aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp
blob: fce8f36d459691d2b2cfd7d01dc632400724043f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This contains a MachineSchedStrategy implementation for maximizing wave
/// occupancy on GCN hardware.
///
/// This pass will apply multiple scheduling stages to the same function.
/// Regions are first recorded in GCNScheduleDAGMILive::schedule. The actual
/// entry point for the scheduling of those regions is
/// GCNScheduleDAGMILive::runSchedStages.

/// Generally, the reason for having multiple scheduling stages is to account
/// for the kernel-wide effect of register usage on occupancy.  Usually, only a
/// few scheduling regions will have register pressure high enough to limit
/// occupancy for the kernel, so constraints can be relaxed to improve ILP in
/// other regions.
///
//===----------------------------------------------------------------------===//

#include "GCNSchedStrategy.h"
#include "AMDGPUIGroupLP.h"
#include "GCNRegPressure.h"
#include "SIMachineFunctionInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/ErrorHandling.h"

#define DEBUG_TYPE "machine-scheduler"

using namespace llvm;

static cl::opt<bool> DisableUnclusterHighRP(
    "amdgpu-disable-unclustered-high-rp-reschedule", cl::Hidden,
    cl::desc("Disable unclustered high register pressure "
             "reduction scheduling stage."),
    cl::init(false));

static cl::opt<bool> DisableClusteredLowOccupancy(
    "amdgpu-disable-clustered-low-occupancy-reschedule", cl::Hidden,
    cl::desc("Disable clustered low occupancy "
             "rescheduling for ILP scheduling stage."),
    cl::init(false));

static cl::opt<unsigned> ScheduleMetricBias(
    "amdgpu-schedule-metric-bias", cl::Hidden,
    cl::desc(
        "Sets the bias which adds weight to occupancy vs latency. Set it to "
        "100 to chase the occupancy only."),
    cl::init(10));

static cl::opt<bool>
    RelaxedOcc("amdgpu-schedule-relaxed-occupancy", cl::Hidden,
               cl::desc("Relax occupancy targets for kernels which are memory "
                        "bound (amdgpu-membound-threshold), or "
                        "Wave Limited (amdgpu-limit-wave-threshold)."),
               cl::init(false));

static cl::opt<bool> GCNTrackers(
    "amdgpu-use-amdgpu-trackers", cl::Hidden,
    cl::desc("Use the AMDGPU specific RPTrackers during scheduling"),
    cl::init(false));

const unsigned ScheduleMetrics::ScaleFactor = 100;

GCNSchedStrategy::GCNSchedStrategy(const MachineSchedContext *C)
    : GenericScheduler(C), TargetOccupancy(0), MF(nullptr),
      DownwardTracker(*C->LIS), UpwardTracker(*C->LIS), HasHighPressure(false) {
}

void GCNSchedStrategy::initialize(ScheduleDAGMI *DAG) {
  GenericScheduler::initialize(DAG);

  MF = &DAG->MF;

  const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();

  SGPRExcessLimit =
      Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
  VGPRExcessLimit =
      Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);

  SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
  // Set the initial TargetOccupnacy to the maximum occupancy that we can
  // achieve for this function. This effectively sets a lower bound on the
  // 'Critical' register limits in the scheduler.
  // Allow for lower occupancy targets if kernel is wave limited or memory
  // bound, and using the relaxed occupancy feature.
  TargetOccupancy =
      RelaxedOcc ? MFI.getMinAllowedOccupancy() : MFI.getOccupancy();
  SGPRCriticalLimit =
      std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit);

  if (!KnownExcessRP) {
    VGPRCriticalLimit = std::min(
        ST.getMaxNumVGPRs(TargetOccupancy, MFI.getDynamicVGPRBlockSize()),
        VGPRExcessLimit);
  } else {
    // This is similar to ST.getMaxNumVGPRs(TargetOccupancy) result except
    // returns a reasonably small number for targets with lots of VGPRs, such
    // as GFX10 and GFX11.
    LLVM_DEBUG(dbgs() << "Region is known to spill, use alternative "
                         "VGPRCriticalLimit calculation method.\n");
    unsigned DynamicVGPRBlockSize = MFI.getDynamicVGPRBlockSize();
    unsigned Granule =
        AMDGPU::IsaInfo::getVGPRAllocGranule(&ST, DynamicVGPRBlockSize);
    unsigned Addressable =
        AMDGPU::IsaInfo::getAddressableNumVGPRs(&ST, DynamicVGPRBlockSize);
    unsigned VGPRBudget = alignDown(Addressable / TargetOccupancy, Granule);
    VGPRBudget = std::max(VGPRBudget, Granule);
    VGPRCriticalLimit = std::min(VGPRBudget, VGPRExcessLimit);
  }

  // Subtract error margin and bias from register limits and avoid overflow.
  SGPRCriticalLimit -= std::min(SGPRLimitBias + ErrorMargin, SGPRCriticalLimit);
  VGPRCriticalLimit -= std::min(VGPRLimitBias + ErrorMargin, VGPRCriticalLimit);
  SGPRExcessLimit -= std::min(SGPRLimitBias + ErrorMargin, SGPRExcessLimit);
  VGPRExcessLimit -= std::min(VGPRLimitBias + ErrorMargin, VGPRExcessLimit);

  LLVM_DEBUG(dbgs() << "VGPRCriticalLimit = " << VGPRCriticalLimit
                    << ", VGPRExcessLimit = " << VGPRExcessLimit
                    << ", SGPRCriticalLimit = " << SGPRCriticalLimit
                    << ", SGPRExcessLimit = " << SGPRExcessLimit << "\n\n");
}

/// Checks whether \p SU can use the cached DAG pressure diffs to compute the
/// current register pressure.
///
/// This works for the common case, but it has a few exceptions that have been
/// observed through trial and error:
///   - Explicit physical register operands
///   - Subregister definitions
///
/// In both of those cases, PressureDiff doesn't represent the actual pressure,
/// and querying LiveIntervals through the RegPressureTracker is needed to get
/// an accurate value.
///
/// We should eventually only use PressureDiff for maximum performance, but this
/// already allows 80% of SUs to take the fast path without changing scheduling
/// at all. Further changes would either change scheduling, or require a lot
/// more logic to recover an accurate pressure estimate from the PressureDiffs.
static bool canUsePressureDiffs(const SUnit &SU) {
  if (!SU.isInstr())
    return false;

  // Cannot use pressure diffs for subregister defs or with physregs, it's
  // imprecise in both cases.
  for (const auto &Op : SU.getInstr()->operands()) {
    if (!Op.isReg() || Op.isImplicit())
      continue;
    if (Op.getReg().isPhysical() ||
        (Op.isDef() && Op.getSubReg() != AMDGPU::NoSubRegister))
      return false;
  }
  return true;
}

static void getRegisterPressures(
    bool AtTop, const RegPressureTracker &RPTracker, SUnit *SU,
    std::vector<unsigned> &Pressure, std::vector<unsigned> &MaxPressure,
    GCNDownwardRPTracker &DownwardTracker, GCNUpwardRPTracker &UpwardTracker,
    ScheduleDAGMI *DAG, const SIRegisterInfo *SRI) {
  // getDownwardPressure() and getUpwardPressure() make temporary changes to
  // the tracker, so we need to pass those function a non-const copy.
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker &>(RPTracker);
  if (!GCNTrackers) {
    AtTop
        ? TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure)
        : TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);

    return;
  }

  // GCNTrackers
  Pressure.resize(4, 0);
  MachineInstr *MI = SU->getInstr();
  GCNRegPressure NewPressure;
  if (AtTop) {
    GCNDownwardRPTracker TempDownwardTracker(DownwardTracker);
    NewPressure = TempDownwardTracker.bumpDownwardPressure(MI, SRI);
  } else {
    GCNUpwardRPTracker TempUpwardTracker(UpwardTracker);
    TempUpwardTracker.recede(*MI);
    NewPressure = TempUpwardTracker.getPressure();
  }
  Pressure[AMDGPU::RegisterPressureSets::SReg_32] = NewPressure.getSGPRNum();
  Pressure[AMDGPU::RegisterPressureSets::VGPR_32] =
      NewPressure.getArchVGPRNum();
  Pressure[AMDGPU::RegisterPressureSets::AGPR_32] = NewPressure.getAGPRNum();
}

void GCNSchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
                                     bool AtTop,
                                     const RegPressureTracker &RPTracker,
                                     const SIRegisterInfo *SRI,
                                     unsigned SGPRPressure,
                                     unsigned VGPRPressure, bool IsBottomUp) {
  Cand.SU = SU;
  Cand.AtTop = AtTop;

  if (!DAG->isTrackingPressure())
    return;

  Pressure.clear();
  MaxPressure.clear();

  // We try to use the cached PressureDiffs in the ScheduleDAG whenever
  // possible over querying the RegPressureTracker.
  //
  // RegPressureTracker will make a lot of LIS queries which are very
  // expensive, it is considered a slow function in this context.
  //
  // PressureDiffs are precomputed and cached, and getPressureDiff is just a
  // trivial lookup into an array. It is pretty much free.
  //
  // In EXPENSIVE_CHECKS, we always query RPTracker to verify the results of
  // PressureDiffs.
  if (AtTop || !canUsePressureDiffs(*SU) || GCNTrackers) {
    getRegisterPressures(AtTop, RPTracker, SU, Pressure, MaxPressure,
                         DownwardTracker, UpwardTracker, DAG, SRI);
  } else {
    // Reserve 4 slots.
    Pressure.resize(4, 0);
    Pressure[AMDGPU::RegisterPressureSets::SReg_32] = SGPRPressure;
    Pressure[AMDGPU::RegisterPressureSets::VGPR_32] = VGPRPressure;

    for (const auto &Diff : DAG->getPressureDiff(SU)) {
      if (!Diff.isValid())
        continue;
      // PressureDiffs is always bottom-up so if we're working top-down we need
      // to invert its sign.
      Pressure[Diff.getPSet()] +=
          (IsBottomUp ? Diff.getUnitInc() : -Diff.getUnitInc());
    }

#ifdef EXPENSIVE_CHECKS
    std::vector<unsigned> CheckPressure, CheckMaxPressure;
    getRegisterPressures(AtTop, RPTracker, SU, CheckPressure, CheckMaxPressure,
                         DownwardTracker, UpwardTracker, DAG, SRI);
    if (Pressure[AMDGPU::RegisterPressureSets::SReg_32] !=
            CheckPressure[AMDGPU::RegisterPressureSets::SReg_32] ||
        Pressure[AMDGPU::RegisterPressureSets::VGPR_32] !=
            CheckPressure[AMDGPU::RegisterPressureSets::VGPR_32]) {
      errs() << "Register Pressure is inaccurate when calculated through "
                "PressureDiff\n"
             << "SGPR got " << Pressure[AMDGPU::RegisterPressureSets::SReg_32]
             << ", expected "
             << CheckPressure[AMDGPU::RegisterPressureSets::SReg_32] << "\n"
             << "VGPR got " << Pressure[AMDGPU::RegisterPressureSets::VGPR_32]
             << ", expected "
             << CheckPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n";
      report_fatal_error("inaccurate register pressure calculation");
    }
#endif
  }

  unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
  unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];

  // If two instructions increase the pressure of different register sets
  // by the same amount, the generic scheduler will prefer to schedule the
  // instruction that increases the set with the least amount of registers,
  // which in our case would be SGPRs.  This is rarely what we want, so
  // when we report excess/critical register pressure, we do it either
  // only for VGPRs or only for SGPRs.

  // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
  const unsigned MaxVGPRPressureInc = 16;
  bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
  bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;

  // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
  // to increase the likelihood we don't go over the limits.  We should improve
  // the analysis to look through dependencies to find the path with the least
  // register pressure.

  // We only need to update the RPDelta for instructions that increase register
  // pressure. Instructions that decrease or keep reg pressure the same will be
  // marked as RegExcess in tryCandidate() when they are compared with
  // instructions that increase the register pressure.
  if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
    HasHighPressure = true;
    Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
    Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
  }

  if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
    HasHighPressure = true;
    Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
    Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
  }

  // Register pressure is considered 'CRITICAL' if it is approaching a value
  // that would reduce the wave occupancy for the execution unit.  When
  // register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both
  // has the same cost, so we don't need to prefer one over the other.

  int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
  int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;

  if (SGPRDelta >= 0 || VGPRDelta >= 0) {
    HasHighPressure = true;
    if (SGPRDelta > VGPRDelta) {
      Cand.RPDelta.CriticalMax =
          PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
      Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
    } else {
      Cand.RPDelta.CriticalMax =
          PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
      Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
    }
  }
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNodeFromQueue()
void GCNSchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
                                         const CandPolicy &ZonePolicy,
                                         const RegPressureTracker &RPTracker,
                                         SchedCandidate &Cand,
                                         bool IsBottomUp) {
  const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo *>(TRI);
  ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
  unsigned SGPRPressure = 0;
  unsigned VGPRPressure = 0;
  if (DAG->isTrackingPressure()) {
    if (!GCNTrackers) {
      SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
      VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
    } else {
      GCNRPTracker *T = IsBottomUp
                            ? static_cast<GCNRPTracker *>(&UpwardTracker)
                            : static_cast<GCNRPTracker *>(&DownwardTracker);
      SGPRPressure = T->getPressure().getSGPRNum();
      VGPRPressure = T->getPressure().getArchVGPRNum();
    }
  }
  ReadyQueue &Q = Zone.Available;
  for (SUnit *SU : Q) {

    SchedCandidate TryCand(ZonePolicy);
    initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, SGPRPressure,
                  VGPRPressure, IsBottomUp);
    // Pass SchedBoundary only when comparing nodes from the same boundary.
    SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
    tryCandidate(Cand, TryCand, ZoneArg);
    if (TryCand.Reason != NoCand) {
      // Initialize resource delta if needed in case future heuristics query it.
      if (TryCand.ResDelta == SchedResourceDelta())
        TryCand.initResourceDelta(Zone.DAG, SchedModel);
      Cand.setBest(TryCand);
      LLVM_DEBUG(traceCandidate(Cand));
    }
  }
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNodeBidirectional()
SUnit *GCNSchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
  // Schedule as far as possible in the direction of no choice. This is most
  // efficient, but also provides the best heuristics for CriticalPSets.
  if (SUnit *SU = Bot.pickOnlyChoice()) {
    IsTopNode = false;
    return SU;
  }
  if (SUnit *SU = Top.pickOnlyChoice()) {
    IsTopNode = true;
    return SU;
  }
  // Set the bottom-up policy based on the state of the current bottom zone and
  // the instructions outside the zone, including the top zone.
  CandPolicy BotPolicy;
  setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
  // Set the top-down policy based on the state of the current top zone and
  // the instructions outside the zone, including the bottom zone.
  CandPolicy TopPolicy;
  setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);

  // See if BotCand is still valid (because we previously scheduled from Top).
  LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
  if (!BotCand.isValid() || BotCand.SU->isScheduled ||
      BotCand.Policy != BotPolicy) {
    BotCand.reset(CandPolicy());
    pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand,
                      /*IsBottomUp=*/true);
    assert(BotCand.Reason != NoCand && "failed to find the first candidate");
  } else {
    LLVM_DEBUG(traceCandidate(BotCand));
#ifndef NDEBUG
    if (VerifyScheduling) {
      SchedCandidate TCand;
      TCand.reset(CandPolicy());
      pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand,
                        /*IsBottomUp=*/true);
      assert(TCand.SU == BotCand.SU &&
             "Last pick result should correspond to re-picking right now");
    }
#endif
  }

  // Check if the top Q has a better candidate.
  LLVM_DEBUG(dbgs() << "Picking from Top:\n");
  if (!TopCand.isValid() || TopCand.SU->isScheduled ||
      TopCand.Policy != TopPolicy) {
    TopCand.reset(CandPolicy());
    pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand,
                      /*IsBottomUp=*/false);
    assert(TopCand.Reason != NoCand && "failed to find the first candidate");
  } else {
    LLVM_DEBUG(traceCandidate(TopCand));
#ifndef NDEBUG
    if (VerifyScheduling) {
      SchedCandidate TCand;
      TCand.reset(CandPolicy());
      pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand,
                        /*IsBottomUp=*/false);
      assert(TCand.SU == TopCand.SU &&
             "Last pick result should correspond to re-picking right now");
    }
#endif
  }

  // Pick best from BotCand and TopCand.
  LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
             dbgs() << "Bot Cand: "; traceCandidate(BotCand););
  SchedCandidate Cand = BotCand;
  TopCand.Reason = NoCand;
  tryCandidate(Cand, TopCand, nullptr);
  if (TopCand.Reason != NoCand) {
    Cand.setBest(TopCand);
  }
  LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););

  IsTopNode = Cand.AtTop;
  return Cand.SU;
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNode()
SUnit *GCNSchedStrategy::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(Top.Available.empty() && Top.Pending.empty() &&
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    return nullptr;
  }
  SUnit *SU;
  do {
    if (RegionPolicy.OnlyTopDown) {
      SU = Top.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        TopCand.reset(NoPolicy);
        pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand,
                          /*IsBottomUp=*/false);
        assert(TopCand.Reason != NoCand && "failed to find a candidate");
        SU = TopCand.SU;
      }
      IsTopNode = true;
    } else if (RegionPolicy.OnlyBottomUp) {
      SU = Bot.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        BotCand.reset(NoPolicy);
        pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand,
                          /*IsBottomUp=*/true);
        assert(BotCand.Reason != NoCand && "failed to find a candidate");
        SU = BotCand.SU;
      }
      IsTopNode = false;
    } else {
      SU = pickNodeBidirectional(IsTopNode);
    }
  } while (SU->isScheduled);

  if (SU->isTopReady())
    Top.removeReady(SU);
  if (SU->isBottomReady())
    Bot.removeReady(SU);

  LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
                    << *SU->getInstr());
  return SU;
}

void GCNSchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
  if (GCNTrackers) {
    MachineInstr *MI = SU->getInstr();
    IsTopNode ? (void)DownwardTracker.advance(MI, false)
              : UpwardTracker.recede(*MI);
  }

  return GenericScheduler::schedNode(SU, IsTopNode);
}

GCNSchedStageID GCNSchedStrategy::getCurrentStage() {
  assert(CurrentStage && CurrentStage != SchedStages.end());
  return *CurrentStage;
}

bool GCNSchedStrategy::advanceStage() {
  assert(CurrentStage != SchedStages.end());
  if (!CurrentStage)
    CurrentStage = SchedStages.begin();
  else
    CurrentStage++;

  return CurrentStage != SchedStages.end();
}

bool GCNSchedStrategy::hasNextStage() const {
  assert(CurrentStage);
  return std::next(CurrentStage) != SchedStages.end();
}

GCNSchedStageID GCNSchedStrategy::getNextStage() const {
  assert(CurrentStage && std::next(CurrentStage) != SchedStages.end());
  return *std::next(CurrentStage);
}

GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
    const MachineSchedContext *C, bool IsLegacyScheduler)
    : GCNSchedStrategy(C) {
  SchedStages.push_back(GCNSchedStageID::OccInitialSchedule);
  SchedStages.push_back(GCNSchedStageID::UnclusteredHighRPReschedule);
  SchedStages.push_back(GCNSchedStageID::ClusteredLowOccupancyReschedule);
  SchedStages.push_back(GCNSchedStageID::PreRARematerialize);
  GCNTrackers = GCNTrackers & !IsLegacyScheduler;
}

GCNMaxILPSchedStrategy::GCNMaxILPSchedStrategy(const MachineSchedContext *C)
    : GCNSchedStrategy(C) {
  SchedStages.push_back(GCNSchedStageID::ILPInitialSchedule);
}

bool GCNMaxILPSchedStrategy::tryCandidate(SchedCandidate &Cand,
                                          SchedCandidate &TryCand,
                                          SchedBoundary *Zone) const {
  // Initialize the candidate if needed.
  if (!Cand.isValid()) {
    TryCand.Reason = NodeOrder;
    return true;
  }

  // Avoid spilling by exceeding the register limit.
  if (DAG->isTrackingPressure() &&
      tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
                  RegExcess, TRI, DAG->MF))
    return TryCand.Reason != NoCand;

  // Bias PhysReg Defs and copies to their uses and defined respectively.
  if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
                 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
    return TryCand.Reason != NoCand;

  bool SameBoundary = Zone != nullptr;
  if (SameBoundary) {
    // Prioritize instructions that read unbuffered resources by stall cycles.
    if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
                Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
      return TryCand.Reason != NoCand;

    // Avoid critical resource consumption and balance the schedule.
    TryCand.initResourceDelta(DAG, SchedModel);
    if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
                TryCand, Cand, ResourceReduce))
      return TryCand.Reason != NoCand;
    if (tryGreater(TryCand.ResDelta.DemandedResources,
                   Cand.ResDelta.DemandedResources, TryCand, Cand,
                   ResourceDemand))
      return TryCand.Reason != NoCand;

    // Unconditionally try to reduce latency.
    if (tryLatency(TryCand, Cand, *Zone))
      return TryCand.Reason != NoCand;

    // Weak edges are for clustering and other constraints.
    if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
                getWeakLeft(Cand.SU, Cand.AtTop), TryCand, Cand, Weak))
      return TryCand.Reason != NoCand;
  }

