aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/AMDGPUWaitSGPRHazards.cpp
blob: 61c5dcd5ebada57551d59f475c5204c5b22262a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
//===- AMDGPUWaitSGPRHazards.cpp - Insert waits for SGPR read hazards -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Insert s_wait_alu instructions to mitigate SGPR read hazards on GFX12.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUWaitSGPRHazards.h"
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "llvm/ADT/SetVector.h"

using namespace llvm;

#define DEBUG_TYPE "amdgpu-wait-sgpr-hazards"

static cl::opt<bool> GlobalEnableSGPRHazardWaits(
    "amdgpu-sgpr-hazard-wait", cl::init(true), cl::Hidden,
    cl::desc("Enable required s_wait_alu on SGPR hazards"));

static cl::opt<bool> GlobalCullSGPRHazardsOnFunctionBoundary(
    "amdgpu-sgpr-hazard-boundary-cull", cl::init(false), cl::Hidden,
    cl::desc("Cull hazards on function boundaries"));

static cl::opt<bool>
    GlobalCullSGPRHazardsAtMemWait("amdgpu-sgpr-hazard-mem-wait-cull",
                                   cl::init(false), cl::Hidden,
                                   cl::desc("Cull hazards on memory waits"));

static cl::opt<unsigned> GlobalCullSGPRHazardsMemWaitThreshold(
    "amdgpu-sgpr-hazard-mem-wait-cull-threshold", cl::init(8), cl::Hidden,
    cl::desc("Number of tracked SGPRs before initiating hazard cull on memory "
             "wait"));

namespace {

class AMDGPUWaitSGPRHazards {
public:
  const SIInstrInfo *TII;
  const SIRegisterInfo *TRI;
  const MachineRegisterInfo *MRI;
  unsigned DsNopCount;

  bool EnableSGPRHazardWaits;
  bool CullSGPRHazardsOnFunctionBoundary;
  bool CullSGPRHazardsAtMemWait;
  unsigned CullSGPRHazardsMemWaitThreshold;

  AMDGPUWaitSGPRHazards() {}

  // Return the numeric ID 0-127 for a given SGPR.
  static std::optional<unsigned> sgprNumber(Register Reg,
                                            const SIRegisterInfo &TRI) {
    switch (Reg) {
    case AMDGPU::M0:
    case AMDGPU::EXEC:
    case AMDGPU::EXEC_LO:
    case AMDGPU::EXEC_HI:
    case AMDGPU::SGPR_NULL:
    case AMDGPU::SGPR_NULL64:
      return {};
    default:
      break;
    }
    unsigned RegN = TRI.getHWRegIndex(Reg);
    if (RegN > 127)
      return {};
    return RegN;
  }

  static inline bool isVCC(Register Reg) {
    return Reg == AMDGPU::VCC || Reg == AMDGPU::VCC_LO || Reg == AMDGPU::VCC_HI;
  }

  // Adjust global offsets for instructions bundled with S_GETPC_B64 after
  // insertion of a new instruction.
  static void updateGetPCBundle(MachineInstr *NewMI) {
    if (!NewMI->isBundled())
      return;

    // Find start of bundle.
    auto I = NewMI->getIterator();
    while (I->isBundledWithPred())
      I--;
    if (I->isBundle())
      I++;

    // Bail if this is not an S_GETPC bundle.
    if (I->getOpcode() != AMDGPU::S_GETPC_B64)
      return;

    // Update offsets of any references in the bundle.
    const unsigned NewBytes = 4;
    assert(NewMI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
           "Unexpected instruction insertion in bundle");
    auto NextMI = std::next(NewMI->getIterator());
    auto End = NewMI->getParent()->end();
    while (NextMI != End && NextMI->isBundledWithPred()) {
      for (auto &Operand : NextMI->operands()) {
        if (Operand.isGlobal())
          Operand.setOffset(Operand.getOffset() + NewBytes);
      }
      NextMI++;
    }
  }

  struct HazardState {
    static constexpr unsigned None = 0;
    static constexpr unsigned SALU = (1 << 0);
    static constexpr unsigned VALU = (1 << 1);

    std::bitset<64> Tracked;      // SGPR banks ever read by VALU
    std::bitset<128> SALUHazards; // SGPRs with uncommitted values from SALU
    std::bitset<128> VALUHazards; // SGPRs with uncommitted values from VALU
    unsigned VCCHazard = None;    // Source of current VCC writes
    bool ActiveFlat = false;      // Has unwaited flat instructions

