1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
|
//=- ARMScheduleM85.td - ARM Cortex-M85 Scheduling Definitions -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for the ARM Cortex-M85 processor.
//
// All timing is referred to EX2. Thus, operands which are needed at EX1 are
// stated to have a ReadAdvance of -1. The FP/MVE pipe actually begins at EX3
// but is described as if it were in EX2 to avoid having unnaturally long latencies
// with delayed inputs on every instruction. Instead, whenever an FP instruction
// must access a GP register or a non-FP instruction (which includes loads/stores)
// must access an FP register, the operand timing is adjusted:
// FP accessing GPR: read one cycle later, write one cycle later
// NOTE: absolute spec timing already includes this if
// referenced to EX2
// non-FP accessing FPR: read one cycle earlier, write one cycle earlier
//===----------------------------------------------------------------------===//
def CortexM85Model : SchedMachineModel {
let IssueWidth = 2; // Dual issue for most instructions.
let MicroOpBufferSize = 0; // M85 is in-order.
let LoadLatency = 2; // Best case for load-use case.
let MispredictPenalty = 4; // Mispredict cost for forward branches is 7,
// but 4 works better
let CompleteModel = 0;
}
let SchedModel = CortexM85Model in {
//===--------------------------------------------------------------------===//
// CortexM85 has two ALU, two LOAD, two STORE, a MAC, a BRANCH and two VFP
// pipes (with three units). There are three shifters available: one per
// stage.
def M85UnitLoadL : ProcResource<1> { let BufferSize = 0; }
def M85UnitLoadH : ProcResource<1> { let BufferSize = 0; }
def M85UnitLoad : ProcResGroup<[M85UnitLoadL,M85UnitLoadH]> { let BufferSize = 0; }
def M85UnitStoreL : ProcResource<1> { let BufferSize = 0; }
def M85UnitStoreH : ProcResource<1> { let BufferSize = 0; }
def M85UnitStore : ProcResGroup<[M85UnitStoreL,M85UnitStoreH]> { let BufferSize = 0; }
def M85UnitALU : ProcResource<2> { let BufferSize = 0; }
def M85UnitShift1 : ProcResource<1> { let BufferSize = 0; }
def M85UnitShift2 : ProcResource<1> { let BufferSize = 0; }
def M85UnitMAC : ProcResource<1> { let BufferSize = 0; }
def M85UnitBranch : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPAL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPAH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPA : ProcResGroup<[M85UnitVFPAL,M85UnitVFPAH]> { let BufferSize = 0; }
def M85UnitVFPBL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPBH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPB : ProcResGroup<[M85UnitVFPBL,M85UnitVFPBH]> { let BufferSize = 0; }
def M85UnitVFPCL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPCH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPC : ProcResGroup<[M85UnitVFPCL,M85UnitVFPCH]> { let BufferSize = 0; }
def M85UnitVFPD : ProcResource<1> { let BufferSize = 0; }
def M85UnitVPortL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVPortH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVPort : ProcResGroup<[M85UnitVPortL,M85UnitVPortH]> { let BufferSize = 0; }
def M85UnitSIMD : ProcResource<1> { let BufferSize = 0; }
def M85UnitLShift : ProcResource<1> { let BufferSize = 0; }
def M85UnitDiv : ProcResource<1> { let BufferSize = 0; }
def M85UnitSlot0 : ProcResource<1> { let BufferSize = 0; }
//===---------------------------------------------------------------------===//
// Subtarget-specific SchedWrite types with map ProcResources and set latency.
def : WriteRes<WriteALU, [M85UnitALU]> { let Latency = 1; }
// Basic ALU with shifts.
let Latency = 1 in {
def : WriteRes<WriteALUsi, [M85UnitALU, M85UnitShift1]>;
def : WriteRes<WriteALUsr, [M85UnitALU, M85UnitShift1]>;
def : WriteRes<WriteALUSsr, [M85UnitALU, M85UnitShift1]>;
}
// Compares.
def : WriteRes<WriteCMP, [M85UnitALU]> { let Latency = 1; }
def : WriteRes<WriteCMPsi, [M85UnitALU, M85UnitShift1]> { let Latency = 2; }
def : WriteRes<WriteCMPsr, [M85UnitALU, M85UnitShift1]> { let Latency = 2; }
// Multiplies.
let Latency = 2 in {
def : WriteRes<WriteMUL16, [M85UnitMAC]>;
def : WriteRes<WriteMUL32, [M85UnitMAC]>;
def : WriteRes<WriteMUL64Lo, [M85UnitMAC]>;
def : WriteRes<WriteMUL64Hi, []> { let NumMicroOps = 0; }
}
// Multiply-accumulates.
let Latency = 2 in {
def : WriteRes<WriteMAC16, [M85UnitMAC]>;
def : WriteRes<WriteMAC32, [M85UnitMAC]>;
def : WriteRes<WriteMAC64Lo, [M85UnitMAC]>;
def : WriteRes<WriteMAC64Hi, []> { let NumMicroOps = 0; }
}
// Divisions.
def : WriteRes<WriteDIV, [M85UnitDiv]> {
let Latency = 7;
}
// Loads/Stores.
def : WriteRes<WriteLd, [M85UnitLoad]> { let Latency = 1; }
def : WriteRes<WritePreLd, [M85UnitLoad]> { let Latency = 2; }
def : WriteRes<WriteST, [M85UnitStore]> { let Latency = 2; }
def M85WriteLdWide : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH]> { let Latency = 1; }
def M85WriteStWide : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH]> { let Latency = 2; }
// Branches.
def : WriteRes<WriteBr, [M85UnitBranch]> { let Latency = 2; }
def : WriteRes<WriteBrL, [M85UnitBranch]> { let Latency = 2; }
def : WriteRes<WriteBrTbl, [M85UnitBranch]> { let Latency = 2; }
// Noop.