  // Keep clustered nodes together to encourage downstream peephole
  // optimizations which may reduce resource requirements.
  //
  // This is a best effort to set things up for a post-RA pass. Optimizations
  // like generating loads of multiple registers should ideally be done within
  // the scheduler pass by combining the loads during DAG postprocessing.
  const ClusterInfo *CandCluster = Cand.AtTop ? TopCluster : BotCluster;
  const ClusterInfo *TryCandCluster = TryCand.AtTop ? TopCluster : BotCluster;
  if (tryGreater(TryCandCluster && TryCandCluster->contains(TryCand.SU),
                 CandCluster && CandCluster->contains(Cand.SU), TryCand, Cand,
                 Cluster))
    return TryCand.Reason != NoCand;

  // Avoid increasing the max critical pressure in the scheduled region.
  if (DAG->isTrackingPressure() &&
      tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
                  TryCand, Cand, RegCritical, TRI, DAG->MF))
    return TryCand.Reason != NoCand;

  // Avoid increasing the max pressure of the entire region.
  if (DAG->isTrackingPressure() &&
      tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, TryCand,
                  Cand, RegMax, TRI, DAG->MF))
    return TryCand.Reason != NoCand;

  if (SameBoundary) {
    // Fall through to original instruction order.
    if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) ||
        (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
      TryCand.Reason = NodeOrder;
      return true;
    }
  }
  return false;
}

GCNMaxMemoryClauseSchedStrategy::GCNMaxMemoryClauseSchedStrategy(
    const MachineSchedContext *C)
    : GCNSchedStrategy(C) {
  SchedStages.push_back(GCNSchedStageID::MemoryClauseInitialSchedule);
}

/// GCNMaxMemoryClauseSchedStrategy tries best to clause memory instructions as
/// much as possible. This is achieved by:
//  1. Prioritize clustered operations before stall latency heuristic.
//  2. Prioritize long-latency-load before stall latency heuristic.
///
/// \param Cand provides the policy and current best candidate.
/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
/// \param Zone describes the scheduled zone that we are extending, or nullptr
///             if Cand is from a different zone than TryCand.
/// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
bool GCNMaxMemoryClauseSchedStrategy::tryCandidate(SchedCandidate &Cand,
                                                   SchedCandidate &TryCand,
                                                   SchedBoundary *Zone) const {
  // Initialize the candidate if needed.
  if (!Cand.isValid()) {
    TryCand.Reason = NodeOrder;
    return true;
  }

  // Bias PhysReg Defs and copies to their uses and defined respectively.
  if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
                 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
    return TryCand.Reason != NoCand;

  if (DAG->isTrackingPressure()) {
    // Avoid exceeding the target's limit.
    if (tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
                    RegExcess, TRI, DAG->MF))
      return TryCand.Reason != NoCand;

    // Avoid increasing the max critical pressure in the scheduled region.
    if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
                    TryCand, Cand, RegCritical, TRI, DAG->MF))
      return TryCand.Reason != NoCand;
  }

  // MaxMemoryClause-specific: We prioritize clustered instructions as we would
  // get more benefit from clausing these memory instructions.
  const ClusterInfo *CandCluster = Cand.AtTop ? TopCluster : BotCluster;
  const ClusterInfo *TryCandCluster = TryCand.AtTop ? TopCluster : BotCluster;
  if (tryGreater(TryCandCluster && TryCandCluster->contains(TryCand.SU),
                 CandCluster && CandCluster->contains(Cand.SU), TryCand, Cand,
                 Cluster))
    return TryCand.Reason != NoCand;

  // We only compare a subset of features when comparing nodes between
  // Top and Bottom boundary. Some properties are simply incomparable, in many
  // other instances we should only override the other boundary if something
  // is a clear good pick on one boundary. Skip heuristics that are more
  // "tie-breaking" in nature.
  bool SameBoundary = Zone != nullptr;
  if (SameBoundary) {
    // For loops that are acyclic path limited, aggressively schedule for
    // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
    // heuristics to take precedence.
    if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
        tryLatency(TryCand, Cand, *Zone))
      return TryCand.Reason != NoCand;

    // MaxMemoryClause-specific: Prioritize long latency memory load
    // instructions in top-bottom order to hide more latency. The mayLoad check
    // is used to exclude store-like instructions, which we do not want to
    // scheduler them too early.
    bool TryMayLoad =
        TryCand.SU->isInstr() && TryCand.SU->getInstr()->mayLoad();
    bool CandMayLoad = Cand.SU->isInstr() && Cand.SU->getInstr()->mayLoad();

    if (TryMayLoad || CandMayLoad) {
      bool TryLongLatency =
          TryCand.SU->Latency > 10 * Cand.SU->Latency && TryMayLoad;
      bool CandLongLatency =
          10 * TryCand.SU->Latency < Cand.SU->Latency && CandMayLoad;

      if (tryGreater(Zone->isTop() ? TryLongLatency : CandLongLatency,
                     Zone->isTop() ? CandLongLatency : TryLongLatency, TryCand,
                     Cand, Stall))
        return TryCand.Reason != NoCand;
    }
    // Prioritize instructions that read unbuffered resources by stall cycles.
    if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
                Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
      return TryCand.Reason != NoCand;
  }

  if (SameBoundary) {
    // Weak edges are for clustering and other constraints.
    if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
                getWeakLeft(Cand.SU, Cand.AtTop), TryCand, Cand, Weak))
      return TryCand.Reason != NoCand;
  }

  // Avoid increasing the max pressure of the entire region.
  if (DAG->isTrackingPressure() &&
      tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, TryCand,
                  Cand, RegMax, TRI, DAG->MF))
    return TryCand.Reason != NoCand;

  if (SameBoundary) {
    // Avoid critical resource consumption and balance the schedule.
    TryCand.initResourceDelta(DAG, SchedModel);
    if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
                TryCand, Cand, ResourceReduce))
      return TryCand.Reason != NoCand;
    if (tryGreater(TryCand.ResDelta.DemandedResources,
                   Cand.ResDelta.DemandedResources, TryCand, Cand,
                   ResourceDemand))
      return TryCand.Reason != NoCand;

    // Avoid serializing long latency dependence chains.
    // For acyclic path limited loops, latency was already checked above.
    if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
        !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
      return TryCand.Reason != NoCand;

    // Fall through to original instruction order.
    if (Zone->isTop() == (TryCand.SU->NodeNum < Cand.SU->NodeNum)) {
      assert(TryCand.SU->NodeNum != Cand.SU->NodeNum);
      TryCand.Reason = NodeOrder;
      return true;
    }
  }

  return false;
}

GCNScheduleDAGMILive::GCNScheduleDAGMILive(
    MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S)
    : ScheduleDAGMILive(C, std::move(S)), ST(MF.getSubtarget<GCNSubtarget>()),
      MFI(*MF.getInfo<SIMachineFunctionInfo>()),
      StartingOccupancy(MFI.getOccupancy()), MinOccupancy(StartingOccupancy),
      RegionLiveOuts(this, /*IsLiveOut=*/true) {

  // We want regions with a single MI to be scheduled so that we can reason
  // about them correctly during scheduling stages that move MIs between regions
  // (e.g., rematerialization).
  ScheduleSingleMIRegions = true;
  LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
  if (RelaxedOcc) {
    MinOccupancy = std::min(MFI.getMinAllowedOccupancy(), StartingOccupancy);
    if (MinOccupancy != StartingOccupancy)
      LLVM_DEBUG(dbgs() << "Allowing Occupancy drops to " << MinOccupancy
                        << ".\n");
  }
}

std::unique_ptr<GCNSchedStage>
GCNScheduleDAGMILive::createSchedStage(GCNSchedStageID SchedStageID) {
  switch (SchedStageID) {
  case GCNSchedStageID::OccInitialSchedule:
    return std::make_unique<OccInitialScheduleStage>(SchedStageID, *this);
  case GCNSchedStageID::UnclusteredHighRPReschedule:
    return std::make_unique<UnclusteredHighRPStage>(SchedStageID, *this);
  case GCNSchedStageID::ClusteredLowOccupancyReschedule:
    return std::make_unique<ClusteredLowOccStage>(SchedStageID, *this);
  case GCNSchedStageID::PreRARematerialize:
    return std::make_unique<PreRARematStage>(SchedStageID, *this);
  case GCNSchedStageID::ILPInitialSchedule:
    return std::make_unique<ILPInitialScheduleStage>(SchedStageID, *this);
  case GCNSchedStageID::MemoryClauseInitialSchedule:
    return std::make_unique<MemoryClauseInitialScheduleStage>(SchedStageID,
                                                              *this);
  }

  llvm_unreachable("Unknown SchedStageID.");
}

void GCNScheduleDAGMILive::schedule() {
  // Collect all scheduling regions. The actual scheduling is performed in
  // GCNScheduleDAGMILive::finalizeSchedule.
  Regions.push_back(std::pair(RegionBegin, RegionEnd));
}

GCNRegPressure
GCNScheduleDAGMILive::getRealRegPressure(unsigned RegionIdx) const {
  GCNDownwardRPTracker RPTracker(*LIS);
  RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
  return RPTracker.moveMaxPressure();
}

static MachineInstr *getLastMIForRegion(MachineBasicBlock::iterator RegionBegin,
                                        MachineBasicBlock::iterator RegionEnd) {
  auto REnd = RegionEnd == RegionBegin->getParent()->end()
                  ? std::prev(RegionEnd)
                  : RegionEnd;
  return &*skipDebugInstructionsBackward(REnd, RegionBegin);
}

void GCNScheduleDAGMILive::computeBlockPressure(unsigned RegionIdx,
                                                const MachineBasicBlock *MBB) {
  GCNDownwardRPTracker RPTracker(*LIS);

  // If the block has the only successor then live-ins of that successor are
  // live-outs of the current block. We can reuse calculated live set if the
  // successor will be sent to scheduling past current block.