    bool merge(const HazardState &RHS) {
      HazardState Orig(*this);
      *this |= RHS;
      return (*this != Orig);
    }

    bool operator==(const HazardState &RHS) const {
      return Tracked == RHS.Tracked && SALUHazards == RHS.SALUHazards &&
             VALUHazards == RHS.VALUHazards && VCCHazard == RHS.VCCHazard &&
             ActiveFlat == RHS.ActiveFlat;
    }

    bool operator!=(const HazardState &RHS) const { return !(*this == RHS); }

    void operator|=(const HazardState &RHS) {
      Tracked |= RHS.Tracked;
      SALUHazards |= RHS.SALUHazards;
      VALUHazards |= RHS.VALUHazards;
      VCCHazard |= RHS.VCCHazard;
      ActiveFlat |= RHS.ActiveFlat;
    }
  };

  struct BlockHazardState {
    HazardState In;
    HazardState Out;
  };

  DenseMap<const MachineBasicBlock *, BlockHazardState> BlockState;

  static constexpr unsigned WAVE32_NOPS = 4;
  static constexpr unsigned WAVE64_NOPS = 8;

  void insertHazardCull(MachineBasicBlock &MBB,
                        MachineBasicBlock::instr_iterator &MI) {
    assert(!MI->isBundled());
    unsigned Count = DsNopCount;
    while (Count--)
      BuildMI(MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::DS_NOP));
  }

  unsigned mergeMasks(unsigned Mask1, unsigned Mask2) {
    unsigned Mask = 0xffff;
    Mask = AMDGPU::DepCtr::encodeFieldSaSdst(
        Mask, std::min(AMDGPU::DepCtr::decodeFieldSaSdst(Mask1),
                       AMDGPU::DepCtr::decodeFieldSaSdst(Mask2)));
    Mask = AMDGPU::DepCtr::encodeFieldVaVcc(
        Mask, std::min(AMDGPU::DepCtr::decodeFieldVaVcc(Mask1),
                       AMDGPU::DepCtr::decodeFieldVaVcc(Mask2)));
    Mask = AMDGPU::DepCtr::encodeFieldVmVsrc(
        Mask, std::min(AMDGPU::DepCtr::decodeFieldVmVsrc(Mask1),
                       AMDGPU::DepCtr::decodeFieldVmVsrc(Mask2)));
    Mask = AMDGPU::DepCtr::encodeFieldVaSdst(
        Mask, std::min(AMDGPU::DepCtr::decodeFieldVaSdst(Mask1),
                       AMDGPU::DepCtr::decodeFieldVaSdst(Mask2)));
    Mask = AMDGPU::DepCtr::encodeFieldVaVdst(
        Mask, std::min(AMDGPU::DepCtr::decodeFieldVaVdst(Mask1),
                       AMDGPU::DepCtr::decodeFieldVaVdst(Mask2)));
    Mask = AMDGPU::DepCtr::encodeFieldHoldCnt(
        Mask, std::min(AMDGPU::DepCtr::decodeFieldHoldCnt(Mask1),
                       AMDGPU::DepCtr::decodeFieldHoldCnt(Mask2)));
    Mask = AMDGPU::DepCtr::encodeFieldVaSsrc(
        Mask, std::min(AMDGPU::DepCtr::decodeFieldVaSsrc(Mask1),
                       AMDGPU::DepCtr::decodeFieldVaSsrc(Mask2)));
    return Mask;
  }

  bool mergeConsecutiveWaitAlus(MachineBasicBlock::instr_iterator &MI,
                                unsigned Mask) {
    auto MBB = MI->getParent();
    if (MI == MBB->instr_begin())
      return false;

    auto It = prev_nodbg(MI, MBB->instr_begin());
    if (It->getOpcode() != AMDGPU::S_WAITCNT_DEPCTR)
      return false;

    It->getOperand(0).setImm(mergeMasks(Mask, It->getOperand(0).getImm()));
    return true;
  }

  bool runOnMachineBasicBlock(MachineBasicBlock &MBB, bool Emit) {
    enum { WA_VALU = 0x1, WA_SALU = 0x2, WA_VCC = 0x4 };

    HazardState State = BlockState[&MBB].In;
    SmallSet<Register, 8> SeenRegs;
    bool Emitted = false;
    unsigned DsNops = 0;

    for (MachineBasicBlock::instr_iterator MI = MBB.instr_begin(),
                                           E = MBB.instr_end();
         MI != E; ++MI) {
      if (MI->isMetaInstruction())
        continue;