def : WriteRes<WriteNoop, []> { let Latency = 0; let NumMicroOps = 0; }
//===---------------------------------------------------------------------===//
// Sched definitions for floating-point instructions
//
// Floating point conversions.
def : WriteRes<WriteFPCVT, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 2;
}
def : WriteRes<WriteFPMOV, [M85UnitVPort, M85UnitSlot0]> { let Latency = 1; }
def M85WriteFPMOV64 : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let Latency = 1; }
// ALU operations (32/64-bit). These go down the FP pipeline.
def : WriteRes<WriteFPALU32, [M85UnitVFPA, M85UnitVPort, M85UnitSlot0]> {
let Latency = 2;
}
def : WriteRes<WriteFPALU64, [M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 6;
}
// Multiplication
def : WriteRes<WriteFPMUL32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 3;
}
def : WriteRes<WriteFPMUL64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 8;
}
// Multiply-accumulate. FPMAC goes down the FP Pipeline.
def : WriteRes<WriteFPMAC32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 5;
}
def : WriteRes<WriteFPMAC64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 14;
}
// Division. Effective scheduling latency is 3, though real latency is larger
def : WriteRes<WriteFPDIV32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 14;
}
def : WriteRes<WriteFPDIV64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 29;
}
// Square-root. Effective scheduling latency is 3, though real latency is larger
def : WriteRes<WriteFPSQRT32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 14;
}
def : WriteRes<WriteFPSQRT64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 29;
}
let NumMicroOps = 0 in {
def M85SingleIssue : SchedWriteRes<[]> { let SingleIssue = 1; }
def M85Slot0Only : SchedWriteRes<[M85UnitSlot0]> { }
}
// What pipeline stage operands need to be ready for depending on
// where they come from.
def : ReadAdvance<ReadALUsr, 0>;
def : ReadAdvance<ReadMUL, 0>;
def : ReadAdvance<ReadMAC, 1>;
def : ReadAdvance<ReadALU, 0>;
def : ReadAdvance<ReadFPMUL, 0>;
def : ReadAdvance<ReadFPMAC, 3>;
def M85Read_ISSm1 : SchedReadAdvance<-2>; // operands needed at ISS
def M85Read_ISS : SchedReadAdvance<-1>; // operands needed at EX1
def M85Read_EX1 : SchedReadAdvance<0>; // operands needed at EX2
def M85Read_EX2 : SchedReadAdvance<1>; // operands needed at EX3
def M85Read_EX3 : SchedReadAdvance<2>; // operands needed at EX4
def M85Read_EX4 : SchedReadAdvance<3>; // operands needed at EX5
def M85Write1 : SchedWriteRes<[]> {
let Latency = 1;
let NumMicroOps = 0;
}
def M85Write2 : SchedWriteRes<[]> {
let Latency = 2;
let NumMicroOps = 0;
}
def M85WriteShift2 : SchedWriteRes<[M85UnitALU, M85UnitShift2]> {}
// Non general purpose instructions may not be dual issued. These
// use both issue units.
def M85NonGeneralPurpose : SchedWriteRes<[]> {
// Assume that these will go down the main ALU pipeline.
// In reality, many look likely to stall the whole pipeline.
let Latency = 3;
let SingleIssue = 1;
}
// List the non general purpose instructions.
def : InstRW<[M85NonGeneralPurpose],
(instregex "t2MRS", "tSVC", "tBKPT", "t2MSR", "t2DMB", "t2DSB",
"t2ISB", "t2HVC", "t2SMC", "t2UDF", "ERET", "tHINT",
"t2HINT", "t2CLREX", "t2CLRM", "BUNDLE")>;
//===---------------------------------------------------------------------===//
// Sched definitions for load/store
//
// Mark whether the loads/stores must be single-issue
// Address operands are needed earlier
// Data operands are needed later
let NumMicroOps = 0 in {
def M85BaseUpdate : SchedWriteRes<[]> {
// Update is bypassable out of EX1
let Latency = 0;
}
def M85MVERBaseUpdate : SchedWriteRes<[]> { let Latency = 1; }
// Q register base update is available in EX3 to bypass into EX2/ISS.
// Latency=2 matches what we want for ISS, Latency=1 for EX2. Going
// with 2, as base update into another load/store is most likely. Could
// change later in an override.
def M85MVEQBaseUpdate : SchedWriteRes<[]> { let Latency = 2; }
def M85LoadLatency1 : SchedWriteRes<[]> { let Latency = 1; }
}
def M85SlowLoad : SchedWriteRes<[M85UnitLoad]> { let Latency = 2; }
// Byte and half-word loads should have greater latency than other loads.
// So should load exclusive?
def : InstRW<[M85SlowLoad],
(instregex "t2LDR(B|H|SB|SH)pc")>;
def : InstRW<[M85SlowLoad, M85Read_ISS],
(instregex "t2LDR(B|H|SB|SH)T", "t2LDR(B|H|SB|SH)i",
"tLDRspi", "tLDR(B|H)i")>;
def : InstRW<[M85SlowLoad, M85Read_ISS, M85Read_ISS],
(instregex "t2LDR(B|H|SB|SH)s")>;
def : InstRW<[M85SlowLoad, M85Read_ISS, M85Read_ISS],
(instregex "tLDR(B|H)r", "tLDR(SB|SH)")>;
def : InstRW<[M85SlowLoad, M85BaseUpdate, M85Read_ISS],
(instregex "t2LDR(B|H|SB|SH)_(POST|PRE)")>;
// Exclusive/acquire/release loads/stores cannot be dual-issued
def : InstRW<[WriteLd, M85SingleIssue, M85Read_ISS],
(instregex "t2LDREX$", "t2LDA(EX)?$")>;
def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85SingleIssue, M85Read_ISS],
(instregex "t2LDAEXD$")>;
def : InstRW<[M85SlowLoad, M85SingleIssue, M85Read_ISS],
(instregex "t2LDREX(B|H)", "t2LDA(EX)?(B|H)$")>;
def : InstRW<[WriteST, M85SingleIssue, M85Read_EX2, M85Read_ISS],
(instregex "t2STREX(B|H)?$", "t2STL(EX)?(B|H)?$")>;
def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_EX2, M85Read_EX2, M85Read_ISS],
(instregex "t2STLEXD$")>;
// Load/store multiples end issue groups.
