aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/AMDGPURegBankLegalizeHelper.cpp
blob: f471881ee7693c1938880924bd076c8fd802e258 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
//===-- AMDGPURegBankLegalizeHelper.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Implements actual lowering algorithms for each ID that can be used in
/// Rule.OperandMapping. Similar to legalizer helper but with register banks.
//
//===----------------------------------------------------------------------===//

#include "AMDGPURegBankLegalizeHelper.h"
#include "AMDGPUGlobalISelUtils.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPURegBankLegalizeRules.h"
#include "AMDGPURegisterBankInfo.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineUniformityAnalysis.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"

#define DEBUG_TYPE "amdgpu-regbanklegalize"

using namespace llvm;
using namespace AMDGPU;

RegBankLegalizeHelper::RegBankLegalizeHelper(
    MachineIRBuilder &B, const MachineUniformityInfo &MUI,
    const RegisterBankInfo &RBI, const RegBankLegalizeRules &RBLRules)
    : ST(B.getMF().getSubtarget<GCNSubtarget>()), B(B), MRI(*B.getMRI()),
      MUI(MUI), RBI(RBI), RBLRules(RBLRules), IsWave32(ST.isWave32()),
      SgprRB(&RBI.getRegBank(AMDGPU::SGPRRegBankID)),
      VgprRB(&RBI.getRegBank(AMDGPU::VGPRRegBankID)),
      VccRB(&RBI.getRegBank(AMDGPU::VCCRegBankID)) {}

void RegBankLegalizeHelper::findRuleAndApplyMapping(MachineInstr &MI) {
  const SetOfRulesForOpcode &RuleSet = RBLRules.getRulesForOpc(MI);
  const RegBankLLTMapping &Mapping = RuleSet.findMappingForMI(MI, MRI, MUI);

  SmallSet<Register, 4> WaterfallSgprs;
  unsigned OpIdx = 0;
  if (Mapping.DstOpMapping.size() > 0) {
    B.setInsertPt(*MI.getParent(), std::next(MI.getIterator()));
    applyMappingDst(MI, OpIdx, Mapping.DstOpMapping);
  }
  if (Mapping.SrcOpMapping.size() > 0) {
    B.setInstr(MI);
    applyMappingSrc(MI, OpIdx, Mapping.SrcOpMapping, WaterfallSgprs);
  }

  lower(MI, Mapping, WaterfallSgprs);
}

bool RegBankLegalizeHelper::executeInWaterfallLoop(
    MachineIRBuilder &B, iterator_range<MachineBasicBlock::iterator> Range,
    SmallSet<Register, 4> &SGPROperandRegs) {
  // Track use registers which have already been expanded with a readfirstlane
  // sequence. This may have multiple uses if moving a sequence.
  DenseMap<Register, Register> WaterfalledRegMap;

  MachineBasicBlock &MBB = B.getMBB();
  MachineFunction &MF = B.getMF();

  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const TargetRegisterClass *WaveRC = TRI->getWaveMaskRegClass();
  unsigned MovExecOpc, MovExecTermOpc, XorTermOpc, AndSaveExecOpc, ExecReg;
  if (IsWave32) {
    MovExecOpc = AMDGPU::S_MOV_B32;
    MovExecTermOpc = AMDGPU::S_MOV_B32_term;
    XorTermOpc = AMDGPU::S_XOR_B32_term;
    AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32;
    ExecReg = AMDGPU::EXEC_LO;
  } else {
    MovExecOpc = AMDGPU::S_MOV_B64;
    MovExecTermOpc = AMDGPU::S_MOV_B64_term;
    XorTermOpc = AMDGPU::S_XOR_B64_term;
    AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64;
    ExecReg = AMDGPU::EXEC;
  }

#ifndef NDEBUG
  const int OrigRangeSize = std::distance(Range.begin(), Range.end());
#endif

  MachineRegisterInfo &MRI = *B.getMRI();
  Register SaveExecReg = MRI.createVirtualRegister(WaveRC);
  Register InitSaveExecReg = MRI.createVirtualRegister(WaveRC);

  // Don't bother using generic instructions/registers for the exec mask.
  B.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(InitSaveExecReg);

  Register SavedExec = MRI.createVirtualRegister(WaveRC);

