aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp
blob: d095fc6cf954975eb81919cff891f4aa57168417 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Implements the AMDGPU specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUSubtarget.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUInstructionSelector.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "R600Subtarget.h"
#include "SIMachineFunctionInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/MDBuilder.h"
#include <algorithm>

using namespace llvm;

#define DEBUG_TYPE "amdgpu-subtarget"

AMDGPUSubtarget::AMDGPUSubtarget(Triple TT) : TargetTriple(std::move(TT)) {}

bool AMDGPUSubtarget::useRealTrue16Insts() const {
  return hasTrue16BitInsts() && EnableRealTrue16Insts;
}

// Returns the maximum per-workgroup LDS allocation size (in bytes) that still
// allows the given function to achieve an occupancy of NWaves waves per
// SIMD / EU, taking into account only the function's *maximum* workgroup size.
unsigned
AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
                                                 const Function &F) const {
  const unsigned WaveSize = getWavefrontSize();
  const unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
  const unsigned WavesPerWorkgroup =
      std::max(1u, (WorkGroupSize + WaveSize - 1) / WaveSize);

  const unsigned WorkGroupsPerCU =
      std::max(1u, (NWaves * getEUsPerCU()) / WavesPerWorkgroup);

  return getLocalMemorySize() / WorkGroupsPerCU;
}

std::pair<unsigned, unsigned> AMDGPUSubtarget::getOccupancyWithWorkGroupSizes(
    uint32_t LDSBytes, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {

  // FIXME: We should take into account the LDS allocation granularity.
  const unsigned MaxWGsLDS = getLocalMemorySize() / std::max(LDSBytes, 1u);

  // Queried LDS size may be larger than available on a CU, in which case we
  // consider the only achievable occupancy to be 1, in line with what we
  // consider the occupancy to be when the number of requested registers in a
  // particular bank is higher than the number of available ones in that bank.
  if (!MaxWGsLDS)
    return {1, 1};

  const unsigned WaveSize = getWavefrontSize(), WavesPerEU = getMaxWavesPerEU();

  auto PropsFromWGSize = [=](unsigned WGSize)
      -> std::tuple<const unsigned, const unsigned, unsigned> {
    unsigned WavesPerWG = divideCeil(WGSize, WaveSize);
    unsigned WGsPerCU = std::min(getMaxWorkGroupsPerCU(WGSize), MaxWGsLDS);
    return {WavesPerWG, WGsPerCU, WavesPerWG * WGsPerCU};
  };

  // The maximum group size will generally yield the minimum number of
  // workgroups, maximum number of waves, and minimum occupancy. The opposite is
  // generally true for the minimum group size. LDS or barrier ressource
  // limitations can flip those minimums/maximums.
  const auto [MinWGSize, MaxWGSize] = FlatWorkGroupSizes;
  auto [MinWavesPerWG, MaxWGsPerCU, MaxWavesPerCU] = PropsFromWGSize(MinWGSize);
  auto [MaxWavesPerWG, MinWGsPerCU, MinWavesPerCU] = PropsFromWGSize(MaxWGSize);

  // It is possible that we end up with flipped minimum and maximum number of
  // waves per CU when the number of minimum/maximum concurrent groups on the CU
  // is limited by LDS usage or barrier resources.
  if (MinWavesPerCU >= MaxWavesPerCU) {
    std::swap(MinWavesPerCU, MaxWavesPerCU);
  } else {
    const unsigned WaveSlotsPerCU = WavesPerEU * getEUsPerCU();

