
      RootTy = Alloca->getAllocatedType();
    assert(!isMultiDimensionalArray(RootTy) &&
           "Expected root array type to be flattened");

    // If the root type is not an array, we don't need to do any flattening
    if (!isa<ArrayType>(RootTy))
      return false;

    Info.RootFlattenedArrayType = cast<ArrayType>(RootTy);
  }

  // GEPs without users or GEPs with non-GEP users should be replaced such that
  // the chain of GEPs they are a part of are collapsed to a single GEP into a
  // flattened array.
  bool ReplaceThisGEP = GEP.users().empty();
  for (Value *User : GEP.users())
    if (!isa<GetElementPtrInst>(User))
      ReplaceThisGEP = true;

  if (ReplaceThisGEP) {
    unsigned BytesPerElem =
        DL.getTypeAllocSize(Info.RootFlattenedArrayType->getArrayElementType());
    assert(isPowerOf2_32(BytesPerElem) &&
           "Bytes per element should be a power of 2");

    // Compute the 32-bit index for this flattened GEP from the constant and
    // variable byte offsets in the GEPInfo
    IRBuilder<> Builder(&GEP);
    Value *ZeroIndex = Builder.getInt32(0);
    uint64_t ConstantOffset =
        Info.ConstantOffset.udiv(BytesPerElem).getZExtValue();
    assert(ConstantOffset < UINT32_MAX &&
           "Constant byte offset for flat GEP index must fit within 32 bits");
    Value *FlattenedIndex = Builder.getInt32(ConstantOffset);
    for (auto [VarIndex, Multiplier] : Info.VariableOffsets) {
      assert(Multiplier.getActiveBits() <= 32 &&
             "The multiplier for a flat GEP index must fit within 32 bits");
      assert(VarIndex->getType()->isIntegerTy(32) &&
             "Expected i32-typed GEP indices");
      Value *VI;
      if (Multiplier.getZExtValue() % BytesPerElem != 0) {
        // This can happen, e.g., with i8 GEPs. To handle this we just divide
        // by BytesPerElem using an instruction after multiplying VarIndex by
        // Multiplier.
        VI = Builder.CreateMul(VarIndex,
                               Builder.getInt32(Multiplier.getZExtValue()));
        VI = Builder.CreateLShr(VI, Builder.getInt32(Log2_32(BytesPerElem)));
      } else
        VI = Builder.CreateMul(
            VarIndex,
            Builder.getInt32(Multiplier.getZExtValue() / BytesPerElem));
      FlattenedIndex = Builder.CreateAdd(FlattenedIndex, VI);
    }

    // Construct a new GEP for the flattened array to replace the current GEP
    Value *NewGEP = Builder.CreateGEP(
        Info.RootFlattenedArrayType, Info.RootPointerOperand,
        {ZeroIndex, FlattenedIndex}, GEP.getName(), GEP.getNoWrapFlags());

    // Replace the current GEP with the new GEP. Store GEPInfo into the map
    // for later use in case this GEP was not the end of the chain
    GEPChainInfoMap.insert({cast<GEPOperator>(NewGEP), std::move(Info)});
    GEP.replaceAllUsesWith(NewGEP);
    GEP.eraseFromParent();
    return true;
  }

  // This GEP is potentially dead at the end of the pass since it may not have
  // any users anymore after GEP chains have been collapsed. We retain store
  // GEPInfo for GEPs down the chain to use to compute their indices.
  GEPChainInfoMap.insert({cast<GEPOperator>(&GEP), std::move(Info)});
  PotentiallyDeadInstrs.emplace_back(&GEP);
  return false;
}

bool DXILFlattenArraysVisitor::visit(Function &F) {
  bool MadeChange = false;
  ReversePostOrderTraversal<Function *> RPOT(&F);
  for (BasicBlock *BB : make_early_inc_range(RPOT)) {
    for (Instruction &I : make_early_inc_range(*BB))
      MadeChange |= InstVisitor::visit(I);
  }
  finish();
  return MadeChange;
}

static void collectElements(Constant *Init,
                            SmallVectorImpl<Constant *> &Elements) {
  // Base case: If Init is not an array, add it directly to the vector.
  auto *ArrayTy = dyn_cast<ArrayType>(Init->getType());
  if (!ArrayTy) {
    Elements.push_back(Init);
    return;
  }
  unsigned ArrSize = ArrayTy->getNumElements();
  if (isa<ConstantAggregateZero>(Init)) {
    for (unsigned I = 0; I < ArrSize; ++I)
      Elements.push_back(Constant::getNullValue(ArrayTy->getElementType()));
    return;
  }