  // To insert the loop we need to split the block. Move everything before
  // this point to a new block, and insert a new empty block before this
  // instruction.
  MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock();
  MachineBasicBlock *BodyBB = MF.CreateMachineBasicBlock();
  MachineBasicBlock *RestoreExecBB = MF.CreateMachineBasicBlock();
  MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock();
  MachineFunction::iterator MBBI(MBB);
  ++MBBI;
  MF.insert(MBBI, LoopBB);
  MF.insert(MBBI, BodyBB);
  MF.insert(MBBI, RestoreExecBB);
  MF.insert(MBBI, RemainderBB);

  LoopBB->addSuccessor(BodyBB);
  BodyBB->addSuccessor(RestoreExecBB);
  BodyBB->addSuccessor(LoopBB);

  // Move the rest of the block into a new block.
  RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
  RemainderBB->splice(RemainderBB->begin(), &MBB, Range.end(), MBB.end());

  MBB.addSuccessor(LoopBB);
  RestoreExecBB->addSuccessor(RemainderBB);

  B.setInsertPt(*LoopBB, LoopBB->end());

  // +-MBB:------------+
  // | ...             |
  // | %0 = G_INST_1   |
  // | %Dst = MI %Vgpr |
  // | %1 = G_INST_2   |
  // | ...             |
  // +-----------------+
  // ->
  // +-MBB-------------------------------+
  // | ...                               |
  // | %0 = G_INST_1                     |
  // | %SaveExecReg = S_MOV_B32 $exec_lo |
  // +----------------|------------------+
  //                  |                         /------------------------------|
  //                  V                        V                               |
  // +-LoopBB---------------------------------------------------------------+  |
  // | %CurrentLaneReg:sgpr(s32) = READFIRSTLANE %Vgpr                      |  |
  // |   instead of executing for each lane, see if other lanes had         |  |
  // |   same value for %Vgpr and execute for them also.                    |  |
  // | %CondReg:vcc(s1) = G_ICMP eq %CurrentLaneReg, %Vgpr                  |  |
  // | %CondRegLM:sreg_32 = ballot %CondReg // copy vcc to sreg32 lane mask |  |
  // | %SavedExec = S_AND_SAVEEXEC_B32 %CondRegLM                           |  |
  // |   exec is active for lanes with the same "CurrentLane value" in Vgpr |  |
  // +----------------|-----------------------------------------------------+  |
  //                  V                                                        |
  // +-BodyBB------------------------------------------------------------+     |
  // | %Dst = MI %CurrentLaneReg:sgpr(s32)                               |     |
  // |   executed only for active lanes and written to Dst               |     |
  // | $exec = S_XOR_B32 $exec, %SavedExec                               |     |
  // |   set active lanes to 0 in SavedExec, lanes that did not write to |     |
  // |   Dst yet, and set this as new exec (for READFIRSTLANE and ICMP)  |     |
  // | SI_WATERFALL_LOOP LoopBB                                          |-----|
  // +----------------|--------------------------------------------------+
  //                  V
  // +-RestoreExecBB--------------------------+
  // | $exec_lo = S_MOV_B32_term %SaveExecReg |
  // +----------------|-----------------------+
  //                  V
  // +-RemainderBB:----------------------+
  // | %1 = G_INST_2                     |
  // | ...                               |
  // +---------------------------------- +

  // Move the instruction into the loop body. Note we moved everything after
  // Range.end() already into a new block, so Range.end() is no longer valid.
  BodyBB->splice(BodyBB->end(), &MBB, Range.begin(), MBB.end());

  // Figure out the iterator range after splicing the instructions.
  MachineBasicBlock::iterator NewBegin = Range.begin()->getIterator();
  auto NewEnd = BodyBB->end();
  assert(std::distance(NewBegin, NewEnd) == OrigRangeSize);

  B.setMBB(*LoopBB);
  Register CondReg;

  for (MachineInstr &MI : make_range(NewBegin, NewEnd)) {
    for (MachineOperand &Op : MI.all_uses()) {
      Register OldReg = Op.getReg();
      if (!SGPROperandRegs.count(OldReg))
        continue;

      // See if we already processed this register in another instruction in
      // the sequence.
      auto OldVal = WaterfalledRegMap.find(OldReg);
      if (OldVal != WaterfalledRegMap.end()) {
        Op.setReg(OldVal->second);
        continue;
      }

      Register OpReg = Op.getReg();
      LLT OpTy = MRI.getType(OpReg);