  // However, due to the bug in LiveInterval analysis it may happen that two
  // predecessors of the same successor block have different lane bitmasks for
  // a live-out register. Workaround that by sticking to one-to-one relationship
  // i.e. one predecessor with one successor block.
  const MachineBasicBlock *OnlySucc = nullptr;
  if (MBB->succ_size() == 1) {
    auto *Candidate = *MBB->succ_begin();
    if (!Candidate->empty() && Candidate->pred_size() == 1) {
      SlotIndexes *Ind = LIS->getSlotIndexes();
      if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(Candidate))
        OnlySucc = Candidate;
    }
  }

  // Scheduler sends regions from the end of the block upwards.
  size_t CurRegion = RegionIdx;
  for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
    if (Regions[CurRegion].first->getParent() != MBB)
      break;
  --CurRegion;

  auto I = MBB->begin();
  auto LiveInIt = MBBLiveIns.find(MBB);
  auto &Rgn = Regions[CurRegion];
  auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
  if (LiveInIt != MBBLiveIns.end()) {
    auto LiveIn = std::move(LiveInIt->second);
    RPTracker.reset(*MBB->begin(), &LiveIn);
    MBBLiveIns.erase(LiveInIt);
  } else {
    I = Rgn.first;
    auto LRS = BBLiveInMap.lookup(NonDbgMI);
#ifdef EXPENSIVE_CHECKS
    assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
#endif
    RPTracker.reset(*I, &LRS);
  }

  for (;;) {
    I = RPTracker.getNext();

    if (Regions[CurRegion].first == I || NonDbgMI == I) {
      LiveIns[CurRegion] = RPTracker.getLiveRegs();
      RPTracker.clearMaxPressure();
    }

    if (Regions[CurRegion].second == I) {
      Pressure[CurRegion] = RPTracker.moveMaxPressure();
      if (CurRegion-- == RegionIdx)
        break;
      auto &Rgn = Regions[CurRegion];
      NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
    }
    RPTracker.advanceToNext();
    RPTracker.advanceBeforeNext();
  }

  if (OnlySucc) {
    if (I != MBB->end()) {
      RPTracker.advanceToNext();
      RPTracker.advance(MBB->end());
    }
    RPTracker.advanceBeforeNext();
    MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
  }
}

DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
GCNScheduleDAGMILive::getRegionLiveInMap() const {
  assert(!Regions.empty());
  std::vector<MachineInstr *> RegionFirstMIs;
  RegionFirstMIs.reserve(Regions.size());
  auto I = Regions.rbegin(), E = Regions.rend();
  do {
    const MachineBasicBlock *MBB = I->first->getParent();
    auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
    RegionFirstMIs.push_back(MI);
    do {
      ++I;
    } while (I != E && I->first->getParent() == MBB);
  } while (I != E);
  return getLiveRegMap(RegionFirstMIs, /*After=*/false, *LIS);
}

DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
GCNScheduleDAGMILive::getRegionLiveOutMap() const {
  assert(!Regions.empty());
  std::vector<MachineInstr *> RegionLastMIs;
  RegionLastMIs.reserve(Regions.size());
  for (auto &[RegionBegin, RegionEnd] : reverse(Regions))
    RegionLastMIs.push_back(getLastMIForRegion(RegionBegin, RegionEnd));

  return getLiveRegMap(RegionLastMIs, /*After=*/true, *LIS);
}

void RegionPressureMap::buildLiveRegMap() {
  IdxToInstruction.clear();

  RegionLiveRegMap =
      IsLiveOut ? DAG->getRegionLiveOutMap() : DAG->getRegionLiveInMap();
  for (unsigned I = 0; I < DAG->Regions.size(); I++) {
    MachineInstr *RegionKey =
        IsLiveOut
            ? getLastMIForRegion(DAG->Regions[I].first, DAG->Regions[I].second)
            : &*DAG->Regions[I].first;
    IdxToInstruction[I] = RegionKey;
  }
}

void GCNScheduleDAGMILive::finalizeSchedule() {
  // Start actual scheduling here. This function is called by the base
  // MachineScheduler after all regions have been recorded by
  // GCNScheduleDAGMILive::schedule().
  LiveIns.resize(Regions.size());
  Pressure.resize(Regions.size());
  RegionsWithHighRP.resize(Regions.size());
  RegionsWithExcessRP.resize(Regions.size());
  RegionsWithMinOcc.resize(Regions.size());
  RegionsWithIGLPInstrs.resize(Regions.size());
  RegionsWithHighRP.reset();
  RegionsWithExcessRP.reset();
  RegionsWithMinOcc.reset();
  RegionsWithIGLPInstrs.reset();

  runSchedStages();
}

void GCNScheduleDAGMILive::runSchedStages() {
  LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");

  if (!Regions.empty()) {
    BBLiveInMap = getRegionLiveInMap();
    if (GCNTrackers)
      RegionLiveOuts.buildLiveRegMap();
  }

  GCNSchedStrategy &S = static_cast<GCNSchedStrategy &>(*SchedImpl);
  while (S.advanceStage()) {
    auto Stage = createSchedStage(S.getCurrentStage());
    if (!Stage->initGCNSchedStage())
      continue;

    for (auto Region : Regions) {
      RegionBegin = Region.first;
      RegionEnd = Region.second;
      // Setup for scheduling the region and check whether it should be skipped.
      if (!Stage->initGCNRegion()) {
        Stage->advanceRegion();
        exitRegion();
        continue;
      }

      if (GCNTrackers) {
        GCNDownwardRPTracker *DownwardTracker = S.getDownwardTracker();
        GCNUpwardRPTracker *UpwardTracker = S.getUpwardTracker();
        GCNRPTracker::LiveRegSet *RegionLiveIns =
            &LiveIns[Stage->getRegionIdx()];

        reinterpret_cast<GCNRPTracker *>(DownwardTracker)
            ->reset(MRI, *RegionLiveIns);
        reinterpret_cast<GCNRPTracker *>(UpwardTracker)
            ->reset(MRI, RegionLiveOuts.getLiveRegsForRegionIdx(
                             Stage->getRegionIdx()));
      }

      ScheduleDAGMILive::schedule();
      Stage->finalizeGCNRegion();
    }

    Stage->finalizeGCNSchedStage();
  }
}

#ifndef NDEBUG
raw_ostream &llvm::operator<<(raw_ostream &OS, const GCNSchedStageID &StageID) {
  switch (StageID) {
  case GCNSchedStageID::OccInitialSchedule:
    OS << "Max Occupancy Initial Schedule";
    break;
  case GCNSchedStageID::UnclusteredHighRPReschedule:
    OS << "Unclustered High Register Pressure Reschedule";
    break;
  case GCNSchedStageID::ClusteredLowOccupancyReschedule:
    OS << "Clustered Low Occupancy Reschedule";
    break;
  case GCNSchedStageID::PreRARematerialize:
    OS << "Pre-RA Rematerialize";
    break;
  case GCNSchedStageID::ILPInitialSchedule:
    OS << "Max ILP Initial Schedule";
    break;
  case GCNSchedStageID::MemoryClauseInitialSchedule:
    OS << "Max memory clause Initial Schedule";
    break;
  }

  return OS;
}
#endif

GCNSchedStage::GCNSchedStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG)
    : DAG(DAG), S(static_cast<GCNSchedStrategy &>(*DAG.SchedImpl)), MF(DAG.MF),
      MFI(DAG.MFI), ST(DAG.ST), StageID(StageID) {}

bool GCNSchedStage::initGCNSchedStage() {
  if (!DAG.LIS)
    return false;

  LLVM_DEBUG(dbgs() << "Starting scheduling stage: " << StageID << "\n");
  return true;
}

bool UnclusteredHighRPStage::initGCNSchedStage() {
  if (DisableUnclusterHighRP)
    return false;

  if (!GCNSchedStage::initGCNSchedStage())
    return false;

  if (DAG.RegionsWithHighRP.none() && DAG.RegionsWithExcessRP.none())
    return false;

  SavedMutations.swap(DAG.Mutations);
  DAG.addMutation(
      createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::PreRAReentry));

  InitialOccupancy = DAG.MinOccupancy;
  // Aggressivly try to reduce register pressure in the unclustered high RP
  // stage. Temporarily increase occupancy target in the region.
  S.SGPRLimitBias = S.HighRPSGPRBias;
  S.VGPRLimitBias = S.HighRPVGPRBias;
  if (MFI.getMaxWavesPerEU() > DAG.MinOccupancy)
    MFI.increaseOccupancy(MF, ++DAG.MinOccupancy);

  LLVM_DEBUG(
      dbgs()
      << "Retrying function scheduling without clustering. "
         "Aggressivly try to reduce register pressure to achieve occupancy "
      << DAG.MinOccupancy << ".\n");

  return true;
}

bool ClusteredLowOccStage::initGCNSchedStage() {
  if (DisableClusteredLowOccupancy)
    return false;

  if (!GCNSchedStage::initGCNSchedStage())
    return false;

  // Don't bother trying to improve ILP in lower RP regions if occupancy has not
  // been dropped. All regions will have already been scheduled with the ideal
  // occupancy targets.
  if (DAG.StartingOccupancy <= DAG.MinOccupancy)
    return false;

  LLVM_DEBUG(
      dbgs() << "Retrying function scheduling with lowest recorded occupancy "
             << DAG.MinOccupancy << ".\n");
  return true;
}

/// Allows to easily filter for this stage's debug output.
#define REMAT_DEBUG(X) LLVM_DEBUG(dbgs() << "[PreRARemat] "; X;)

bool PreRARematStage::initGCNSchedStage() {
  // FIXME: This pass will invalidate cached BBLiveInMap and MBBLiveIns for
  // regions inbetween the defs and region we sinked the def to. Will need to be
  // fixed if there is another pass after this pass.
  assert(!S.hasNextStage());

  if (!GCNSchedStage::initGCNSchedStage() || DAG.RegionsWithMinOcc.none() ||
      DAG.Regions.size() == 1)
    return false;

  // Before performing any IR modification record the parent region of each MI
  // and the parent MBB of each region.
  const unsigned NumRegions = DAG.Regions.size();
  RegionBB.reserve(NumRegions);
  for (unsigned I = 0; I < NumRegions; ++I) {
    RegionBoundaries Region = DAG.Regions[I];
    for (auto MI = Region.first; MI != Region.second; ++MI)
      MIRegion.insert({&*MI, I});
    RegionBB.push_back(Region.first->getParent());
  }

  if (!canIncreaseOccupancyOrReduceSpill())
    return false;

  // Rematerialize identified instructions and update scheduler's state.
  rematerialize();
  if (GCNTrackers)
    DAG.RegionLiveOuts.buildLiveRegMap();
  REMAT_DEBUG(
      dbgs() << "Retrying function scheduling with new min. occupancy of "
             << AchievedOcc << " from rematerializing (original was "
             << DAG.MinOccupancy << ", target was " << TargetOcc << ")\n");
  if (AchievedOcc > DAG.MinOccupancy) {
    DAG.MinOccupancy = AchievedOcc;
    SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
    MFI.increaseOccupancy(MF, DAG.MinOccupancy);
  }
  return true;
}

void GCNSchedStage::finalizeGCNSchedStage() {
  DAG.finishBlock();
  LLVM_DEBUG(dbgs() << "Ending scheduling stage: " << StageID << "\n");
}

void UnclusteredHighRPStage::finalizeGCNSchedStage() {
  SavedMutations.swap(DAG.Mutations);
  S.SGPRLimitBias = S.VGPRLimitBias = 0;
  if (DAG.MinOccupancy > InitialOccupancy) {
    for (unsigned IDX = 0; IDX < DAG.Pressure.size(); ++IDX)
      DAG.RegionsWithMinOcc[IDX] =
          DAG.Pressure[IDX].getOccupancy(
              DAG.ST, DAG.MFI.getDynamicVGPRBlockSize()) == DAG.MinOccupancy;