  // Recursive case: Process each element in the array.
  if (auto *ArrayConstant = dyn_cast<ConstantArray>(Init)) {
    for (unsigned I = 0; I < ArrayConstant->getNumOperands(); ++I) {
      collectElements(ArrayConstant->getOperand(I), Elements);
    }
  } else if (auto *DataArrayConstant = dyn_cast<ConstantDataArray>(Init)) {
    for (unsigned I = 0; I < DataArrayConstant->getNumElements(); ++I) {
      collectElements(DataArrayConstant->getElementAsConstant(I), Elements);
    }
  } else {
    llvm_unreachable(
        "Expected a ConstantArray or ConstantDataArray for array initializer!");
  }
}

static Constant *transformInitializer(Constant *Init, Type *OrigType,
                                      ArrayType *FlattenedType,
                                      LLVMContext &Ctx) {
  // Handle ConstantAggregateZero (zero-initialized constants)
  if (isa<ConstantAggregateZero>(Init))
    return ConstantAggregateZero::get(FlattenedType);

  // Handle UndefValue (undefined constants)
  if (isa<UndefValue>(Init))
    return UndefValue::get(FlattenedType);

  if (!isa<ArrayType>(OrigType))
    return Init;

  SmallVector<Constant *> FlattenedElements;
  collectElements(Init, FlattenedElements);
  assert(FlattenedType->getNumElements() == FlattenedElements.size() &&
         "The number of collected elements should match the FlattenedType");
  return ConstantArray::get(FlattenedType, FlattenedElements);
}

static void flattenGlobalArrays(
    Module &M, SmallDenseMap<GlobalVariable *, GlobalVariable *> &GlobalMap) {
  LLVMContext &Ctx = M.getContext();
  for (GlobalVariable &G : M.globals()) {
    Type *OrigType = G.getValueType();
    if (!DXILFlattenArraysVisitor::isMultiDimensionalArray(OrigType))
      continue;

    ArrayType *ArrType = cast<ArrayType>(OrigType);
    auto [TotalElements, BaseType] =
        DXILFlattenArraysVisitor::getElementCountAndType(ArrType);
    ArrayType *FattenedArrayType = ArrayType::get(BaseType, TotalElements);

    // Create a new global variable with the updated type
    // Note: Initializer is set via transformInitializer
    GlobalVariable *NewGlobal =
        new GlobalVariable(M, FattenedArrayType, G.isConstant(), G.getLinkage(),
                           /*Initializer=*/nullptr, G.getName() + ".1dim", &G,
                           G.getThreadLocalMode(), G.getAddressSpace(),
                           G.isExternallyInitialized());

    // Copy relevant attributes
    NewGlobal->setUnnamedAddr(G.getUnnamedAddr());
    if (G.getAlignment() > 0) {
      NewGlobal->setAlignment(G.getAlign());
    }

    if (G.hasInitializer()) {
      Constant *Init = G.getInitializer();
      Constant *NewInit =
          transformInitializer(Init, OrigType, FattenedArrayType, Ctx);
      NewGlobal->setInitializer(NewInit);
    }
    GlobalMap[&G] = NewGlobal;
  }
}

static bool flattenArrays(Module &M) {
  bool MadeChange = false;
  SmallDenseMap<GlobalVariable *, GlobalVariable *> GlobalMap;
  flattenGlobalArrays(M, GlobalMap);
  DXILFlattenArraysVisitor Impl(GlobalMap);
  for (auto &F : make_early_inc_range(M.functions())) {
    if (F.isDeclaration())
      continue;
    MadeChange |= Impl.visit(F);
  }
  for (auto &[Old, New] : GlobalMap) {
    Old->replaceAllUsesWith(New);
    Old->eraseFromParent();
    MadeChange = true;
  }
  return MadeChange;
}

PreservedAnalyses DXILFlattenArrays::run(Module &M, ModuleAnalysisManager &) {
  bool MadeChanges = flattenArrays(M);
  if (!MadeChanges)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  return PA;
}

bool DXILFlattenArraysLegacy::runOnModule(Module &M) {
  return flattenArrays(M);
}

char DXILFlattenArraysLegacy::ID = 0;

INITIALIZE_PASS_BEGIN(DXILFlattenArraysLegacy, DEBUG_TYPE,
                      "DXIL Array Flattener", false, false)
INITIALIZE_PASS_END(DXILFlattenArraysLegacy, DEBUG_TYPE, "DXIL Array Flattener",
                    false, false)

ModulePass *llvm::createDXILFlattenArraysLegacyPass() {
  return new DXILFlattenArraysLegacy();
}