      // TODO: support for agpr
      assert(MRI.getRegBank(OpReg) == VgprRB);
      Register CurrentLaneReg = MRI.createVirtualRegister({SgprRB, OpTy});
      buildReadFirstLane(B, CurrentLaneReg, OpReg, RBI);

      // Build the comparison(s), CurrentLaneReg == OpReg.
      unsigned OpSize = OpTy.getSizeInBits();
      unsigned PartSize = (OpSize % 64 == 0) ? 64 : 32;
      LLT PartTy = LLT::scalar(PartSize);
      unsigned NumParts = OpSize / PartSize;
      SmallVector<Register, 8> OpParts;
      SmallVector<Register, 8> CurrentLaneParts;

      if (NumParts == 1) {
        OpParts.push_back(OpReg);
        CurrentLaneParts.push_back(CurrentLaneReg);
      } else {
        auto UnmergeOp = B.buildUnmerge({VgprRB, PartTy}, OpReg);
        auto UnmergeCurrLane = B.buildUnmerge({SgprRB, PartTy}, CurrentLaneReg);
        for (unsigned i = 0; i < NumParts; ++i) {
          OpParts.push_back(UnmergeOp.getReg(i));
          CurrentLaneParts.push_back(UnmergeCurrLane.getReg(i));
        }
      }

      for (unsigned i = 0; i < NumParts; ++i) {
        Register CmpReg = MRI.createVirtualRegister(VccRB_S1);
        B.buildICmp(CmpInst::ICMP_EQ, CmpReg, CurrentLaneParts[i], OpParts[i]);

        if (!CondReg)
          CondReg = CmpReg;
        else
          CondReg = B.buildAnd(VccRB_S1, CondReg, CmpReg).getReg(0);
      }

      Op.setReg(CurrentLaneReg);

      // Make sure we don't re-process this register again.
      WaterfalledRegMap.insert(std::pair(OldReg, Op.getReg()));
    }
  }

  // Copy vcc to sgpr32/64, ballot becomes a no-op during instruction selection.
  Register CondRegLM =
      MRI.createVirtualRegister({WaveRC, LLT::scalar(IsWave32 ? 32 : 64)});
  B.buildIntrinsic(Intrinsic::amdgcn_ballot, CondRegLM).addReg(CondReg);

  // Update EXEC, save the original EXEC value to SavedExec.
  B.buildInstr(AndSaveExecOpc)
      .addDef(SavedExec)
      .addReg(CondRegLM, RegState::Kill);
  MRI.setSimpleHint(SavedExec, CondRegLM);

  B.setInsertPt(*BodyBB, BodyBB->end());

  // Update EXEC, switch all done bits to 0 and all todo bits to 1.
  B.buildInstr(XorTermOpc).addDef(ExecReg).addReg(ExecReg).addReg(SavedExec);

  // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
  // s_cbranch_scc0?

  // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
  B.buildInstr(AMDGPU::SI_WATERFALL_LOOP).addMBB(LoopBB);

  // Save the EXEC mask before the loop.
  B.setInsertPt(MBB, MBB.end());
  B.buildInstr(MovExecOpc).addDef(SaveExecReg).addReg(ExecReg);

  // Restore the EXEC mask after the loop.
  B.setInsertPt(*RestoreExecBB, RestoreExecBB->begin());
  B.buildInstr(MovExecTermOpc).addDef(ExecReg).addReg(SaveExecReg);

  // Set the insert point after the original instruction, so any new
  // instructions will be in the remainder.
  B.setInsertPt(*RemainderBB, RemainderBB->begin());

  return true;
}

void RegBankLegalizeHelper::splitLoad(MachineInstr &MI,
                                      ArrayRef<LLT> LLTBreakdown, LLT MergeTy) {
  MachineFunction &MF = B.getMF();
  assert(MI.getNumMemOperands() == 1);
  MachineMemOperand &BaseMMO = **MI.memoperands_begin();
  Register Dst = MI.getOperand(0).getReg();
  const RegisterBank *DstRB = MRI.getRegBankOrNull(Dst);
  Register Base = MI.getOperand(1).getReg();
  LLT PtrTy = MRI.getType(Base);
  const RegisterBank *PtrRB = MRI.getRegBankOrNull(Base);
  LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
  SmallVector<Register, 4> LoadPartRegs;