    LLVM_DEBUG(dbgs() << StageID
                      << " stage successfully increased occupancy to "
                      << DAG.MinOccupancy << '\n');
  }

  GCNSchedStage::finalizeGCNSchedStage();
}

bool GCNSchedStage::initGCNRegion() {
  // Check whether this new region is also a new block.
  if (DAG.RegionBegin->getParent() != CurrentMBB)
    setupNewBlock();

  unsigned NumRegionInstrs = std::distance(DAG.begin(), DAG.end());
  DAG.enterRegion(CurrentMBB, DAG.begin(), DAG.end(), NumRegionInstrs);

  // Skip empty scheduling regions (0 or 1 schedulable instructions).
  if (DAG.begin() == DAG.end() || DAG.begin() == std::prev(DAG.end()))
    return false;

  LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
  LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*CurrentMBB)
                    << " " << CurrentMBB->getName()
                    << "\n  From: " << *DAG.begin() << "    To: ";
             if (DAG.RegionEnd != CurrentMBB->end()) dbgs() << *DAG.RegionEnd;
             else dbgs() << "End";
             dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');

  // Save original instruction order before scheduling for possible revert.
  Unsched.clear();
  Unsched.reserve(DAG.NumRegionInstrs);
  if (StageID == GCNSchedStageID::OccInitialSchedule ||
      StageID == GCNSchedStageID::ILPInitialSchedule) {
    const SIInstrInfo *SII = static_cast<const SIInstrInfo *>(DAG.TII);
    for (auto &I : DAG) {
      Unsched.push_back(&I);
      if (SII->isIGLPMutationOnly(I.getOpcode()))
        DAG.RegionsWithIGLPInstrs[RegionIdx] = true;
    }
  } else {
    for (auto &I : DAG)
      Unsched.push_back(&I);
  }

  PressureBefore = DAG.Pressure[RegionIdx];

  LLVM_DEBUG(
      dbgs() << "Pressure before scheduling:\nRegion live-ins:"
             << print(DAG.LiveIns[RegionIdx], DAG.MRI)
             << "Region live-in pressure:  "
             << print(llvm::getRegPressure(DAG.MRI, DAG.LiveIns[RegionIdx]))
             << "Region register pressure: " << print(PressureBefore));

  S.HasHighPressure = false;
  S.KnownExcessRP = isRegionWithExcessRP();

  if (DAG.RegionsWithIGLPInstrs[RegionIdx] &&
      StageID != GCNSchedStageID::UnclusteredHighRPReschedule) {
    SavedMutations.clear();
    SavedMutations.swap(DAG.Mutations);
    bool IsInitialStage = StageID == GCNSchedStageID::OccInitialSchedule ||
                          StageID == GCNSchedStageID::ILPInitialSchedule;
    DAG.addMutation(createIGroupLPDAGMutation(
        IsInitialStage ? AMDGPU::SchedulingPhase::Initial
                       : AMDGPU::SchedulingPhase::PreRAReentry));
  }

  return true;
}

bool UnclusteredHighRPStage::initGCNRegion() {
  // Only reschedule regions with the minimum occupancy or regions that may have
  // spilling (excess register pressure).
  if ((!DAG.RegionsWithMinOcc[RegionIdx] ||
       DAG.MinOccupancy <= InitialOccupancy) &&
      !DAG.RegionsWithExcessRP[RegionIdx])
    return false;

  return GCNSchedStage::initGCNRegion();
}

bool ClusteredLowOccStage::initGCNRegion() {
  // We may need to reschedule this region if it wasn't rescheduled in the last
  // stage, or if we found it was testing critical register pressure limits in
  // the unclustered reschedule stage. The later is because we may not have been
  // able to raise the min occupancy in the previous stage so the region may be
  // overly constrained even if it was already rescheduled.
  if (!DAG.RegionsWithHighRP[RegionIdx])
    return false;

  return GCNSchedStage::initGCNRegion();
}

bool PreRARematStage::initGCNRegion() {
  return RescheduleRegions[RegionIdx] && GCNSchedStage::initGCNRegion();
}

void GCNSchedStage::setupNewBlock() {
  if (CurrentMBB)
    DAG.finishBlock();

  CurrentMBB = DAG.RegionBegin->getParent();
  DAG.startBlock(CurrentMBB);
  // Get real RP for the region if it hasn't be calculated before. After the
  // initial schedule stage real RP will be collected after scheduling.
  if (StageID == GCNSchedStageID::OccInitialSchedule ||
      StageID == GCNSchedStageID::ILPInitialSchedule ||
      StageID == GCNSchedStageID::MemoryClauseInitialSchedule)
    DAG.computeBlockPressure(RegionIdx, CurrentMBB);
}

void GCNSchedStage::finalizeGCNRegion() {
  DAG.Regions[RegionIdx] = std::pair(DAG.RegionBegin, DAG.RegionEnd);
  if (S.HasHighPressure)
    DAG.RegionsWithHighRP[RegionIdx] = true;

  // Revert scheduling if we have dropped occupancy or there is some other
  // reason that the original schedule is better.
  checkScheduling();

  if (DAG.RegionsWithIGLPInstrs[RegionIdx] &&
      StageID != GCNSchedStageID::UnclusteredHighRPReschedule)
    SavedMutations.swap(DAG.Mutations);

  DAG.exitRegion();
  advanceRegion();
}

void GCNSchedStage::checkScheduling() {
  // Check the results of scheduling.
  PressureAfter = DAG.getRealRegPressure(RegionIdx);

  LLVM_DEBUG(dbgs() << "Pressure after scheduling: " << print(PressureAfter));
  LLVM_DEBUG(dbgs() << "Region: " << RegionIdx << ".\n");

  unsigned DynamicVGPRBlockSize = DAG.MFI.getDynamicVGPRBlockSize();

  if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
      PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
    DAG.Pressure[RegionIdx] = PressureAfter;
    DAG.RegionsWithMinOcc[RegionIdx] =
        PressureAfter.getOccupancy(ST, DynamicVGPRBlockSize) ==
        DAG.MinOccupancy;

    // Early out if we have achieved the occupancy target.
    LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
    return;
  }

  unsigned TargetOccupancy = std::min(
      S.getTargetOccupancy(), ST.getOccupancyWithWorkGroupSizes(MF).second);
  unsigned WavesAfter = std::min(
      TargetOccupancy, PressureAfter.getOccupancy(ST, DynamicVGPRBlockSize));
  unsigned WavesBefore = std::min(
      TargetOccupancy, PressureBefore.getOccupancy(ST, DynamicVGPRBlockSize));
  LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
                    << ", after " << WavesAfter << ".\n");

  // We may not be able to keep the current target occupancy because of the just
  // scheduled region. We might still be able to revert scheduling if the
  // occupancy before was higher, or if the current schedule has register
  // pressure higher than the excess limits which could lead to more spilling.
  unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);

  // Allow memory bound functions to drop to 4 waves if not limited by an
  // attribute.
  if (WavesAfter < WavesBefore && WavesAfter < DAG.MinOccupancy &&
      WavesAfter >= MFI.getMinAllowedOccupancy()) {
    LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
                      << MFI.getMinAllowedOccupancy() << " waves\n");
    NewOccupancy = WavesAfter;
  }

  if (NewOccupancy < DAG.MinOccupancy) {
    DAG.MinOccupancy = NewOccupancy;
    MFI.limitOccupancy(DAG.MinOccupancy);
    DAG.RegionsWithMinOcc.reset();
    LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
                      << DAG.MinOccupancy << ".\n");
  }
  // The maximum number of arch VGPR on non-unified register file, or the
  // maximum VGPR + AGPR in the unified register file case.
  unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
  // The maximum number of arch VGPR for both unified and non-unified register
  // file.
  unsigned MaxArchVGPRs = std::min(MaxVGPRs, ST.getAddressableNumArchVGPRs());
  unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);

  if (PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) > MaxVGPRs ||
      PressureAfter.getArchVGPRNum() > MaxArchVGPRs ||
      PressureAfter.getAGPRNum() > MaxArchVGPRs ||
      PressureAfter.getSGPRNum() > MaxSGPRs) {
    DAG.RegionsWithHighRP[RegionIdx] = true;
    DAG.RegionsWithExcessRP[RegionIdx] = true;
  }

  // Revert if this region's schedule would cause a drop in occupancy or
  // spilling.
  if (shouldRevertScheduling(WavesAfter)) {
    revertScheduling();
  } else {
    DAG.Pressure[RegionIdx] = PressureAfter;
    DAG.RegionsWithMinOcc[RegionIdx] =
        PressureAfter.getOccupancy(ST, DynamicVGPRBlockSize) ==
        DAG.MinOccupancy;
  }
}

unsigned
GCNSchedStage::computeSUnitReadyCycle(const SUnit &SU, unsigned CurrCycle,
                                      DenseMap<unsigned, unsigned> &ReadyCycles,
                                      const TargetSchedModel &SM) {
  unsigned ReadyCycle = CurrCycle;
  for (auto &D : SU.Preds) {
    if (D.isAssignedRegDep()) {
      MachineInstr *DefMI = D.getSUnit()->getInstr();
      unsigned Latency = SM.computeInstrLatency(DefMI);
      unsigned DefReady = ReadyCycles[DAG.getSUnit(DefMI)->NodeNum];
      ReadyCycle = std::max(ReadyCycle, DefReady + Latency);
    }
  }
  ReadyCycles[SU.NodeNum] = ReadyCycle;
  return ReadyCycle;
}

#ifndef NDEBUG
struct EarlierIssuingCycle {
  bool operator()(std::pair<MachineInstr *, unsigned> A,
                  std::pair<MachineInstr *, unsigned> B) const {
    return A.second < B.second;
  }
};

static void printScheduleModel(std::set<std::pair<MachineInstr *, unsigned>,
                                        EarlierIssuingCycle> &ReadyCycles) {
  if (ReadyCycles.empty())
    return;
  unsigned BBNum = ReadyCycles.begin()->first->getParent()->getNumber();
  dbgs() << "\n################## Schedule time ReadyCycles for MBB : " << BBNum
         << " ##################\n# Cycle #\t\t\tInstruction          "
            "             "
            "                            \n";
  unsigned IPrev = 1;
  for (auto &I : ReadyCycles) {
    if (I.second > IPrev + 1)
      dbgs() << "****************************** BUBBLE OF " << I.second - IPrev
             << " CYCLES DETECTED ******************************\n\n";
    dbgs() << "[ " << I.second << " ]  :  " << *I.first << "\n";
    IPrev = I.second;
  }
}
#endif