    // Look for a potential smaller group size than the maximum which decreases
    // the concurrent number of waves on the CU for the same number of
    // concurrent workgroups on the CU.
    unsigned MinWavesPerCUForWGSize =
        divideCeil(WaveSlotsPerCU, MinWGsPerCU + 1) * MinWGsPerCU;
    if (MinWavesPerCU > MinWavesPerCUForWGSize) {
      unsigned ExcessSlots = MinWavesPerCU - MinWavesPerCUForWGSize;
      if (unsigned ExcessSlotsPerWG = ExcessSlots / MinWGsPerCU) {
        // There may exist a smaller group size than the maximum that achieves
        // the minimum number of waves per CU. This group size is the largest
        // possible size that requires MaxWavesPerWG - E waves where E is
        // maximized under the following constraints.
        // 1. 0 <= E <= ExcessSlotsPerWG
        // 2. (MaxWavesPerWG - E) * WaveSize >= MinWGSize
        MinWavesPerCU -= MinWGsPerCU * std::min(ExcessSlotsPerWG,
                                                MaxWavesPerWG - MinWavesPerWG);
      }
    }

    // Look for a potential larger group size than the minimum which increases
    // the concurrent number of waves on the CU for the same number of
    // concurrent workgroups on the CU.
    unsigned LeftoverSlots = WaveSlotsPerCU - MaxWGsPerCU * MinWavesPerWG;
    if (unsigned LeftoverSlotsPerWG = LeftoverSlots / MaxWGsPerCU) {
      // There may exist a larger group size than the minimum that achieves the
      // maximum number of waves per CU. This group size is the smallest
      // possible size that requires MinWavesPerWG + L waves where L is
      // maximized under the following constraints.
      // 1. 0 <= L <= LeftoverSlotsPerWG
      // 2. (MinWavesPerWG + L - 1) * WaveSize <= MaxWGSize
      MaxWavesPerCU += MaxWGsPerCU * std::min(LeftoverSlotsPerWG,
                                              ((MaxWGSize - 1) / WaveSize) + 1 -
                                                  MinWavesPerWG);
    }
  }

  // Return the minimum/maximum number of waves on any EU, assuming that all
  // wavefronts are spread across all EUs as evenly as possible.
  return {std::clamp(MinWavesPerCU / getEUsPerCU(), 1U, WavesPerEU),
          std::clamp(divideCeil(MaxWavesPerCU, getEUsPerCU()), 1U, WavesPerEU)};
}

std::pair<unsigned, unsigned> AMDGPUSubtarget::getOccupancyWithWorkGroupSizes(
    const MachineFunction &MF) const {
  const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
  return getOccupancyWithWorkGroupSizes(MFI->getLDSSize(), MF.getFunction());
}

std::pair<unsigned, unsigned>
AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
  switch (CC) {
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_LS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
    return std::pair(1, getWavefrontSize());
  default:
    return std::pair(1u, getMaxFlatWorkGroupSize());
  }
}

std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
  const Function &F) const {
  // Default minimum/maximum flat work group sizes.
  std::pair<unsigned, unsigned> Default =
    getDefaultFlatWorkGroupSize(F.getCallingConv());

  // Requested minimum/maximum flat work group sizes.
  std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
    F, "amdgpu-flat-work-group-size", Default);

  // Make sure requested minimum is less than requested maximum.
  if (Requested.first > Requested.second)
    return Default;

  // Make sure requested values do not violate subtarget's specifications.
  if (Requested.first < getMinFlatWorkGroupSize())
    return Default;
  if (Requested.second > getMaxFlatWorkGroupSize())
    return Default;

  return Requested;
}

std::pair<unsigned, unsigned> AMDGPUSubtarget::getEffectiveWavesPerEU(
    std::pair<unsigned, unsigned> RequestedWavesPerEU,
    std::pair<unsigned, unsigned> FlatWorkGroupSizes, unsigned LDSBytes) const {
  // Default minimum/maximum number of waves per EU. The range of flat workgroup
  // sizes limits the achievable maximum, and we aim to support enough waves per
  // EU so that we can concurrently execute all waves of a single workgroup of
  // maximum size on a CU.
  std::pair<unsigned, unsigned> Default = {
      getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second),
      getOccupancyWithWorkGroupSizes(LDSBytes, FlatWorkGroupSizes).second};
  Default.first = std::min(Default.first, Default.second);