def : InstRW<[M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)LDM(DB|IA)$")>;
def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)STM(DB|IA)$")>;
def : InstRW<[M85BaseUpdate, M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)LDM(DB|IA)_UPD$", "tPOP")>;
def : InstRW<[M85BaseUpdate, M85WriteStWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)STM(DB|IA)_UPD$", "tPUSH")>;
// Load/store doubles
def : InstRW<[M85BaseUpdate, M85WriteStWide,
M85Read_EX2, M85Read_EX2, M85Read_ISS],
(instregex "t2STRD_(PRE|POST)")>;
def : InstRW<[M85WriteStWide, M85Read_EX2, M85Read_EX2, M85Read_ISS],
(instregex "t2STRDi")>;
def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85BaseUpdate, M85Read_ISS],
(instregex "t2LDRD_(PRE|POST)")>;
def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85Read_ISS],
(instregex "t2LDRDi")>;
// Word load / preload
def : InstRW<[WriteLd],
(instregex "t2LDRpc", "t2PL[DI]pci", "tLDRpci")>;
def : InstRW<[WriteLd, M85Read_ISS],
(instregex "t2LDR(i|T)", "t2PL[DI](W)?i", "tLDRi")>;
def : InstRW<[WriteLd, M85Read_ISS, M85Read_ISS],
(instregex "t2LDRs", "t2PL[DI](w)?s", "tLDRr")>;
def : InstRW<[WriteLd, M85BaseUpdate, M85Read_ISS],
(instregex "t2LDR_(POST|PRE)")>;
// Stores
def : InstRW<[M85BaseUpdate, WriteST, M85Read_EX2, M85Read_ISS],
(instregex "t2STR(B|H)?_(POST|PRE)")>;
def : InstRW<[WriteST, M85Read_EX2, M85Read_ISS, M85Read_ISS],
(instregex "t2STR(B|H)?s$", "tSTR(B|H)?r$")>;
def : InstRW<[WriteST, M85Read_EX2, M85Read_ISS],
(instregex "t2STR(B|H)?(i|T)", "tSTR(B|H)?i$", "tSTRspi")>;
// TBB/TBH - single-issue only
def M85TableLoad : SchedWriteRes<[M85UnitLoad]> { let SingleIssue = 1; }
def : InstRW<[M85TableLoad, M85Read_ISS, M85Read_ISS],
(instregex "t2TB")>;
// VFP/MVE loads and stores
// Note: timing for VLDR/VSTR special has not been broken out
// Note 2: see notes at top of file for the reason load latency is 1 and
// store data is in EX3.
def M85LoadSP : SchedWriteRes<[M85UnitLoad, M85UnitVPort]>;
def M85LoadDP : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH,
M85UnitVPortL, M85UnitVPortH]>;
def M85LoadSys : SchedWriteRes<[M85UnitLoad, M85UnitVPort,
M85UnitVFPA, M85UnitVFPB, M85UnitVFPC, M85UnitVFPD]> {
let Latency = 4;
}
def M85StoreSP : SchedWriteRes<[M85UnitStore, M85UnitVPort]>;
def M85StoreDP : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH,
M85UnitVPortL, M85UnitVPortH]>;
def M85StoreSys : SchedWriteRes<[M85UnitStore, M85UnitVPort,
M85UnitVFPA, M85UnitVFPB, M85UnitVFPC, M85UnitVFPD]>;
let ReleaseAtCycles = [2,2,1,1], EndGroup = 1 in {
def M85LoadMVE : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH,
M85UnitVPortL, M85UnitVPortH]>;
def M85LoadMVELate : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH,
M85UnitVPortL, M85UnitVPortH]> {
let Latency = 4; // 3 cycles later
}
def M85StoreMVE : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH,
M85UnitVPortL, M85UnitVPortH]>;
}
def : InstRW<[M85LoadSP, M85Read_ISS], (instregex "VLDR(S|H)$")>;
def : InstRW<[M85LoadSys, M85Read_ISS], (instregex "VLDR_")>;
def : InstRW<[M85LoadDP, M85Read_ISS], (instregex "VLDRD$")>;
def : InstRW<[M85StoreSP, M85Read_EX3, M85Read_ISS], (instregex "VSTR(S|H)$")>;
def : InstRW<[M85StoreSys, M85Read_EX1, M85Read_ISS], (instregex "VSTR_")>;
def : InstRW<[M85StoreDP, M85Read_EX3, M85Read_ISS], (instregex "VSTRD$")>;
def : InstRW<[M85LoadMVELate, M85Read_ISS],
(instregex "MVE_VLD[24]._[0-9]+$")>;
def : InstRW<[M85LoadMVELate, M85MVERBaseUpdate, M85Read_ISS],
(instregex "MVE_VLD[24].*wb")>;
def : InstRW<[M85LoadMVE, M85Read_ISS],
(instregex "MVE_VLDR.*(8|16|32|64)$")>;
def : InstRW<[M85LoadMVE, M85SingleIssue, M85Read_ISS, M85Read_ISS],
(instregex "MVE_VLDR.*(_rq|_rq|_rq_u)$")>;
def : InstRW<[M85LoadMVE, M85SingleIssue, M85Read_ISS],
(instregex "MVE_VLDR.*_qi$")>;
def : InstRW<[M85MVERBaseUpdate, M85LoadMVE, M85Read_ISS],
(instregex "MVE_VLDR.*(_post|[^i]_pre)$")>;
def : InstRW<[M85MVEQBaseUpdate, M85SingleIssue, M85LoadMVE, M85Read_ISS],
(instregex "MVE_VLDR.*(qi_pre)$")>;
def : InstRW<[M85StoreMVE, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VST[24]._[0-9]+$")>;
def : InstRW<[M85StoreMVE, M85Read_EX3, M85MVERBaseUpdate, M85Read_ISS],
(instregex "MVE_VST[24].*wb")>;
def : InstRW<[M85StoreMVE, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*(8|16|32|64)$")>;
def : InstRW<[M85StoreMVE, M85SingleIssue, M85Read_EX3, M85Read_ISS, M85Read_ISS],
(instregex "MVE_VSTR.*(_rq|_rq|_rq_u)$")>;
def : InstRW<[M85StoreMVE, M85SingleIssue, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*_qi$")>;
def : InstRW<[M85MVERBaseUpdate, M85StoreMVE, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*(_post|[^i]_pre)$")>;
def : InstRW<[M85MVEQBaseUpdate, M85SingleIssue, M85StoreMVE,
M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*(qi_pre)$")>;
// Load/store multiples end issue groups.