      // Clear tracked SGPRs if sufficient DS_NOPs occur
      if (MI->getOpcode() == AMDGPU::DS_NOP) {
        if (++DsNops >= DsNopCount)
          State.Tracked.reset();
        continue;
      }
      DsNops = 0;

      // Snoop FLAT instructions to avoid adding culls before scratch/lds loads.
      // Culls could be disproportionate in cost to load time.
      if (SIInstrInfo::isFLAT(*MI) && !SIInstrInfo::isFLATGlobal(*MI))
        State.ActiveFlat = true;

      // SMEM or VMEM clears hazards
      // FIXME: adapt to add FLAT without VALU (so !isLDSDMA())?
      if ((SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI)) ||
          SIInstrInfo::isSMRD(*MI)) {
        State.VCCHazard = HazardState::None;
        State.SALUHazards.reset();
        State.VALUHazards.reset();
        continue;
      }

      // Existing S_WAITALU can clear hazards
      if (MI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR) {
        unsigned int Mask = MI->getOperand(0).getImm();
        if (AMDGPU::DepCtr::decodeFieldVaVcc(Mask) == 0)
          State.VCCHazard &= ~HazardState::VALU;
        if (AMDGPU::DepCtr::decodeFieldSaSdst(Mask) == 0) {
          State.SALUHazards.reset();
          State.VCCHazard &= ~HazardState::SALU;
        }
        if (AMDGPU::DepCtr::decodeFieldVaSdst(Mask) == 0)
          State.VALUHazards.reset();
        continue;
      }

      // Snoop counter waits to insert culls
      if (CullSGPRHazardsAtMemWait &&
          (MI->getOpcode() == AMDGPU::S_WAIT_LOADCNT ||
           MI->getOpcode() == AMDGPU::S_WAIT_SAMPLECNT ||
           MI->getOpcode() == AMDGPU::S_WAIT_BVHCNT) &&
          (MI->getOperand(0).isImm() && MI->getOperand(0).getImm() == 0) &&
          (State.Tracked.count() >= CullSGPRHazardsMemWaitThreshold)) {
        if (MI->getOpcode() == AMDGPU::S_WAIT_LOADCNT && State.ActiveFlat) {
          State.ActiveFlat = false;
        } else {
          State.Tracked.reset();
          if (Emit)
            insertHazardCull(MBB, MI);
          continue;
        }
      }

      // Process only VALUs and SALUs
      bool IsVALU = SIInstrInfo::isVALU(*MI);
      bool IsSALU = SIInstrInfo::isSALU(*MI);
      if (!IsVALU && !IsSALU)
        continue;

      unsigned Wait = 0;

      auto processOperand = [&](const MachineOperand &Op, bool IsUse) {
        if (!Op.isReg())
          return;
        Register Reg = Op.getReg();
        assert(!Op.getSubReg());
        if (!TRI->isSGPRReg(*MRI, Reg))
          return;

        // Only visit each register once
        if (!SeenRegs.insert(Reg).second)
          return;

        auto RegNumber = sgprNumber(Reg, *TRI);
        if (!RegNumber)
          return;

        // Track SGPRs by pair -- numeric ID of an 64b SGPR pair.
        // i.e. SGPR0 = SGPR0_SGPR1 = 0, SGPR3 = SGPR2_SGPR3 = 1, etc
        unsigned RegN = *RegNumber;
        unsigned PairN = (RegN >> 1) & 0x3f;

        // Read/write of untracked register is safe; but must record any new
        // reads.
        if (!State.Tracked[PairN]) {
          if (IsVALU && IsUse)
            State.Tracked.set(PairN);
          return;
        }

        uint8_t SGPRCount =
            AMDGPU::getRegBitWidth(*TRI->getRegClassForReg(*MRI, Reg)) / 32;

        if (IsUse) {
          // SALU reading SGPR clears VALU hazards
          if (IsSALU) {
            if (isVCC(Reg)) {
              if (State.VCCHazard & HazardState::VALU)
                State.VCCHazard = HazardState::None;
            } else {
              State.VALUHazards.reset();
            }
          }
          // Compute required waits
          for (uint8_t RegIdx = 0; RegIdx < SGPRCount; ++RegIdx) {
            Wait |= State.SALUHazards[RegN + RegIdx] ? WA_SALU : 0;
            Wait |= IsVALU && State.VALUHazards[RegN + RegIdx] ? WA_VALU : 0;
          }
          if (isVCC(Reg) && State.VCCHazard) {
            // Note: it's possible for both SALU and VALU to exist if VCC
            // was updated differently by merged predecessors.
            if (State.VCCHazard & HazardState::SALU)
              Wait |= WA_SALU;
            if (State.VCCHazard & HazardState::VALU)
              Wait |= WA_VCC;
          }
        } else {
          // Update hazards
          if (isVCC(Reg)) {
            State.VCCHazard = IsSALU ? HazardState::SALU : HazardState::VALU;
          } else {
            for (uint8_t RegIdx = 0; RegIdx < SGPRCount; ++RegIdx) {
              if (IsSALU)
                State.SALUHazards.set(RegN + RegIdx);
              else
                State.VALUHazards.set(RegN + RegIdx);
            }
          }
        }
      };

