1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
//===- GCNVOPDUtils.cpp - GCN VOPD Utils ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file contains the AMDGPU DAG scheduling
/// mutation to pair VOPD instructions back to back. It also contains
// subroutines useful in the creation of VOPD instructions
//
//===----------------------------------------------------------------------===//
#include "GCNVOPDUtils.h"
#include "AMDGPUSubtarget.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MacroFusion.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/MC/MCInst.h"
using namespace llvm;
#define DEBUG_TYPE "gcn-vopd-utils"
bool llvm::checkVOPDRegConstraints(const SIInstrInfo &TII,
const MachineInstr &FirstMI,
const MachineInstr &SecondMI, bool IsVOPD3) {
namespace VOPD = AMDGPU::VOPD;
const MachineFunction *MF = FirstMI.getMF();
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
if (IsVOPD3 && !ST.hasVOPD3())
return false;
if (!IsVOPD3 && (TII.isVOP3(FirstMI) || TII.isVOP3(SecondMI)))
return false;
if (TII.isDPP(FirstMI) || TII.isDPP(SecondMI))
return false;
const SIRegisterInfo *TRI = dyn_cast<SIRegisterInfo>(ST.getRegisterInfo());
const MachineRegisterInfo &MRI = MF->getRegInfo();
// Literals also count against scalar bus limit
SmallVector<const MachineOperand *> UniqueLiterals;
auto addLiteral = [&](const MachineOperand &Op) {
for (auto &Literal : UniqueLiterals) {
if (Literal->isIdenticalTo(Op))
return;
}
UniqueLiterals.push_back(&Op);
};
SmallVector<Register> UniqueScalarRegs;
assert([&]() -> bool {
for (auto MII = MachineBasicBlock::const_iterator(&FirstMI);
MII != FirstMI.getParent()->instr_end(); ++MII) {
if (&*MII == &SecondMI)
return true;
}
return false;
}() && "Expected FirstMI to precede SecondMI");
// Cannot pair dependent instructions
for (const auto &Use : SecondMI.uses())
if (Use.isReg() && FirstMI.modifiesRegister(Use.getReg(), TRI))
return false;
auto getVRegIdx = [&](unsigned OpcodeIdx, unsigned OperandIdx) {
const MachineInstr &MI = (OpcodeIdx == VOPD::X) ? FirstMI : SecondMI;
const MachineOperand &Operand = MI.getOperand(OperandIdx);
if (Operand.isReg() && TRI->isVectorRegister(MRI, Operand.getReg()))
return Operand.getReg();
return Register();
};
auto InstInfo =
AMDGPU::getVOPDInstInfo(FirstMI.getDesc(), SecondMI.getDesc());
for (auto CompIdx : VOPD::COMPONENTS) {
const MachineInstr &MI = (CompIdx == VOPD::X) ? FirstMI : SecondMI;
const MachineOperand &Src0 = *TII.getNamedOperand(MI, AMDGPU::OpName::src0);
if (Src0.isReg()) {
if (!TRI->isVectorRegister(MRI, Src0.getReg())) {
if (!is_contained(UniqueScalarRegs, Src0.getReg()))
UniqueScalarRegs.push_back(Src0.getReg());
}
} else if (!TII.isInlineConstant(Src0)) {
if (IsVOPD3)
return false;
addLiteral(Src0);
}
if (InstInfo[CompIdx].hasMandatoryLiteral()) {
if (IsVOPD3)
return false;
auto CompOprIdx = InstInfo[CompIdx].getMandatoryLiteralCompOperandIndex();
addLiteral(MI.getOperand(CompOprIdx));
}
if (MI.getDesc().hasImplicitUseOfPhysReg(AMDGPU::VCC))
UniqueScalarRegs.push_back(AMDGPU::VCC_LO);
if (IsVOPD3) {
for (auto OpName : {AMDGPU::OpName::src1, AMDGPU::OpName::src2}) {
const MachineOperand *Src = TII.getNamedOperand(MI, OpName);
if (!Src)
continue;
if (OpName == AMDGPU::OpName::src2) {
if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::bitop3))
continue;
if (MI.getOpcode() == AMDGPU::V_CNDMASK_B32_e64) {
UniqueScalarRegs.push_back(Src->getReg());
continue;
}
}
if (!Src->isReg() || !TRI->isVGPR(MRI, Src->getReg()))
return false;
}
for (auto OpName : {AMDGPU::OpName::clamp, AMDGPU::OpName::omod,
AMDGPU::OpName::op_sel}) {
if (TII.hasModifiersSet(MI, OpName))
return false;
}
// Neg is allowed, other modifiers are not. NB: even though sext has the
// same value as neg, there are no combinable instructions with sext.
for (auto OpName :
{AMDGPU::OpName::src0_modifiers, AMDGPU::OpName::src1_modifiers,
AMDGPU::OpName::src2_modifiers}) {
const MachineOperand *Mods = TII.getNamedOperand(MI, OpName);
if (Mods && (Mods->getImm() & ~SISrcMods::NEG))
return false;
}
}
}
if (UniqueLiterals.size() > 1)
return false;
if ((UniqueLiterals.size() + UniqueScalarRegs.size()) > 2)
return false;
// On GFX12+ if both OpX and OpY are V_MOV_B32 then OPY uses SRC2
// source-cache.