def : InstRW<[M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "VLDM(S|D|Q)(DB|IA)$")>;
def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_ISS, M85Read_EX3],
(instregex "VSTM(S|D|Q)(DB|IA)$")>;
def : InstRW<[M85BaseUpdate, M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "VLDM(S|D|Q)(DB|IA)_UPD$", "VLLDM")>;
def : InstRW<[M85BaseUpdate, M85WriteStWide, M85SingleIssue,
M85Read_ISS, M85Read_EX3],
(instregex "VSTM(S|D|Q)(DB|IA)_UPD$", "VLSTM")>;
//===---------------------------------------------------------------------===//
// Sched definitions for ALU
//
// Non-small shifted ALU operands are read a cycle early; small LSLs
// aren't, as they don't require the shifter.
def M85NonsmallShiftWrite : SchedWriteRes<[M85UnitALU,M85UnitShift1]> {
let Latency = 1;
}
def M85WriteALUsi : SchedWriteVariant<[
SchedVar<NoSchedPred, [M85NonsmallShiftWrite]>
]>;
def M85Ex1ReadNoFastBypass : SchedReadAdvance<-1,
[WriteLd, M85WriteLdWide, M85LoadLatency1]>;
def M85ReadALUsi : SchedReadVariant<[
SchedVar<NoSchedPred, [M85Read_ISS]>
]>;
def : InstRW<[M85WriteALUsi, M85Read_EX1, M85ReadALUsi],
(instregex "t2(ADC|ADDS|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|"
"SUBS|CMP|CMNz|TEQ|TST)rs$")>;
def : InstRW<[M85WriteALUsi, M85ReadALUsi],
(instregex "t2MVNs")>;
// CortexM85 treats LSL #0 as needing a shifter. In practice the throughput
// seems to reliably be 2 when run on a cyclemodel, so we don't require a
// shift resource.
def : InstRW<[M85WriteALUsi, M85Read_EX1, M85ReadALUsi],
(instregex "t2(ADC|ADDS|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|"
"SUBS|CMP|CMNz|TEQ|TST)rr$")>;
def : InstRW<[M85WriteALUsi, M85ReadALUsi],
(instregex "t2MVNr")>;
// Shift instructions: most pure shifts (i.e. MOV w/ shift) will use whichever
// shifter is free, thus it is possible to dual-issue them freely with anything
// else. As a result, they are not modeled as needing a shifter.
// RRX is odd because it must use the EX2 shifter, so it cannot dual-issue with
// itself.
//
// Note that pure shifts which use the EX1 shifter would need their operands
// a cycle earlier. However, they are only forced to use the EX1 shifter
// when issuing against an RRX instructions, which should be rare.
def : InstRW<[M85WriteShift2],
(instregex "t2RRX$")>;
def : InstRW<[WriteALU],
(instregex "(t|t2)(LSL|LSR|ASR|ROR|SBFX|UBFX)")>;
// Instructions that use the shifter, but have normal timing
def : InstRW<[WriteALUsi,M85Slot0Only], (instregex "t2(BFC|BFI)$")>;
// Stack pointer add/sub happens in EX1 with checks in EX2
def M85WritesToSPPred : MCSchedPredicate<CheckRegOperand<0, SP>>;
def M85ReadForSP : SchedReadVariant<[
SchedVar<M85WritesToSPPred, [M85Read_ISS]>,
SchedVar<NoSchedPred, [M85Read_EX1]>
]>;
def M85ReadForSPShift : SchedReadVariant<[
SchedVar<M85WritesToSPPred, [M85Read_ISS]>,
SchedVar<NoSchedPred, [M85Read_ISS]>
]>;
def : InstRW<[WriteALU, M85Read_ISS],
(instregex "tADDspi", "tSUBspi")>;
def : InstRW<[WriteALU, M85ReadForSP],
(instregex "t2(ADD|SUB)ri", "t2MOVr", "tMOVr")>;
def : InstRW<[WriteALU, M85ReadForSP, M85ReadForSP],
(instregex "tADDrSP", "tADDspr", "tADDhirr")>;
def : InstRW<[M85WriteALUsi, M85ReadForSP, M85ReadForSPShift],
(instregex "t2(ADD|SUB)rs")>;
def : InstRW<[WriteALU, M85Slot0Only], (instregex "t2CLZ")>;
// MAC operations that don't have SchedRW set
def : InstRW<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC], (instregex "t2SML[AS]D")>;
// Divides are special because they stall for their latency, and so look like
// two cycles as far as scheduling opportunities go. By putting M85Write2
// first, we make the operand latency 2, but keep the instruction latency 7.