      const bool IsSetPC =
          (MI->isCall() || MI->isReturn() || MI->isIndirectBranch()) &&
          MI->getOpcode() != AMDGPU::S_ENDPGM &&
          MI->getOpcode() != AMDGPU::S_ENDPGM_SAVED;

      // Only consider implicit VCC specified by instruction descriptor.
      const bool HasImplicitVCC =
          llvm::any_of(MI->getDesc().implicit_uses(), isVCC) ||
          llvm::any_of(MI->getDesc().implicit_defs(), isVCC);

      if (IsSetPC) {
        // All SGPR writes before a call/return must be flushed as the
        // callee/caller will not will not see the hazard chain.
        if (State.VCCHazard & HazardState::VALU)
          Wait |= WA_VCC;
        if (State.SALUHazards.any() || (State.VCCHazard & HazardState::SALU))
          Wait |= WA_SALU;
        if (State.VALUHazards.any())
          Wait |= WA_VALU;
        if (CullSGPRHazardsOnFunctionBoundary && State.Tracked.any()) {
          State.Tracked.reset();
          if (Emit)
            insertHazardCull(MBB, MI);
        }
      } else {
        // Process uses to determine required wait.
        SeenRegs.clear();
        for (const MachineOperand &Op : MI->all_uses()) {
          if (Op.isImplicit() &&
              (!HasImplicitVCC || !Op.isReg() || !isVCC(Op.getReg())))
            continue;
          processOperand(Op, true);
        }
      }

      // Apply wait
      if (Wait) {
        unsigned Mask = 0xffff;
        if (Wait & WA_VCC) {
          State.VCCHazard &= ~HazardState::VALU;
          Mask = AMDGPU::DepCtr::encodeFieldVaVcc(Mask, 0);
        }
        if (Wait & WA_SALU) {
          State.SALUHazards.reset();
          State.VCCHazard &= ~HazardState::SALU;
          Mask = AMDGPU::DepCtr::encodeFieldSaSdst(Mask, 0);
        }
        if (Wait & WA_VALU) {
          State.VALUHazards.reset();
          Mask = AMDGPU::DepCtr::encodeFieldVaSdst(Mask, 0);
        }
        if (Emit) {
          if (!mergeConsecutiveWaitAlus(MI, Mask)) {
            auto NewMI = BuildMI(MBB, MI, MI->getDebugLoc(),
                                 TII->get(AMDGPU::S_WAITCNT_DEPCTR))
                             .addImm(Mask);
            updateGetPCBundle(NewMI);
          }
          Emitted = true;
        }
      }

      // On return from a call SGPR state is unknown, so all potential hazards.
      if (MI->isCall() && !CullSGPRHazardsOnFunctionBoundary)
        State.Tracked.set();

      // Update hazards based on defs.
      SeenRegs.clear();
      for (const MachineOperand &Op : MI->all_defs()) {
        if (Op.isImplicit() &&
            (!HasImplicitVCC || !Op.isReg() || !isVCC(Op.getReg())))
          continue;
        processOperand(Op, false);
      }
    }

    BlockHazardState &BS = BlockState[&MBB];
    bool Changed = State != BS.Out;
    if (Emit) {
      assert(!Changed && "Hazard state should not change on emit pass");
      return Emitted;
    }
    if (Changed)
      BS.Out = State;
    return Changed;
  }

  bool run(MachineFunction &MF) {
    const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
    if (!ST.hasVALUReadSGPRHazard())
      return false;