  // Make sure requested minimum is within the default range and lower than the
  // requested maximum. The latter must not violate target specification.
  if (RequestedWavesPerEU.first < Default.first ||
      RequestedWavesPerEU.first > Default.second ||
      RequestedWavesPerEU.first > RequestedWavesPerEU.second ||
      RequestedWavesPerEU.second > getMaxWavesPerEU())
    return Default;

  // We cannot exceed maximum occupancy implied by flat workgroup size and LDS.
  RequestedWavesPerEU.second =
      std::min(RequestedWavesPerEU.second, Default.second);
  return RequestedWavesPerEU;
}

std::pair<unsigned, unsigned>
AMDGPUSubtarget::getWavesPerEU(const Function &F) const {
  // Default/requested minimum/maximum flat work group sizes.
  std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F);
  // Minimum number of bytes allocated in the LDS.
  unsigned LDSBytes = AMDGPU::getIntegerPairAttribute(F, "amdgpu-lds-size",
                                                      {0, UINT32_MAX}, true)
                          .first;
  return getWavesPerEU(FlatWorkGroupSizes, LDSBytes, F);
}

std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
    const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
  // Minimum number of bytes allocated in the LDS.
  unsigned LDSBytes = AMDGPU::getIntegerPairAttribute(F, "amdgpu-lds-size",
                                                      {0, UINT32_MAX}, true)
                          .first;
  return getWavesPerEU(FlatWorkGroupSizes, LDSBytes, F);
}

std::pair<unsigned, unsigned>
AMDGPUSubtarget::getWavesPerEU(std::pair<unsigned, unsigned> FlatWorkGroupSizes,
                               unsigned LDSBytes, const Function &F) const {
  // Default minimum/maximum number of waves per execution unit.
  std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());

  // Requested minimum/maximum number of waves per execution unit.
  std::pair<unsigned, unsigned> Requested =
      AMDGPU::getIntegerPairAttribute(F, "amdgpu-waves-per-eu", Default, true);
  return getEffectiveWavesPerEU(Requested, FlatWorkGroupSizes, LDSBytes);
}

static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
  auto *Node = Kernel.getMetadata("reqd_work_group_size");
  if (Node && Node->getNumOperands() == 3)
    return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
  return std::numeric_limits<unsigned>::max();
}

bool AMDGPUSubtarget::isMesaKernel(const Function &F) const {
  return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
}

unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
                                           unsigned Dimension) const {
  unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
  if (ReqdSize != std::numeric_limits<unsigned>::max())
    return ReqdSize - 1;
  return getFlatWorkGroupSizes(Kernel).second - 1;
}

bool AMDGPUSubtarget::isSingleLaneExecution(const Function &Func) const {
  for (int I = 0; I < 3; ++I) {
    if (getMaxWorkitemID(Func, I) > 0)
      return false;
  }

  return true;
}

bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
  Function *Kernel = I->getParent()->getParent();
  unsigned MinSize = 0;
  unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
  bool IdQuery = false;

  // If reqd_work_group_size is present it narrows value down.
  if (auto *CI = dyn_cast<CallInst>(I)) {
    const Function *F = CI->getCalledFunction();
    if (F) {
      unsigned Dim = UINT_MAX;
      switch (F->getIntrinsicID()) {
      case Intrinsic::amdgcn_workitem_id_x:
      case Intrinsic::r600_read_tidig_x:
        IdQuery = true;
        [[fallthrough]];
      case Intrinsic::r600_read_local_size_x:
        Dim = 0;
        break;
      case Intrinsic::amdgcn_workitem_id_y:
      case Intrinsic::r600_read_tidig_y:
        IdQuery = true;
        [[fallthrough]];
      case Intrinsic::r600_read_local_size_y:
        Dim = 1;
        break;
      case Intrinsic::amdgcn_workitem_id_z:
      case Intrinsic::r600_read_tidig_z:
        IdQuery = true;
        [[fallthrough]];
      case Intrinsic::r600_read_local_size_z:
        Dim = 2;
        break;
      default:
        break;
      }

      if (Dim <= 3) {
        unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
        if (ReqdSize != std::numeric_limits<unsigned>::max())
          MinSize = MaxSize = ReqdSize;
      }
    }
  }

  if (!MaxSize)
    return false;