// Divide operands are read early.
def : InstRW<[M85Write2, WriteDIV, M85Read_ISS, M85Read_ISS, WriteALU],
(instregex "t2(S|U)DIV")>;
// DSP extension operations
def M85WriteSIMD1 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitSlot0]> {
let Latency = 1;
}
def M85WriteSIMD2 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitSlot0]> {
let Latency = 2;
}
def M85WriteShSIMD0 : SchedWriteRes<[M85UnitSIMD, M85UnitALU,
M85UnitShift1, M85UnitSlot0]> {
let Latency = 0; // Finishes at EX1
}
def M85WriteShSIMD1 : SchedWriteRes<[M85UnitSIMD, M85UnitALU,
M85UnitShift1, M85UnitSlot0]> {
let Latency = 1;
}
def M85WriteShSIMD2 : SchedWriteRes<[M85UnitSIMD, M85UnitALU,
M85UnitShift1, M85UnitSlot0]> {
let Latency = 2;
}
def : InstRW<[M85WriteShSIMD2, M85Read_ISS],
(instregex "t2(S|U)SAT")>;
def : InstRW<[M85WriteSIMD1, ReadALU],
(instregex "(t|t2)(S|U)XT(B|H)")>;
def : InstRW<[M85WriteSIMD1, ReadALU, ReadALU],
(instregex "t2(S|SH|U|UH)(ADD16|ADD8|ASX|SAX|SUB16|SUB8)",
"t2SEL")>;
def : InstRW<[M85WriteSIMD2, ReadALU, ReadALU],
(instregex "t2(Q|UQ)(ADD|ASX|SAX|SUB)", "t2USAD8")>;
def : InstRW<[M85WriteShSIMD2, M85Read_ISS, M85Read_ISS],
(instregex "t2QD(ADD|SUB)")>;
def : InstRW<[M85WriteShSIMD0, M85Read_ISS],
(instregex "t2(RBIT|REV)", "tREV")>;
def : InstRW<[M85WriteShSIMD1, ReadALU, M85Read_ISS],
(instregex "t2PKH(BT|TB)", "t2(S|U)XTA")>;
def : InstRW<[M85WriteSIMD2, ReadALU, ReadALU, M85Read_EX2],
(instregex "t2USADA8")>;
// MSR/MRS
def : InstRW<[M85NonGeneralPurpose], (instregex "MSR", "MRS")>;
// 64-bit shift operations in EX3
def M85WriteLShift : SchedWriteRes<[M85UnitLShift, M85UnitALU]> {
let Latency = 2;
}
def M85WriteLat2 : SchedWriteRes<[]> { let Latency = 2; let NumMicroOps = 0; }
def : InstRW<[M85WriteLShift, M85WriteLat2, M85Read_EX2, M85Read_EX2],
(instregex "MVE_(ASRLi|LSLLi|LSRL|SQSHLL|SRSHRL|UQSHLL|URSHRL)$")>;
def : InstRW<[M85WriteLShift, M85WriteLat2,
M85Read_EX2, M85Read_EX2, M85Read_EX2],
(instregex "MVE_(ASRLr|LSLLr|SQRSHRL|UQRSHLL)$")>;
def : InstRW<[M85WriteLShift, M85Read_EX2, M85Read_EX2],
(instregex "MVE_(SQRSHR|UQRSHL)$")>;
def : InstRW<[M85WriteLShift, M85Read_EX2],
(instregex "MVE_(SQSHL|SRSHR|UQSHL|URSHR)$")>;
// Loop control/branch future instructions
def M85LE : SchedWriteRes<[]> { let NumMicroOps = 0; let Latency = -2; }
def : InstRW<[WriteALU], (instregex "t2BF(_|Lr|i|Li|r)")>;
def : InstRW<[WriteALU], (instregex "MVE_LCTP")>;
def : InstRW<[WriteALU],
(instregex "t2DLS", "t2WLS", "MVE_DLSTP", "MVE_WLSTP")>;
def : InstRW<[M85LE], (instregex "t2LE$")>;
def : InstRW<[M85LE, M85Read_ISSm1],
(instregex "t2LEUpdate", "MVE_LETP")>; // LE is executed at ISS
// Conditional selects
def : InstRW<[M85WriteLShift, M85Read_EX2, M85Read_EX2, M85Read_EX2],
(instregex "t2(CSEL|CSINC|CSINV|CSNEG)")>;
//===---------------------------------------------------------------------===//
// Sched definitions for FP and MVE operations
let NumMicroOps = 0 in {
def M85OverrideVFPLat5 : SchedWriteRes<[]> { let Latency = 5; }
def M85OverrideVFPLat4 : SchedWriteRes<[]> { let Latency = 4; }
def M85OverrideVFPLat3 : SchedWriteRes<[]> { let Latency = 3; }
def M85OverrideVFPLat2 : SchedWriteRes<[]> { let Latency = 2; }
}
let Latency = 1 in {
def M85GroupALat1S : SchedWriteRes<[M85UnitVFPA, M85UnitVPort, M85UnitSlot0]>;
def M85GroupBLat1S : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]>;
def M85GroupCLat1S : SchedWriteRes<[M85UnitVFPC, M85UnitVPort, M85UnitSlot0]>;
def M85GroupALat1D : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupBLat1D : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupCLat1D : SchedWriteRes<[M85UnitVFPCL, M85UnitVFPCH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupABLat1S : SchedWriteRes<[M85UnitVPort, M85UnitSlot0]>;
}
let Latency = 2 in {
def M85GroupBLat2S : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]>;
def M85GroupBLat2D : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupABLat2S : SchedWriteRes<[M85UnitVPort, M85UnitSlot0]>;
def M85GroupABLat2D : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
}
// Instructions which are missing default schedules
def : InstRW<[M85GroupALat1S], (instregex "V(FP_VMAXNM|FP_VMINNM)(H|S)$")>;
def : InstRW<[M85GroupALat1D], (instregex "V(FP_VMAXNM|FP_VMINNM)D$")>;