bool SkipSrc = ST.getGeneration() >= AMDGPUSubtarget::GFX12 &&
FirstMI.getOpcode() == AMDGPU::V_MOV_B32_e32 &&
SecondMI.getOpcode() == AMDGPU::V_MOV_B32_e32;
bool AllowSameVGPR = ST.hasGFX1250Insts();
if (InstInfo.hasInvalidOperand(getVRegIdx, *TRI, SkipSrc, AllowSameVGPR,
IsVOPD3))
return false;
if (IsVOPD3) {
// BITOP3 can be converted to DUAL_BITOP2 only if src2 is zero.
if (AMDGPU::hasNamedOperand(SecondMI.getOpcode(), AMDGPU::OpName::bitop3)) {
const MachineOperand &Src2 =
*TII.getNamedOperand(SecondMI, AMDGPU::OpName::src2);
if (!Src2.isImm() || Src2.getImm())
return false;
}
if (AMDGPU::hasNamedOperand(FirstMI.getOpcode(), AMDGPU::OpName::bitop3)) {
const MachineOperand &Src2 =
*TII.getNamedOperand(FirstMI, AMDGPU::OpName::src2);
if (!Src2.isImm() || Src2.getImm())
return false;
}
}
LLVM_DEBUG(dbgs() << "VOPD Reg Constraints Passed\n\tX: " << FirstMI
<< "\n\tY: " << SecondMI << "\n");
return true;
}
/// Check if the instr pair, FirstMI and SecondMI, should be scheduled
/// together. Given SecondMI, when FirstMI is unspecified, then check if
/// SecondMI may be part of a fused pair at all.
static bool shouldScheduleVOPDAdjacent(const TargetInstrInfo &TII,
const TargetSubtargetInfo &TSI,
const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
const SIInstrInfo &STII = static_cast<const SIInstrInfo &>(TII);
const GCNSubtarget &ST = STII.getSubtarget();
unsigned EncodingFamily = AMDGPU::getVOPDEncodingFamily(ST);
unsigned Opc2 = SecondMI.getOpcode();
const auto checkVOPD = [&](bool VOPD3) -> bool {
auto SecondCanBeVOPD = AMDGPU::getCanBeVOPD(Opc2, EncodingFamily, VOPD3);
// One instruction case
if (!FirstMI)
return SecondCanBeVOPD.Y || SecondCanBeVOPD.X;
unsigned Opc = FirstMI->getOpcode();
auto FirstCanBeVOPD = AMDGPU::getCanBeVOPD(Opc, EncodingFamily, VOPD3);
if (!((FirstCanBeVOPD.X && SecondCanBeVOPD.Y) ||
(FirstCanBeVOPD.Y && SecondCanBeVOPD.X)))
return false;
return checkVOPDRegConstraints(STII, *FirstMI, SecondMI, VOPD3);
};
return checkVOPD(false) || (ST.hasVOPD3() && checkVOPD(true));
}
namespace {
/// Adapts design from MacroFusion
/// Puts valid candidate instructions back-to-back so they can easily
/// be turned into VOPD instructions
/// Greedily pairs instruction candidates. O(n^2) algorithm.
struct VOPDPairingMutation : ScheduleDAGMutation {
MacroFusionPredTy shouldScheduleAdjacent; // NOLINT: function pointer
VOPDPairingMutation(
MacroFusionPredTy shouldScheduleAdjacent) // NOLINT: function pointer
: shouldScheduleAdjacent(shouldScheduleAdjacent) {}
void apply(ScheduleDAGInstrs *DAG) override {
const TargetInstrInfo &TII = *DAG->TII;
const GCNSubtarget &ST = DAG->MF.getSubtarget<GCNSubtarget>();
if (!AMDGPU::hasVOPD(ST) || !ST.isWave32()) {
LLVM_DEBUG(dbgs() << "Target does not support VOPDPairingMutation\n");
return;
}
std::vector<SUnit>::iterator ISUI, JSUI;
for (ISUI = DAG->SUnits.begin(); ISUI != DAG->SUnits.end(); ++ISUI) {
const MachineInstr *IMI = ISUI->getInstr();
if (!shouldScheduleAdjacent(TII, ST, nullptr, *IMI))
continue;
if (!hasLessThanNumFused(*ISUI, 2))
continue;
for (JSUI = ISUI + 1; JSUI != DAG->SUnits.end(); ++JSUI) {
if (JSUI->isBoundaryNode())
continue;
const MachineInstr *JMI = JSUI->getInstr();
if (!hasLessThanNumFused(*JSUI, 2) ||
!shouldScheduleAdjacent(TII, ST, IMI, *JMI))
continue;
if (fuseInstructionPair(*DAG, *ISUI, *JSUI))
break;
}
}
LLVM_DEBUG(dbgs() << "Completed VOPDPairingMutation\n");
}
};
} // namespace
std::unique_ptr<ScheduleDAGMutation> llvm::createVOPDPairingMutation() {
return std::make_unique<VOPDPairingMutation>(shouldScheduleVOPDAdjacent);
}
|