    // Parse settings
    EnableSGPRHazardWaits = GlobalEnableSGPRHazardWaits;
    CullSGPRHazardsOnFunctionBoundary = GlobalCullSGPRHazardsOnFunctionBoundary;
    CullSGPRHazardsAtMemWait = GlobalCullSGPRHazardsAtMemWait;
    CullSGPRHazardsMemWaitThreshold = GlobalCullSGPRHazardsMemWaitThreshold;

    if (!GlobalEnableSGPRHazardWaits.getNumOccurrences())
      EnableSGPRHazardWaits = MF.getFunction().getFnAttributeAsParsedInteger(
          "amdgpu-sgpr-hazard-wait", EnableSGPRHazardWaits);
    if (!GlobalCullSGPRHazardsOnFunctionBoundary.getNumOccurrences())
      CullSGPRHazardsOnFunctionBoundary =
          MF.getFunction().hasFnAttribute("amdgpu-sgpr-hazard-boundary-cull");
    if (!GlobalCullSGPRHazardsAtMemWait.getNumOccurrences())
      CullSGPRHazardsAtMemWait =
          MF.getFunction().hasFnAttribute("amdgpu-sgpr-hazard-mem-wait-cull");
    if (!GlobalCullSGPRHazardsMemWaitThreshold.getNumOccurrences())
      CullSGPRHazardsMemWaitThreshold =
          MF.getFunction().getFnAttributeAsParsedInteger(
              "amdgpu-sgpr-hazard-mem-wait-cull-threshold",
              CullSGPRHazardsMemWaitThreshold);

    // Bail if disabled
    if (!EnableSGPRHazardWaits)
      return false;

    TII = ST.getInstrInfo();
    TRI = ST.getRegisterInfo();
    MRI = &MF.getRegInfo();
    DsNopCount = ST.isWave64() ? WAVE64_NOPS : WAVE32_NOPS;

    auto CallingConv = MF.getFunction().getCallingConv();
    if (!AMDGPU::isEntryFunctionCC(CallingConv) &&
        !CullSGPRHazardsOnFunctionBoundary) {
      // Callee must consider all SGPRs as tracked.
      LLVM_DEBUG(dbgs() << "Is called function, track all SGPRs.\n");
      MachineBasicBlock &EntryBlock = MF.front();
      BlockState[&EntryBlock].In.Tracked.set();
    }

    // Calculate the hazard state for each basic block.
    // Iterate until a fixed point is reached.
    // Fixed point is guaranteed as merge function only ever increases
    // the hazard set, and all backedges will cause a merge.
    //
    // Note: we have to take care of the entry block as this technically
    // has an edge from outside the function. Failure to treat this as
    // a merge could prevent fixed point being reached.
    SetVector<MachineBasicBlock *> Worklist;
    for (auto &MBB : reverse(MF))
      Worklist.insert(&MBB);
    while (!Worklist.empty()) {
      auto &MBB = *Worklist.pop_back_val();
      bool Changed = runOnMachineBasicBlock(MBB, false);
      if (Changed) {
        // Note: take a copy of state here in case it is reallocated by map
        HazardState NewState = BlockState[&MBB].Out;
        // Propagate to all successor blocks
        for (auto Succ : MBB.successors()) {
          // We only need to merge hazards at CFG merge points.
          auto &SuccState = BlockState[Succ];
          if (Succ->getSinglePredecessor() && !Succ->isEntryBlock()) {
            if (SuccState.In != NewState) {
              SuccState.In = NewState;
              Worklist.insert(Succ);
            }
          } else if (SuccState.In.merge(NewState)) {
            Worklist.insert(Succ);
          }
        }
      }
    }

    LLVM_DEBUG(dbgs() << "Emit s_wait_alu instructions\n");

    // Final to emit wait instructions.
    bool Changed = false;
    for (auto &MBB : MF)
      Changed |= runOnMachineBasicBlock(MBB, true);

    BlockState.clear();
    return Changed;
  }
};

class AMDGPUWaitSGPRHazardsLegacy : public MachineFunctionPass {
public:
  static char ID;

  AMDGPUWaitSGPRHazardsLegacy() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override {
    return AMDGPUWaitSGPRHazards().run(MF);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // namespace

char AMDGPUWaitSGPRHazardsLegacy::ID = 0;

char &llvm::AMDGPUWaitSGPRHazardsLegacyID = AMDGPUWaitSGPRHazardsLegacy::ID;

INITIALIZE_PASS(AMDGPUWaitSGPRHazardsLegacy, DEBUG_TYPE,
                "AMDGPU Insert waits for SGPR read hazards", false, false)

PreservedAnalyses
AMDGPUWaitSGPRHazardsPass::run(MachineFunction &MF,
                               MachineFunctionAnalysisManager &MFAM) {
  if (AMDGPUWaitSGPRHazards().run(MF))
    return PreservedAnalyses::none();
  return PreservedAnalyses::all();
}