def : InstRW<[M85GroupCLat1S], (instregex "VCMPE?Z?(H|S)$")>;
def : InstRW<[M85GroupCLat1D], (instregex "VCMPE?Z?D$")>;
def : InstRW<[M85GroupBLat2S],
(instregex "VCVT(A|M|N|P|R|X|Z)(S|U)(H|S)",
"VRINT(A|M|N|P|R|X|Z)(H|S)")>;
def : InstRW<[M85GroupBLat2D],
(instregex "VCVT(B|T)(DH|HD)", "VCVT(A|M|N|P|R|X|Z)(S|U)D",
"V.*TOD", "VTO.*D", "VCVTDS", "VCVTSD",
"VRINT(A|M|N|P|R|X|Z)D")>;
def : InstRW<[M85GroupABLat1S], (instregex "VINSH")>;
def : InstRW<[M85GroupBLat1S], (instregex "V(ABS|NEG)(H|S)$")>;
def : InstRW<[M85GroupBLat1D], (instregex "V(ABS|NEG)D$")>;
// VMRS/VMSR
let SingleIssue = 1 in {
def M85VMRSEarly : SchedWriteRes<[M85UnitVPort]> { let Latency = 2;}
def M85VMRSLate : SchedWriteRes<[M85UnitVPort]> { let Latency = 4; }
def M85VMSREarly : SchedWriteRes<[M85UnitVPort]> { let Latency = 1; }
def M85VMSRLate : SchedWriteRes<[M85UnitVPort]> { let Latency = 3; }
}
def M85FPSCRFlagPred : MCSchedPredicate<
CheckAll<[CheckIsRegOperand<0>,
CheckRegOperand<0, PC>]>>;
def M85VMRSFPSCR : SchedWriteVariant<[
SchedVar<M85FPSCRFlagPred, [M85VMRSEarly]>,
SchedVar<NoSchedPred, [M85VMRSLate]>
]>;
def : InstRW<[M85VMSREarly, M85Read_EX2],
(instregex "VMSR$", "VMSR_FPSCR_NZCVQC", "VMSR_P0", "VMSR_VPR")>;
def : InstRW<[M85VMRSEarly], (instregex "VMRS_P0", "VMRS_VPR", "FMSTAT")>;
def : InstRW<[M85VMRSLate], (instregex "VMRS_FPSCR_NZCVQC")>;
def : InstRW<[M85VMRSFPSCR], (instregex "VMRS$")>;
// Not matching properly
//def : InstRW<[M85VMSRLate, M85Read_EX2], (instregex "VMSR_FPCTX(NS|S)")>;
//def : InstRW<[M85VMRSLate], (instregex "VMRS_FPCTX(NS|S)")>;
// VSEL cannot bypass in its implied $cpsr operand; model as earlier read
def : InstRW<[M85GroupBLat1S, ReadALU, ReadALU, M85Read_ISS],
(instregex "VSEL.*(S|H)$")>;
def : InstRW<[M85GroupBLat1D, ReadALU, ReadALU, M85Read_ISS],
(instregex "VSEL.*D$")>;
// VMOV
def : InstRW<[WriteFPMOV],
(instregex "VMOV(H|S)$", "FCONST(H|S)")>;
def : InstRW<[WriteFPMOV, M85Read_EX2],
(instregex "VMOVHR$", "VMOVSR$")>;
def : InstRW<[M85GroupABLat2S],
(instregex "VMOVRH$", "VMOVRS$")>;
def : InstRW<[M85WriteFPMOV64],
(instregex "VMOVD$")>;
def : InstRW<[M85WriteFPMOV64],
(instregex "FCONSTD")>;
def : InstRW<[M85WriteFPMOV64, M85Read_EX2, M85Read_EX2],
(instregex "VMOVDRR")>;
def : InstRW<[M85WriteFPMOV64, M85Write1, M85Read_EX2, M85Read_EX2],
(instregex "VMOVSRR")>;
def : InstRW<[M85GroupABLat2D, M85Write2],
(instregex "VMOV(RRD|RRS)")>;
// These shouldn't even exist, but Cortex-m55 defines them, so here they are.
def : InstRW<[WriteFPMOV, M85Read_EX2],
(instregex "VGETLNi32$")>;
def : InstRW<[M85GroupABLat2S],
(instregex "VSETLNi32")>;
// Larger-latency overrides
def M85FPDIV16 : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 8;
}
def : InstRW<[M85OverrideVFPLat2, M85FPDIV16], (instregex "VDIVH")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPDIV32], (instregex "VDIVS")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPDIV64], (instregex "VDIVD")>;
def : InstRW<[M85OverrideVFPLat2, M85FPDIV16], (instregex "VSQRTH")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPSQRT32], (instregex "VSQRTS")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPSQRT64], (instregex "VSQRTD")>;
def : InstRW<[M85OverrideVFPLat3, WriteFPMUL64], (instregex "V(MUL|NMUL)D")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPALU64], (instregex "V(ADD|SUB)D")>;
// Multiply-accumulate. Chained SP timing is correct; rest need overrides
// Double-precision chained MAC should also be seen as having latency of 5,
// as stalls stall everything.
def : InstRW<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL],
(instregex "VN?ML(A|S)H")>;
def : InstRW<[M85OverrideVFPLat5, WriteFPMAC64,
ReadFPMUL, ReadFPMUL, ReadFPMUL],
(instregex "VN?ML(A|S)D$")>;
// Single-precision fused MACs look like latency 4 with advance of 2.
def M85ReadFPMAC2 : SchedReadAdvance<2>;
def : InstRW<[M85OverrideVFPLat4, WriteFPMAC32,
M85ReadFPMAC2, ReadFPMUL, ReadFPMUL],
(instregex "VF(N)?M(A|S)(H|S)$")>;
// Double-precision fused MAC looks like latency 4.
def : InstRW<[M85OverrideVFPLat4, WriteFPMAC64,
ReadFPMUL, ReadFPMUL, ReadFPMUL],
(instregex "VF(N)?M(A|S)D$")>;
// MVE beatwise instructions
// NOTE: Q-register timing for the 2nd beat is off by a cycle and needs
// DAG overrides to correctly set latencies.