ScheduleMetrics
GCNSchedStage::getScheduleMetrics(const std::vector<SUnit> &InputSchedule) {
#ifndef NDEBUG
  std::set<std::pair<MachineInstr *, unsigned>, EarlierIssuingCycle>
      ReadyCyclesSorted;
#endif
  const TargetSchedModel &SM = ST.getInstrInfo()->getSchedModel();
  unsigned SumBubbles = 0;
  DenseMap<unsigned, unsigned> ReadyCycles;
  unsigned CurrCycle = 0;
  for (auto &SU : InputSchedule) {
    unsigned ReadyCycle =
        computeSUnitReadyCycle(SU, CurrCycle, ReadyCycles, SM);
    SumBubbles += ReadyCycle - CurrCycle;
#ifndef NDEBUG
    ReadyCyclesSorted.insert(std::make_pair(SU.getInstr(), ReadyCycle));
#endif
    CurrCycle = ++ReadyCycle;
  }
#ifndef NDEBUG
  LLVM_DEBUG(
      printScheduleModel(ReadyCyclesSorted);
      dbgs() << "\n\t"
             << "Metric: "
             << (SumBubbles
                     ? (SumBubbles * ScheduleMetrics::ScaleFactor) / CurrCycle
                     : 1)
             << "\n\n");
#endif

  return ScheduleMetrics(CurrCycle, SumBubbles);
}

ScheduleMetrics
GCNSchedStage::getScheduleMetrics(const GCNScheduleDAGMILive &DAG) {
#ifndef NDEBUG
  std::set<std::pair<MachineInstr *, unsigned>, EarlierIssuingCycle>
      ReadyCyclesSorted;
#endif
  const TargetSchedModel &SM = ST.getInstrInfo()->getSchedModel();
  unsigned SumBubbles = 0;
  DenseMap<unsigned, unsigned> ReadyCycles;
  unsigned CurrCycle = 0;
  for (auto &MI : DAG) {
    SUnit *SU = DAG.getSUnit(&MI);
    if (!SU)
      continue;
    unsigned ReadyCycle =
        computeSUnitReadyCycle(*SU, CurrCycle, ReadyCycles, SM);
    SumBubbles += ReadyCycle - CurrCycle;
#ifndef NDEBUG
    ReadyCyclesSorted.insert(std::make_pair(SU->getInstr(), ReadyCycle));
#endif
    CurrCycle = ++ReadyCycle;
  }
#ifndef NDEBUG
  LLVM_DEBUG(
      printScheduleModel(ReadyCyclesSorted);
      dbgs() << "\n\t"
             << "Metric: "
             << (SumBubbles
                     ? (SumBubbles * ScheduleMetrics::ScaleFactor) / CurrCycle
                     : 1)
             << "\n\n");
#endif

  return ScheduleMetrics(CurrCycle, SumBubbles);
}

bool GCNSchedStage::shouldRevertScheduling(unsigned WavesAfter) {
  if (WavesAfter < DAG.MinOccupancy)
    return true;

  // For dynamic VGPR mode, we don't want to waste any VGPR blocks.
  if (DAG.MFI.isDynamicVGPREnabled()) {
    unsigned BlocksBefore = AMDGPU::IsaInfo::getAllocatedNumVGPRBlocks(
        &ST, DAG.MFI.getDynamicVGPRBlockSize(),
        PressureBefore.getVGPRNum(false));
    unsigned BlocksAfter = AMDGPU::IsaInfo::getAllocatedNumVGPRBlocks(
        &ST, DAG.MFI.getDynamicVGPRBlockSize(),
        PressureAfter.getVGPRNum(false));
    if (BlocksAfter > BlocksBefore)
      return true;
  }

  return false;
}

bool OccInitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
  if (PressureAfter == PressureBefore)
    return false;

  if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
    return true;

  if (mayCauseSpilling(WavesAfter))
    return true;

  return false;
}

bool UnclusteredHighRPStage::shouldRevertScheduling(unsigned WavesAfter) {
  // If RP is not reduced in the unclustered reschedule stage, revert to the
  // old schedule.
  if ((WavesAfter <=
           PressureBefore.getOccupancy(ST, DAG.MFI.getDynamicVGPRBlockSize()) &&
       mayCauseSpilling(WavesAfter)) ||
      GCNSchedStage::shouldRevertScheduling(WavesAfter)) {
    LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
    return true;
  }

  // Do not attempt to relax schedule even more if we are already spilling.
  if (isRegionWithExcessRP())
    return false;

  LLVM_DEBUG(
      dbgs()
      << "\n\t      *** In shouldRevertScheduling ***\n"
      << "      *********** BEFORE UnclusteredHighRPStage ***********\n");
  ScheduleMetrics MBefore = getScheduleMetrics(DAG.SUnits);
  LLVM_DEBUG(
      dbgs()
      << "\n      *********** AFTER UnclusteredHighRPStage ***********\n");
  ScheduleMetrics MAfter = getScheduleMetrics(DAG);
  unsigned OldMetric = MBefore.getMetric();
  unsigned NewMetric = MAfter.getMetric();
  unsigned WavesBefore = std::min(
      S.getTargetOccupancy(),
      PressureBefore.getOccupancy(ST, DAG.MFI.getDynamicVGPRBlockSize()));
  unsigned Profit =
      ((WavesAfter * ScheduleMetrics::ScaleFactor) / WavesBefore *
       ((OldMetric + ScheduleMetricBias) * ScheduleMetrics::ScaleFactor) /
       NewMetric) /
      ScheduleMetrics::ScaleFactor;
  LLVM_DEBUG(dbgs() << "\tMetric before " << MBefore << "\tMetric after "
                    << MAfter << "Profit: " << Profit << "\n");
  return Profit < ScheduleMetrics::ScaleFactor;
}

bool ClusteredLowOccStage::shouldRevertScheduling(unsigned WavesAfter) {
  if (PressureAfter == PressureBefore)
    return false;

  if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
    return true;

  if (mayCauseSpilling(WavesAfter))
    return true;

  return false;
}

bool PreRARematStage::shouldRevertScheduling(unsigned WavesAfter) {
  return GCNSchedStage::shouldRevertScheduling(WavesAfter) ||
         mayCauseSpilling(WavesAfter) ||
         (IncreaseOccupancy && WavesAfter < TargetOcc);
}

bool ILPInitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
  if (mayCauseSpilling(WavesAfter))
    return true;

  return false;
}

bool MemoryClauseInitialScheduleStage::shouldRevertScheduling(
    unsigned WavesAfter) {
  return mayCauseSpilling(WavesAfter);
}

bool GCNSchedStage::mayCauseSpilling(unsigned WavesAfter) {
  if (WavesAfter <= MFI.getMinWavesPerEU() && isRegionWithExcessRP() &&
      !PressureAfter.less(MF, PressureBefore)) {
    LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
    return true;
  }

  return false;
}

void GCNSchedStage::revertScheduling() {
  DAG.RegionsWithMinOcc[RegionIdx] =
      PressureBefore.getOccupancy(ST, DAG.MFI.getDynamicVGPRBlockSize()) ==
      DAG.MinOccupancy;
  LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
  DAG.RegionEnd = DAG.RegionBegin;
  int SkippedDebugInstr = 0;
  for (MachineInstr *MI : Unsched) {
    if (MI->isDebugInstr()) {
      ++SkippedDebugInstr;
      continue;
    }

    if (MI->getIterator() != DAG.RegionEnd) {
      DAG.BB->splice(DAG.RegionEnd, DAG.BB, MI);
      if (!MI->isDebugInstr())
        DAG.LIS->handleMove(*MI, true);
    }

    // Reset read-undef flags and update them later.
    for (auto &Op : MI->all_defs())
      Op.setIsUndef(false);
    RegisterOperands RegOpers;
    RegOpers.collect(*MI, *DAG.TRI, DAG.MRI, DAG.ShouldTrackLaneMasks, false);
    if (!MI->isDebugInstr()) {
      if (DAG.ShouldTrackLaneMasks) {
        // Adjust liveness and add missing dead+read-undef flags.
        SlotIndex SlotIdx = DAG.LIS->getInstructionIndex(*MI).getRegSlot();
        RegOpers.adjustLaneLiveness(*DAG.LIS, DAG.MRI, SlotIdx, MI);
      } else {
        // Adjust for missing dead-def flags.
        RegOpers.detectDeadDefs(*MI, *DAG.LIS);
      }
    }
    DAG.RegionEnd = MI->getIterator();
    ++DAG.RegionEnd;
    LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
  }

  // After reverting schedule, debug instrs will now be at the end of the block
  // and RegionEnd will point to the first debug instr. Increment RegionEnd
  // pass debug instrs to the actual end of the scheduling region.
  while (SkippedDebugInstr-- > 0)
    ++DAG.RegionEnd;

  // If Unsched.front() instruction is a debug instruction, this will actually
  // shrink the region since we moved all debug instructions to the end of the
  // block. Find the first instruction that is not a debug instruction.
  DAG.RegionBegin = Unsched.front()->getIterator();
  if (DAG.RegionBegin->isDebugInstr()) {
    for (MachineInstr *MI : Unsched) {
      if (MI->isDebugInstr())
        continue;
      DAG.RegionBegin = MI->getIterator();
      break;
    }
  }

  // Then move the debug instructions back into their correct place and set
  // RegionBegin and RegionEnd if needed.
  DAG.placeDebugValues();

  DAG.Regions[RegionIdx] = std::pair(DAG.RegionBegin, DAG.RegionEnd);
}

bool PreRARematStage::allUsesAvailableAt(const MachineInstr *InstToRemat,
                                         SlotIndex OriginalIdx,
                                         SlotIndex RematIdx) const {

  LiveIntervals *LIS = DAG.LIS;
  MachineRegisterInfo &MRI = DAG.MRI;
  OriginalIdx = OriginalIdx.getRegSlot(true);
  RematIdx = std::max(RematIdx, RematIdx.getRegSlot(true));
  for (const MachineOperand &MO : InstToRemat->operands()) {
    if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
      continue;

    if (!MO.getReg().isVirtual()) {
      // Do not attempt to reason about PhysRegs
      // TODO: better analysis of PhysReg livness
      if (!DAG.MRI.isConstantPhysReg(MO.getReg()) &&
          !DAG.TII->isIgnorableUse(MO))
        return false;

      // Constant PhysRegs and IgnorableUses are okay
      continue;
    }

    LiveInterval &LI = LIS->getInterval(MO.getReg());
    const VNInfo *OVNI = LI.getVNInfoAt(OriginalIdx);
    assert(OVNI);