  unsigned ByteOffset = 0;
  for (LLT PartTy : LLTBreakdown) {
    Register BasePlusOffset;
    if (ByteOffset == 0) {
      BasePlusOffset = Base;
    } else {
      auto Offset = B.buildConstant({PtrRB, OffsetTy}, ByteOffset);
      BasePlusOffset = B.buildPtrAdd({PtrRB, PtrTy}, Base, Offset).getReg(0);
    }
    auto *OffsetMMO = MF.getMachineMemOperand(&BaseMMO, ByteOffset, PartTy);
    auto LoadPart = B.buildLoad({DstRB, PartTy}, BasePlusOffset, *OffsetMMO);
    LoadPartRegs.push_back(LoadPart.getReg(0));
    ByteOffset += PartTy.getSizeInBytes();
  }

  if (!MergeTy.isValid()) {
    // Loads are of same size, concat or merge them together.
    B.buildMergeLikeInstr(Dst, LoadPartRegs);
  } else {
    // Loads are not all of same size, need to unmerge them to smaller pieces
    // of MergeTy type, then merge pieces to Dst.
    SmallVector<Register, 4> MergeTyParts;
    for (Register Reg : LoadPartRegs) {
      if (MRI.getType(Reg) == MergeTy) {
        MergeTyParts.push_back(Reg);
      } else {
        auto Unmerge = B.buildUnmerge({DstRB, MergeTy}, Reg);
        for (unsigned i = 0; i < Unmerge->getNumOperands() - 1; ++i)
          MergeTyParts.push_back(Unmerge.getReg(i));
      }
    }
    B.buildMergeLikeInstr(Dst, MergeTyParts);
  }
  MI.eraseFromParent();
}

void RegBankLegalizeHelper::widenLoad(MachineInstr &MI, LLT WideTy,
                                      LLT MergeTy) {
  MachineFunction &MF = B.getMF();
  assert(MI.getNumMemOperands() == 1);
  MachineMemOperand &BaseMMO = **MI.memoperands_begin();
  Register Dst = MI.getOperand(0).getReg();
  const RegisterBank *DstRB = MRI.getRegBankOrNull(Dst);
  Register Base = MI.getOperand(1).getReg();

  MachineMemOperand *WideMMO = MF.getMachineMemOperand(&BaseMMO, 0, WideTy);
  auto WideLoad = B.buildLoad({DstRB, WideTy}, Base, *WideMMO);

  if (WideTy.isScalar()) {
    B.buildTrunc(Dst, WideLoad);
  } else {
    SmallVector<Register, 4> MergeTyParts;
    auto Unmerge = B.buildUnmerge({DstRB, MergeTy}, WideLoad);

    LLT DstTy = MRI.getType(Dst);
    unsigned NumElts = DstTy.getSizeInBits() / MergeTy.getSizeInBits();
    for (unsigned i = 0; i < NumElts; ++i) {
      MergeTyParts.push_back(Unmerge.getReg(i));
    }
    B.buildMergeLikeInstr(Dst, MergeTyParts);
  }
  MI.eraseFromParent();
}

void RegBankLegalizeHelper::lowerVccExtToSel(MachineInstr &MI) {
  Register Dst = MI.getOperand(0).getReg();
  LLT Ty = MRI.getType(Dst);
  Register Src = MI.getOperand(1).getReg();
  unsigned Opc = MI.getOpcode();
  int TrueExtCst = Opc == G_SEXT ? -1 : 1;
  if (Ty == S32 || Ty == S16) {
    auto True = B.buildConstant({VgprRB, Ty}, TrueExtCst);
    auto False = B.buildConstant({VgprRB, Ty}, 0);
    B.buildSelect(Dst, Src, True, False);
  } else if (Ty == S64) {
    auto True = B.buildConstant({VgprRB_S32}, TrueExtCst);
    auto False = B.buildConstant({VgprRB_S32}, 0);
    auto Lo = B.buildSelect({VgprRB_S32}, Src, True, False);
    MachineInstrBuilder Hi;
    switch (Opc) {
    case G_SEXT:
      Hi = Lo;
      break;
    case G_ZEXT:
      Hi = False;
      break;
    case G_ANYEXT:
      Hi = B.buildUndef({VgprRB_S32});
      break;
    default:
      llvm_unreachable("Opcode not supported");
    }

    B.buildMergeValues(Dst, {Lo.getReg(0), Hi.getReg(0)});
  } else {
    llvm_unreachable("Type not supported");
  }