// NOTE2: MVE integer MAC->MAC accumulate latencies are set as if the
// accumulate value arrives from an unmatching MAC instruction;
// matching ones are handled via DAG mutation. These are marked as
// "limited accumulate bypass"
let Latency = 4, EndGroup = 1 in {
def M85GrpALat2MveR : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpABLat2MveR : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GrpBLat2MveR : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85Lat2MveR : SchedWriteRes<[]> { let NumMicroOps = 0; }
def M85GrpBLat4Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
}
let Latency = 3, EndGroup = 1 in {
def M85GrpBLat3Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpBLat1MveR : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85Lat1MveR : SchedWriteRes<[]> { let NumMicroOps = 0; }
}
let Latency = 2, EndGroup = 1 in {
def M85GrpALat2Mve : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpABLat2Mve : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GrpBLat2Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85Lat2Mve : SchedWriteRes<[]> { let NumMicroOps = 0; }
}
let Latency = 1, EndGroup = 1 in {
def M85GrpALat1Mve : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpABLat1Mve : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GrpBLat1Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpCLat1Mve : SchedWriteRes<[M85UnitVFPCL, M85UnitVFPCH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpDLat1Mve : SchedWriteRes<[M85UnitVFPD, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,1,1,1];
}
}
def : InstRW<[M85GrpABLat1Mve, M85Read_EX1, M85Read_EX2, M85Read_EX2],
(instregex "MVE_VMOV_q_rr")>;
def : InstRW<[M85GrpABLat1Mve, M85Read_EX2],
(instregex "MVE_VMOV_to_lane_(8|16|32)")>;
def : InstRW<[M85GrpABLat1Mve],
(instregex "MVE_VAND$",
"MVE_VBIC$", "MVE_VBICimm",
"MVE_VCLSs(8|16|32)",
"MVE_VCLZs(8|16|32)",
"MVE_VEOR",
"MVE_VMOVimmf32", "MVE_VMOVimmi(8|16|32|64)",
"MVE_VMVN$", "MVE_VMVNimmi(16|32)",
"MVE_VORN$",
"MVE_VORR$", "MVE_VORRimm", "MQPRCopy",
"MVE_VPSEL",
"MVE_VREV(16|32|64)_(8|16|32)"
)>;
def : InstRW<[M85GrpABLat2MveR, M85Lat2MveR],
(instregex "MVE_VMOV_rr_q")>;
def : InstRW<[M85GrpABLat2MveR],
(instregex "MVE_VMOV_from_lane_(32|u8|s8|u16|s16)")>;
def : InstRW<[M85GrpALat1Mve, M85Lat1MveR,
M85Read_EX1, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VADC$")>;
def : InstRW<[M85GrpALat1Mve, M85Lat1MveR],
(instregex "MVE_VADCI")>;
def : InstRW<[M85GrpALat1Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VADD_qr_i(8|16|32)",
"MVE_VBRSR(16|32|8)",
"MVE_VHADD_qr_[su](8|16|32)",
"MVE_VHSUB_qr_[su](8|16|32)",
"MVE_VQADD_qr_[su](8|16|32)",
"MVE_VQSUB_qr_[su](8|16|32)",
"MVE_VSHL_qr[su](8|16|32)",
"MVE_VSUB_qr_i(8|16|32)"
)>;
def : InstRW<[M85GrpALat1Mve],
(instregex "MVE_VABD(s|u)(8|16|32)",
"MVE_VABS(s|u)(8|16|32)",
"MVE_V(MAX|MIN)A?[us](8|16|32)",
"MVE_VADDi(8|16|32)",
"MVE_VCADDi(8|16|32)",
"MVE_VHCADDs(8|16|32)",
"MVE_VHSUB[su](8|16|32)",
"MVE_VMOVL[su](8|16)[tb]h",
"MVE_VMOVNi(16|32)[tb]h",
"MVE_VMULL[BT]?[p](8|16|32)(bh|th)?",
"MVE_VNEGs(8|16|32)",
"MVE_VQABSs(8|16|32)",
"MVE_VQADD[su](8|16|32)",
"MVE_VQNEGs(8|16|32)",
"MVE_VQSUB[su](8|16|32)",
"MVE_VR?HADD[su](8|16|32)",
"MVE_VSBC$", "MVE_VSBCI",
"MVE_VSHL_by_vec[su](8|16|32)",
"MVE_VSHL_immi(8|16|32)",
"MVE_VSHLL_imm[su](8|16)[bt]h",
"MVE_VSHLL_lw[su](8|16)[bt]h",
"MVE_VSHRNi(16|32)[bt]h",
"MVE_VSHR_imm[su](8|16|32)",
"MVE_VSLIimm[su]?(8|16|32)",
"MVE_VSRIimm[su]?(8|16|32)",
"MVE_VSUBi(8|16|32)"
)>;
def : InstRW<[M85GrpALat2Mve, M85Lat2MveR, M85Read_EX2, M85Read_EX2],
(instregex "MVE_V(D|I)WDUPu(8|16|32)")>;
def : InstRW<[M85GrpALat2Mve, M85Lat2MveR, M85Read_EX2],
(instregex "MVE_V(D|I)DUPu(8|16|32)")>;
def : InstRW<[M85GrpALat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_V(Q|R|QR)SHL_qr[su](8|16|32)",
"MVE_VADD_qr_f(16|32)",
"MVE_VSUB_qr_f(16|32)"
)>;
def : InstRW<[M85GrpALat1Mve, M85Read_EX2],