    // Don't allow rematerialization immediately after the original def.
    // It would be incorrect if InstToRemat redefines the register.
    // See PR14098.
    if (SlotIndex::isSameInstr(OriginalIdx, RematIdx))
      return false;

    if (OVNI != LI.getVNInfoAt(RematIdx))
      return false;

    // Check that subrange is live at RematIdx.
    if (LI.hasSubRanges()) {
      const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
      unsigned SubReg = MO.getSubReg();
      LaneBitmask LM = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
                              : MRI.getMaxLaneMaskForVReg(MO.getReg());
      for (LiveInterval::SubRange &SR : LI.subranges()) {
        if ((SR.LaneMask & LM).none())
          continue;
        if (!SR.liveAt(RematIdx))
          return false;

        // Early exit if all used lanes are checked. No need to continue.
        LM &= ~SR.LaneMask;
        if (LM.none())
          break;
      }
    }
  }
  return true;
}

bool PreRARematStage::canIncreaseOccupancyOrReduceSpill() {
  REMAT_DEBUG({
    dbgs() << "Collecting rematerializable instructions in ";
    MF.getFunction().printAsOperand(dbgs(), false);
    dbgs() << '\n';
  });

  // Maps optimizable regions (i.e., regions at minimum and register-limited
  // occupancy, or regions with spilling) to the target RP we would like to
  // reach.
  DenseMap<unsigned, GCNRPTarget> OptRegions;
  const Function &F = MF.getFunction();
  unsigned DynamicVGPRBlockSize =
      MF.getInfo<SIMachineFunctionInfo>()->getDynamicVGPRBlockSize();

  std::pair<unsigned, unsigned> WavesPerEU = ST.getWavesPerEU(F);
  const unsigned MaxSGPRsNoSpill = ST.getMaxNumSGPRs(F);
  const unsigned MaxVGPRsNoSpill = ST.getMaxNumVGPRs(F);
  const unsigned MaxSGPRsIncOcc =
      ST.getMaxNumSGPRs(DAG.MinOccupancy + 1, false);
  const unsigned MaxVGPRsIncOcc =
      ST.getMaxNumVGPRs(DAG.MinOccupancy + 1, DynamicVGPRBlockSize);
  IncreaseOccupancy = WavesPerEU.second > DAG.MinOccupancy;

  // Collect optimizable regions. If there is spilling in any region we will
  // just try to reduce spilling. Otherwise we will try to increase occupancy by
  // one in the whole function.
  for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) {
    GCNRegPressure &RP = DAG.Pressure[I];
    // We allow ArchVGPR or AGPR savings to count as savings of the other kind
    // of VGPR only when trying to eliminate spilling. We cannot do this when
    // trying to increase occupancy since VGPR class swaps only occur later in
    // the register allocator i.e., the scheduler will not be able to reason
    // about these savings and will not report an increase in the achievable
    // occupancy, triggering rollbacks.
    GCNRPTarget Target(MaxSGPRsNoSpill, MaxVGPRsNoSpill, MF, RP,
                       /*CombineVGPRSavings=*/true);
    if (!Target.satisfied() && IncreaseOccupancy) {
      // There is spilling in the region and we were so far trying to increase
      // occupancy. Strop trying that and focus on reducing spilling.
      IncreaseOccupancy = false;
      OptRegions.clear();
    } else if (IncreaseOccupancy) {
      // There is no spilling in the region, try to increase occupancy.
      Target = GCNRPTarget(MaxSGPRsIncOcc, MaxVGPRsIncOcc, MF, RP,
                           /*CombineVGPRSavings=*/false);
    }
    if (!Target.satisfied())
      OptRegions.insert({I, Target});
  }
  if (OptRegions.empty())
    return false;

#ifndef NDEBUG
  if (IncreaseOccupancy) {
    REMAT_DEBUG(dbgs() << "Occupancy minimal (" << DAG.MinOccupancy
                       << ") in regions:\n");
  } else {
    REMAT_DEBUG(dbgs() << "Spilling w.r.t. minimum target occupancy ("
                       << WavesPerEU.first << ") in regions:\n");
  }
  for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) {
    if (auto OptIt = OptRegions.find(I); OptIt != OptRegions.end())
      REMAT_DEBUG(dbgs() << "  [" << I << "] " << OptIt->getSecond() << '\n');
  }
#endif

  // When we are reducing spilling, the target is the minimum target number of
  // waves/EU determined by the subtarget. In cases where either one of
  // "amdgpu-num-sgpr" or "amdgpu-num-vgpr" are set on the function, the current
  // minimum region occupancy may be higher than the latter.
  TargetOcc = IncreaseOccupancy ? DAG.MinOccupancy + 1
                                : std::max(DAG.MinOccupancy, WavesPerEU.first);

  // Accounts for a reduction in RP in an optimizable region. Returns whether we
  // estimate that we have identified enough rematerialization opportunities to
  // achieve our goal, and sets Progress to true when this particular reduction
  // in pressure was helpful toward that goal.
  auto ReduceRPInRegion = [&](auto OptIt, Register Reg, LaneBitmask Mask,
                              bool &Progress) -> bool {
    GCNRPTarget &Target = OptIt->getSecond();
    if (!Target.isSaveBeneficial(Reg, DAG.MRI))
      return false;
    Progress = true;
    Target.saveReg(Reg, Mask, DAG.MRI);
    if (Target.satisfied())
      OptRegions.erase(OptIt->getFirst());
    return OptRegions.empty();
  };

  // We need up-to-date live-out info. to query live-out register masks in
  // regions containing rematerializable instructions.
  DAG.RegionLiveOuts.buildLiveRegMap();

  // Cache set of registers that are going to be rematerialized.
  DenseSet<unsigned> RematRegs;

  // Identify rematerializable instructions in the function.
  for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) {
    auto Region = DAG.Regions[I];
    for (auto MI = Region.first; MI != Region.second; ++MI) {
      // The instruction must be trivially rematerializable.
      MachineInstr &DefMI = *MI;
      if (!isTriviallyReMaterializable(DefMI))
        continue;

      // We only support rematerializing virtual registers with one definition.
      Register Reg = DefMI.getOperand(0).getReg();
      if (!Reg.isVirtual() || !DAG.MRI.hasOneDef(Reg))
        continue;

      // We only care to rematerialize the instruction if it has a single
      // non-debug user in a different region. The using MI may not belong to a
      // region if it is a lone region terminator.
      MachineInstr *UseMI = DAG.MRI.getOneNonDBGUser(Reg);
      if (!UseMI)
        continue;
      auto UseRegion = MIRegion.find(UseMI);
      if (UseRegion != MIRegion.end() && UseRegion->second == I)
        continue;

      // Do not rematerialize an instruction if it uses or is used by an
      // instruction that we have designated for rematerialization.
      // FIXME: Allow for rematerialization chains: this requires 1. updating
      // remat points to account for uses that are rematerialized, and 2. either
      // rematerializing the candidates in careful ordering, or deferring the
      // MBB RP walk until the entire chain has been rematerialized.
      if (Rematerializations.contains(UseMI) ||
          llvm::any_of(DefMI.operands(), [&RematRegs](MachineOperand &MO) {
            return MO.isReg() && RematRegs.contains(MO.getReg());
          }))
        continue;

      // Do not rematerialize an instruction it it uses registers that aren't
      // available at its use. This ensures that we are not extending any live
      // range while rematerializing.
      SlotIndex DefIdx = DAG.LIS->getInstructionIndex(DefMI);
      SlotIndex UseIdx = DAG.LIS->getInstructionIndex(*UseMI).getRegSlot(true);
      if (!allUsesAvailableAt(&DefMI, DefIdx, UseIdx))
        continue;

      REMAT_DEBUG(dbgs() << "Region " << I << ": remat instruction " << DefMI);
      RematInstruction &Remat =
          Rematerializations.try_emplace(&DefMI, UseMI).first->second;

      bool RematUseful = false;
      if (auto It = OptRegions.find(I); It != OptRegions.end()) {
        // Optimistically consider that moving the instruction out of its
        // defining region will reduce RP in the latter; this assumes that
        // maximum RP in the region is reached somewhere between the defining
        // instruction and the end of the region.
        REMAT_DEBUG(dbgs() << "  Defining region is optimizable\n");
        LaneBitmask Mask = DAG.RegionLiveOuts.getLiveRegsForRegionIdx(I)[Reg];
        if (ReduceRPInRegion(It, Reg, Mask, RematUseful))
          return true;
      }

      for (unsigned LIRegion = 0; LIRegion != E; ++LIRegion) {
        // We are only collecting regions in which the register is a live-in
        // (and may be live-through).
        auto It = DAG.LiveIns[LIRegion].find(Reg);
        if (It == DAG.LiveIns[LIRegion].end() || It->second.none())
          continue;
        Remat.LiveInRegions.insert(LIRegion);

        // Account for the reduction in RP due to the rematerialization in an
        // optimizable region in which the defined register is a live-in. This
        // is exact for live-through region but optimistic in the using region,
        // where RP is actually reduced only if maximum RP is reached somewhere
        // between the beginning of the region and the rematerializable
        // instruction's use.
        if (auto It = OptRegions.find(LIRegion); It != OptRegions.end()) {
          REMAT_DEBUG(dbgs() << "  Live-in in region " << LIRegion << '\n');
          if (ReduceRPInRegion(It, Reg, DAG.LiveIns[LIRegion][Reg],
                               RematUseful))
            return true;
        }
      }

      // If the instruction is not a live-in or live-out in any optimizable
      // region then there is no point in rematerializing it.
      if (!RematUseful) {
        Rematerializations.pop_back();
        REMAT_DEBUG(dbgs() << "  No impact, not rematerializing instruction\n");
      } else {
        RematRegs.insert(Reg);
      }
    }
  }

  if (IncreaseOccupancy) {
    // We were trying to increase occupancy but failed, abort the stage.
    REMAT_DEBUG(dbgs() << "Cannot increase occupancy\n");
    Rematerializations.clear();
    return false;
  }
  REMAT_DEBUG(dbgs() << "Can reduce but not eliminate spilling\n");
  return !Rematerializations.empty();
}

void PreRARematStage::rematerialize() {
  const SIInstrInfo *TII = MF.getSubtarget<GCNSubtarget>().getInstrInfo();

  // Collect regions whose RP changes in unpredictable way; we will have to
  // fully recompute their RP after all rematerailizations.
  DenseSet<unsigned> RecomputeRP;

  // Rematerialize all instructions.
  for (auto &[DefMI, Remat] : Rematerializations) {
    MachineBasicBlock::iterator InsertPos(Remat.UseMI);
    Register Reg = DefMI->getOperand(0).getReg();
    unsigned SubReg = DefMI->getOperand(0).getSubReg();
    unsigned DefRegion = MIRegion.at(DefMI);