  MI.eraseFromParent();
}

std::pair<Register, Register> RegBankLegalizeHelper::unpackZExt(Register Reg) {
  auto PackedS32 = B.buildBitcast(SgprRB_S32, Reg);
  auto Mask = B.buildConstant(SgprRB_S32, 0x0000ffff);
  auto Lo = B.buildAnd(SgprRB_S32, PackedS32, Mask);
  auto Hi = B.buildLShr(SgprRB_S32, PackedS32, B.buildConstant(SgprRB_S32, 16));
  return {Lo.getReg(0), Hi.getReg(0)};
}

std::pair<Register, Register> RegBankLegalizeHelper::unpackSExt(Register Reg) {
  auto PackedS32 = B.buildBitcast(SgprRB_S32, Reg);
  auto Lo = B.buildSExtInReg(SgprRB_S32, PackedS32, 16);
  auto Hi = B.buildAShr(SgprRB_S32, PackedS32, B.buildConstant(SgprRB_S32, 16));
  return {Lo.getReg(0), Hi.getReg(0)};
}

std::pair<Register, Register> RegBankLegalizeHelper::unpackAExt(Register Reg) {
  auto PackedS32 = B.buildBitcast(SgprRB_S32, Reg);
  auto Lo = PackedS32;
  auto Hi = B.buildLShr(SgprRB_S32, PackedS32, B.buildConstant(SgprRB_S32, 16));
  return {Lo.getReg(0), Hi.getReg(0)};
}

void RegBankLegalizeHelper::lowerUnpackBitShift(MachineInstr &MI) {
  Register Lo, Hi;
  switch (MI.getOpcode()) {
  case AMDGPU::G_SHL: {
    auto [Val0, Val1] = unpackAExt(MI.getOperand(1).getReg());
    auto [Amt0, Amt1] = unpackAExt(MI.getOperand(2).getReg());
    Lo = B.buildInstr(MI.getOpcode(), {SgprRB_S32}, {Val0, Amt0}).getReg(0);
    Hi = B.buildInstr(MI.getOpcode(), {SgprRB_S32}, {Val1, Amt1}).getReg(0);
    break;
  }
  case AMDGPU::G_LSHR: {
    auto [Val0, Val1] = unpackZExt(MI.getOperand(1).getReg());
    auto [Amt0, Amt1] = unpackZExt(MI.getOperand(2).getReg());
    Lo = B.buildInstr(MI.getOpcode(), {SgprRB_S32}, {Val0, Amt0}).getReg(0);
    Hi = B.buildInstr(MI.getOpcode(), {SgprRB_S32}, {Val1, Amt1}).getReg(0);
    break;
  }
  case AMDGPU::G_ASHR: {
    auto [Val0, Val1] = unpackSExt(MI.getOperand(1).getReg());
    auto [Amt0, Amt1] = unpackSExt(MI.getOperand(2).getReg());
    Lo = B.buildAShr(SgprRB_S32, Val0, Amt0).getReg(0);
    Hi = B.buildAShr(SgprRB_S32, Val1, Amt1).getReg(0);
    break;
  }
  default:
    llvm_unreachable("Unpack lowering not implemented");
  }
  B.buildBuildVectorTrunc(MI.getOperand(0).getReg(), {Lo, Hi});
  MI.eraseFromParent();
}

static bool isSignedBFE(MachineInstr &MI) {
  if (GIntrinsic *GI = dyn_cast<GIntrinsic>(&MI))
    return (GI->is(Intrinsic::amdgcn_sbfe));

  return MI.getOpcode() == AMDGPU::G_SBFX;
}

void RegBankLegalizeHelper::lowerV_BFE(MachineInstr &MI) {
  Register Dst = MI.getOperand(0).getReg();
  assert(MRI.getType(Dst) == LLT::scalar(64));
  bool Signed = isSignedBFE(MI);
  unsigned FirstOpnd = isa<GIntrinsic>(MI) ? 2 : 1;
  // Extract bitfield from Src, LSBit is the least-significant bit for the
  // extraction (field offset) and Width is size of bitfield.
  Register Src = MI.getOperand(FirstOpnd).getReg();
  Register LSBit = MI.getOperand(FirstOpnd + 1).getReg();
  Register Width = MI.getOperand(FirstOpnd + 2).getReg();
  // Comments are for signed bitfield extract, similar for unsigned. x is sign
  // bit. s is sign, l is LSB and y are remaining bits of bitfield to extract.