(instregex "MVE_VDUP(8|16|32)")>;
def : InstRW<[M85GrpBLat1Mve],
(instregex "MVE_VABSf(16|32)",
"MVE_V(MAX|MIN)NMA?f(16|32)",
"MVE_VNEGf(16|32)"
)>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR, M85Read_EX3, M85Read_EX3],
(instregex "MVE_VADDLV[us]32acc")>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR],
(instregex "MVE_VADDLV[us]32no_acc")>;
def : InstRW<[M85GrpBLat2MveR, M85Read_EX3],
(instregex "MVE_VADDV[us](8|16|32)acc"
)>;
def : InstRW<[M85GrpALat2MveR, M85Read_EX3],
(instregex "MVE_V(MAX|MIN)A?V[us](8|16|32)",
"MVE_VABAV(s|u)(8|16|32)"
)>;
def : InstRW<[M85GrpALat2MveR],
(instregex "MVE_VADDV[us](8|16|32)no_acc")>;
def : InstRW<[M85GrpALat2Mve],
(instregex "MVE_V(Q|R|QR)SHL_by_vec[su](8|16|32)",
"MVE_VABDf(16|32)",
"MVE_VADDf(16|32)",
"MVE_VCADDf(16|32)",
"MVE_VQMOVU?N[su](8|16|32)[tb]h",
"MVE_VQR?SHL(U_)?imm[su](8|16|32)",
"MVE_VQR?SHRN[bt]h[su](16|32)",
"MVE_VQR?SHRUNs(16|32)[bt]h",
"MVE_VRSHR_imm[su](8|16|32)",
"MVE_VRSHRNi(16|32)[bt]h",
"MVE_VSUBf(16|32)"
)>;
def : InstRW<[M85GrpBLat2MveR, M85Read_EX2],
(instregex "MVE_V(MAX|MIN)NMA?Vf(16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VMUL_qr_i(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VQDMULL_qr_s(16|32)[tb]h")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VQR?DMULH_qr_s(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX1, M85Read_EX3],
// limited accumulate bypass
(instregex "MVE_VMLAS?_qr_i(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2],
// limited accumulate bypass
(instregex "MVE_VQR?DMLAS?H_qrs(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve],
// limited accumulate bypass
(instregex "MVE_VQR?DML[AS]DHX?s(8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR, M85Read_EX3, M85Read_EX3],
(instregex "MVE_VR?ML[AS]LDAVH?ax?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR],
(instregex "MVE_VR?ML[AS]LDAVH?x?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR, M85Read_EX3],
(instregex "MVE_VML[AS]DAVax?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR],
(instregex "MVE_VML[AS]DAVx?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve],
(instregex "MVE_VCVTf16(u|s)16", "MVE_VCVTf32(u|s)32",
"MVE_VCVT(u|s)16f16", "MVE_VCVT(u|s)32f32",
"MVE_VCVTf16f32", "MVE_VCVTf32f16",
"MVE_VMULL[BT]?[su](8|16|32)(bh|th)?",
"MVE_VMUL(t1)*i(8|16|32)",
"MVE_VQDMULLs(16|32)[tb]h",
"MVE_VQR?DMULHi(8|16|32)",
"MVE_VR?MULH[su](8|16|32)",
"MVE_VRINTf(16|32)"
)>;
def : InstRW<[M85GrpBLat3Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VMUL_qr_f(16|32)")>;
def : InstRW<[M85GrpBLat3Mve],
(instregex "MVE_VCMULf(16|32)",
"MVE_VMULf(16|32)"
)>;
def : InstRW<[M85GrpBLat4Mve, M85Read_EX3, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VFMA_qr_Sf(16|32)", // VFMAS
"MVE_VFMA_qr_f(16|32)" // VFMA
)>;
def : InstRW<[M85GrpBLat4Mve, M85Read_EX3],
(instregex "MVE_VCMLAf(16|32)")>;
def : InstRW<[M85GrpBLat4Mve, M85Read_EX3],
(instregex "MVE_VFM(A|S)f(16|32)")>;
def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VPTv(4|8)f(16|32)r")>;
def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VPTv(4|8|16)(i|s|u)(8|16|32)r")>;
def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VCMP[isu](8|16|32)r$", "MVE_VCMPf(16|32)r$")>;
def : InstRW<[M85GrpDLat1Mve, M85Read_EX2],
(instregex "MVE_VCTP(8|16|32|64)")>;
def : InstRW<[M85GrpCLat1Mve],
(instregex "MVE_VCMPf(16|32)$", "MVE_VCMP[isu](8|16|32)$",
"MVE_VPTv(4|8)f(16|32)$",
"MVE_VPTv(4|8|16)(i|s|u)(8|16|32)$"
)>;
def : InstRW<[M85GrpDLat1Mve],
(instregex "MVE_VPNOT",
"MVE_VPST"
)>;
def : InstRW<[M85Lat2MveR, M85GrpALat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VSHLC")>;
// VFP instructions
def : WriteRes<WriteVLD1, []>;
def : WriteRes<WriteVLD2, []>;
def : WriteRes<WriteVLD3, []>;
def : WriteRes<WriteVLD4, []>;
def : WriteRes<WriteVST1, []>;
def : WriteRes<WriteVST2, []>;
def : WriteRes<WriteVST3, []>;
def : WriteRes<WriteVST4, []>;
} // SchedModel = CortexCortexM85Model
|