    // Rematerialize DefMI to its use block.
    TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg, SubReg, *DefMI,
                       *DAG.TRI);
    Remat.RematMI = &*std::prev(InsertPos);
    Remat.RematMI->getOperand(0).setSubReg(SubReg);
    DAG.LIS->InsertMachineInstrInMaps(*Remat.RematMI);

    // Update region boundaries in regions we sinked from (remove defining MI)
    // and to (insert MI rematerialized in use block). Only then we can erase
    // the original MI.
    DAG.updateRegionBoundaries(DAG.Regions[DefRegion], DefMI, nullptr);
    auto UseRegion = MIRegion.find(Remat.UseMI);
    if (UseRegion != MIRegion.end()) {
      DAG.updateRegionBoundaries(DAG.Regions[UseRegion->second], InsertPos,
                                 Remat.RematMI);
    }
    DAG.LIS->RemoveMachineInstrFromMaps(*DefMI);
    DefMI->eraseFromParent();

    // Collect all regions impacted by the rematerialization and update their
    // live-in/RP information.
    for (unsigned I : Remat.LiveInRegions) {
      ImpactedRegions.insert({I, DAG.Pressure[I]});
      GCNRPTracker::LiveRegSet &RegionLiveIns = DAG.LiveIns[I];

#ifdef EXPENSIVE_CHECKS
      // All uses are known to be available / live at the remat point. Thus, the
      // uses should already be live in to the region.
      for (MachineOperand &MO : DefMI->operands()) {
        if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
          continue;

        Register UseReg = MO.getReg();
        if (!UseReg.isVirtual())
          continue;

        LiveInterval &LI = DAG.LIS->getInterval(UseReg);
        LaneBitmask LM = DAG.MRI.getMaxLaneMaskForVReg(MO.getReg());
        if (LI.hasSubRanges() && MO.getSubReg())
          LM = DAG.TRI->getSubRegIndexLaneMask(MO.getSubReg());

        LaneBitmask LiveInMask = RegionLiveIns.at(UseReg);
        LaneBitmask UncoveredLanes = LM & ~(LiveInMask & LM);
        // If this register has lanes not covered by the LiveIns, be sure they
        // do not map to any subrange. ref:
        // machine-scheduler-sink-trivial-remats.mir::omitted_subrange
        if (UncoveredLanes.any()) {
          assert(LI.hasSubRanges());
          for (LiveInterval::SubRange &SR : LI.subranges())
            assert((SR.LaneMask & UncoveredLanes).none());
        }
      }
#endif

      // The register is no longer a live-in in all regions but the one that
      // contains the single use. In live-through regions, maximum register
      // pressure decreases predictably so we can directly update it. In the
      // using region, maximum RP may or may not decrease, so we will mark it
      // for re-computation after all materializations have taken place.
      LaneBitmask PrevMask = RegionLiveIns[Reg];
      RegionLiveIns.erase(Reg);
      RegMasks.insert({{I, Remat.RematMI->getOperand(0).getReg()}, PrevMask});
      if (Remat.UseMI->getParent() != DAG.Regions[I].first->getParent())
        DAG.Pressure[I].inc(Reg, PrevMask, LaneBitmask::getNone(), DAG.MRI);
      else
        RecomputeRP.insert(I);
    }
    // RP in the region from which the instruction was rematerialized may or may
    // not decrease.
    ImpactedRegions.insert({DefRegion, DAG.Pressure[DefRegion]});
    RecomputeRP.insert(DefRegion);

    // Recompute live interval to reflect the register's rematerialization.
    Register RematReg = Remat.RematMI->getOperand(0).getReg();
    DAG.LIS->removeInterval(RematReg);
    DAG.LIS->createAndComputeVirtRegInterval(RematReg);
  }

  // All regions impacted by at least one rematerialization must be rescheduled.
  // Maximum pressure must also be recomputed for all regions where it changed
  // non-predictably and checked against the target occupancy.
  AchievedOcc = TargetOcc;
  for (auto &[I, OriginalRP] : ImpactedRegions) {
    bool IsEmptyRegion = DAG.Regions[I].first == DAG.Regions[I].second;
    RescheduleRegions[I] = !IsEmptyRegion;
    if (!RecomputeRP.contains(I))
      continue;

    GCNRegPressure RP;
    if (IsEmptyRegion) {
      RP = getRegPressure(DAG.MRI, DAG.LiveIns[I]);
    } else {
      GCNDownwardRPTracker RPT(*DAG.LIS);
      auto *NonDbgMI = &*skipDebugInstructionsForward(DAG.Regions[I].first,
                                                      DAG.Regions[I].second);
      if (NonDbgMI == DAG.Regions[I].second) {
        // Region is non-empty but contains only debug instructions.
        RP = getRegPressure(DAG.MRI, DAG.LiveIns[I]);
      } else {
        RPT.reset(*NonDbgMI, &DAG.LiveIns[I]);
        RPT.advance(DAG.Regions[I].second);
        RP = RPT.moveMaxPressure();
      }
    }
    DAG.Pressure[I] = RP;
    AchievedOcc = std::min(
        AchievedOcc, RP.getOccupancy(ST, MF.getInfo<SIMachineFunctionInfo>()
                                             ->getDynamicVGPRBlockSize()));
  }
  REMAT_DEBUG(dbgs() << "Achieved occupancy " << AchievedOcc << "\n");
}

// Copied from MachineLICM
bool PreRARematStage::isTriviallyReMaterializable(const MachineInstr &MI) {
  if (!DAG.TII->isTriviallyReMaterializable(MI))
    return false;

  for (const MachineOperand &MO : MI.all_uses()) {
    // We can't remat physreg uses, unless it is a constant or an ignorable
    // use (e.g. implicit exec use on VALU instructions)
    if (MO.getReg().isPhysical()) {
      if (DAG.MRI.isConstantPhysReg(MO.getReg()) || DAG.TII->isIgnorableUse(MO))
        continue;
      return false;
    }
  }

  return true;
}

void PreRARematStage::finalizeGCNSchedStage() {
  // We consider that reducing spilling is always beneficial so we never
  // rollback rematerializations in such cases. It's also possible that
  // rescheduling lowers occupancy over the one achieved just through remats, in
  // which case we do not want to rollback either (the rescheduling was already
  // reverted in PreRARematStage::shouldRevertScheduling in such cases).
  unsigned MaxOcc = std::max(AchievedOcc, DAG.MinOccupancy);
  if (!IncreaseOccupancy || MaxOcc >= TargetOcc)
    return;

  REMAT_DEBUG(dbgs() << "Rolling back all rematerializations\n");
  const SIInstrInfo *TII = MF.getSubtarget<GCNSubtarget>().getInstrInfo();

  // Rollback the rematerializations.
  for (const auto &[DefMI, Remat] : Rematerializations) {
    MachineInstr &RematMI = *Remat.RematMI;
    unsigned DefRegion = MIRegion.at(DefMI);
    MachineBasicBlock::iterator InsertPos(DAG.Regions[DefRegion].second);
    MachineBasicBlock *MBB = RegionBB[DefRegion];
    Register Reg = RematMI.getOperand(0).getReg();
    unsigned SubReg = RematMI.getOperand(0).getSubReg();

    // Re-rematerialize MI at the end of its original region. Note that it may
    // not be rematerialized exactly in the same position as originally within
    // the region, but it should not matter much.
    TII->reMaterialize(*MBB, InsertPos, Reg, SubReg, RematMI, *DAG.TRI);
    MachineInstr *NewMI = &*std::prev(InsertPos);
    NewMI->getOperand(0).setSubReg(SubReg);
    DAG.LIS->InsertMachineInstrInMaps(*NewMI);

    auto UseRegion = MIRegion.find(Remat.UseMI);
    if (UseRegion != MIRegion.end()) {
      DAG.updateRegionBoundaries(DAG.Regions[UseRegion->second], RematMI,
                                 nullptr);
    }
    DAG.updateRegionBoundaries(DAG.Regions[DefRegion], InsertPos, NewMI);

    // Erase rematerialized MI.
    DAG.LIS->RemoveMachineInstrFromMaps(RematMI);
    RematMI.eraseFromParent();

    // Recompute live interval for the re-rematerialized register
    DAG.LIS->removeInterval(Reg);
    DAG.LIS->createAndComputeVirtRegInterval(Reg);

    // Re-add the register as a live-in in all regions it used to be one in.
    for (unsigned LIRegion : Remat.LiveInRegions)
      DAG.LiveIns[LIRegion].insert({Reg, RegMasks.at({LIRegion, Reg})});
  }

  // Reset RP in all impacted regions.
  for (auto &[I, OriginalRP] : ImpactedRegions)
    DAG.Pressure[I] = OriginalRP;

  GCNSchedStage::finalizeGCNSchedStage();
}

void GCNScheduleDAGMILive::updateRegionBoundaries(
    RegionBoundaries &RegionBounds, MachineBasicBlock::iterator MI,
    MachineInstr *NewMI) {
  assert((!NewMI || NewMI != RegionBounds.second) &&
         "cannot remove at region end");

  if (RegionBounds.first == RegionBounds.second) {
    assert(NewMI && "cannot remove from an empty region");
    RegionBounds.first = NewMI;
    return;
  }

  // We only care for modifications at the beginning of a non-empty region since
  // the upper region boundary is exclusive.
  if (MI != RegionBounds.first)
    return;
  if (!NewMI)
    RegionBounds.first = std::next(MI); // Removal
  else
    RegionBounds.first = NewMI; // Insertion
}

static bool hasIGLPInstrs(ScheduleDAGInstrs *DAG) {
  const SIInstrInfo *SII = static_cast<const SIInstrInfo *>(DAG->TII);
  return any_of(*DAG, [SII](MachineBasicBlock::iterator MI) {
    return SII->isIGLPMutationOnly(MI->getOpcode());
  });
}

GCNPostScheduleDAGMILive::GCNPostScheduleDAGMILive(
    MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
    bool RemoveKillFlags)
    : ScheduleDAGMI(C, std::move(S), RemoveKillFlags) {}

void GCNPostScheduleDAGMILive::schedule() {
  HasIGLPInstrs = hasIGLPInstrs(this);
  if (HasIGLPInstrs) {
    SavedMutations.clear();
    SavedMutations.swap(Mutations);
    addMutation(createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::PostRA));
  }

  ScheduleDAGMI::schedule();
}

void GCNPostScheduleDAGMILive::finalizeSchedule() {
  if (HasIGLPInstrs)
    SavedMutations.swap(Mutations);

  ScheduleDAGMI::finalizeSchedule();
}