  // Range metadata is [Lo, Hi). For ID query we need to pass max size
  // as Hi. For size query we need to pass Hi + 1.
  if (IdQuery)
    MinSize = 0;
  else
    ++MaxSize;

  APInt Lower{32, MinSize};
  APInt Upper{32, MaxSize};
  if (auto *CI = dyn_cast<CallBase>(I)) {
    ConstantRange Range(Lower, Upper);
    CI->addRangeRetAttr(Range);
  } else {
    MDBuilder MDB(I->getContext());
    MDNode *MaxWorkGroupSizeRange = MDB.createRange(Lower, Upper);
    I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
  }
  return true;
}

unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const {
  assert(AMDGPU::isKernel(F.getCallingConv()));

  // We don't allocate the segment if we know the implicit arguments weren't
  // used, even if the ABI implies we need them.
  if (F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
    return 0;

  if (isMesaKernel(F))
    return 16;

  // Assume all implicit inputs are used by default
  const Module *M = F.getParent();
  unsigned NBytes =
      AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5 ? 256 : 56;
  return F.getFnAttributeAsParsedInteger("amdgpu-implicitarg-num-bytes",
                                         NBytes);
}

uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
                                                 Align &MaxAlign) const {
  assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
         F.getCallingConv() == CallingConv::SPIR_KERNEL);

  const DataLayout &DL = F.getDataLayout();
  uint64_t ExplicitArgBytes = 0;
  MaxAlign = Align(1);

  for (const Argument &Arg : F.args()) {
    if (Arg.hasAttribute("amdgpu-hidden-argument"))
      continue;

    const bool IsByRef = Arg.hasByRefAttr();
    Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
    Align Alignment = DL.getValueOrABITypeAlignment(
        IsByRef ? Arg.getParamAlign() : std::nullopt, ArgTy);
    uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
    ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
    MaxAlign = std::max(MaxAlign, Alignment);
  }

  return ExplicitArgBytes;
}

unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
                                                Align &MaxAlign) const {
  if (F.getCallingConv() != CallingConv::AMDGPU_KERNEL &&
      F.getCallingConv() != CallingConv::SPIR_KERNEL)
    return 0;

  uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);

  unsigned ExplicitOffset = getExplicitKernelArgOffset();

  uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
  unsigned ImplicitBytes = getImplicitArgNumBytes(F);
  if (ImplicitBytes != 0) {
    const Align Alignment = getAlignmentForImplicitArgPtr();
    TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
    MaxAlign = std::max(MaxAlign, Alignment);
  }

  // Being able to dereference past the end is useful for emitting scalar loads.
  return alignTo(TotalSize, 4);
}

AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const {
  return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32
                                  : AMDGPUDwarfFlavour::Wave64;
}

const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
  if (MF.getTarget().getTargetTriple().isAMDGCN())
    return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
  return static_cast<const AMDGPUSubtarget &>(MF.getSubtarget<R600Subtarget>());
}

const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
  if (TM.getTargetTriple().isAMDGCN())
    return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
  return static_cast<const AMDGPUSubtarget &>(
      TM.getSubtarget<R600Subtarget>(F));
}

// FIXME: This has no reason to be in subtarget
SmallVector<unsigned>
AMDGPUSubtarget::getMaxNumWorkGroups(const Function &F) const {
  return AMDGPU::getIntegerVecAttribute(F, "amdgpu-max-num-workgroups", 3,
                                        std::numeric_limits<uint32_t>::max());
}