  // Src >> LSBit Hi|Lo: x?????syyyyyyl??? -> xxxx?????syyyyyyl
  unsigned SHROpc = Signed ? AMDGPU::G_ASHR : AMDGPU::G_LSHR;
  auto SHRSrc = B.buildInstr(SHROpc, {{VgprRB, S64}}, {Src, LSBit});

  auto ConstWidth = getIConstantVRegValWithLookThrough(Width, MRI);

  // Expand to Src >> LSBit << (64 - Width) >> (64 - Width)
  // << (64 - Width): Hi|Lo: xxxx?????syyyyyyl -> syyyyyyl000000000
  // >> (64 - Width): Hi|Lo: syyyyyyl000000000 -> ssssssssssyyyyyyl
  if (!ConstWidth) {
    auto Amt = B.buildSub(VgprRB_S32, B.buildConstant(SgprRB_S32, 64), Width);
    auto SignBit = B.buildShl({VgprRB, S64}, SHRSrc, Amt);
    B.buildInstr(SHROpc, {Dst}, {SignBit, Amt});
    MI.eraseFromParent();
    return;
  }

  uint64_t WidthImm = ConstWidth->Value.getZExtValue();
  auto UnmergeSHRSrc = B.buildUnmerge(VgprRB_S32, SHRSrc);
  Register SHRSrcLo = UnmergeSHRSrc.getReg(0);
  Register SHRSrcHi = UnmergeSHRSrc.getReg(1);
  auto Zero = B.buildConstant({VgprRB, S32}, 0);
  unsigned BFXOpc = Signed ? AMDGPU::G_SBFX : AMDGPU::G_UBFX;

  if (WidthImm <= 32) {
    // SHRSrc Hi|Lo: ????????|???syyyl -> ????????|ssssyyyl
    auto Lo = B.buildInstr(BFXOpc, {VgprRB_S32}, {SHRSrcLo, Zero, Width});
    MachineInstrBuilder Hi;
    if (Signed) {
      // SHRSrc Hi|Lo: ????????|ssssyyyl -> ssssssss|ssssyyyl
      Hi = B.buildAShr(VgprRB_S32, Lo, B.buildConstant(VgprRB_S32, 31));
    } else {
      // SHRSrc Hi|Lo: ????????|000syyyl -> 00000000|000syyyl
      Hi = Zero;
    }
    B.buildMergeLikeInstr(Dst, {Lo, Hi});
  } else {
    auto Amt = B.buildConstant(VgprRB_S32, WidthImm - 32);
    // SHRSrc Hi|Lo: ??????sy|yyyyyyyl -> sssssssy|yyyyyyyl
    auto Hi = B.buildInstr(BFXOpc, {VgprRB_S32}, {SHRSrcHi, Zero, Amt});
    B.buildMergeLikeInstr(Dst, {SHRSrcLo, Hi});
  }

  MI.eraseFromParent();
}

void RegBankLegalizeHelper::lowerS_BFE(MachineInstr &MI) {
  Register DstReg = MI.getOperand(0).getReg();
  LLT Ty = MRI.getType(DstReg);
  bool Signed = isSignedBFE(MI);
  unsigned FirstOpnd = isa<GIntrinsic>(MI) ? 2 : 1;
  Register Src = MI.getOperand(FirstOpnd).getReg();
  Register LSBit = MI.getOperand(FirstOpnd + 1).getReg();
  Register Width = MI.getOperand(FirstOpnd + 2).getReg();
  // For uniform bit field extract there are 4 available instructions, but
  // LSBit(field offset) and Width(size of bitfield) need to be packed in S32,
  // field offset in low and size in high 16 bits.

  // Src1 Hi16|Lo16 = Size|FieldOffset
  auto Mask = B.buildConstant(SgprRB_S32, maskTrailingOnes<unsigned>(6));
  auto FieldOffset = B.buildAnd(SgprRB_S32, LSBit, Mask);
  auto Size = B.buildShl(SgprRB_S32, Width, B.buildConstant(SgprRB_S32, 16));
  auto Src1 = B.buildOr(SgprRB_S32, FieldOffset, Size);
  unsigned Opc32 = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
  unsigned Opc64 = Signed ? AMDGPU::S_BFE_I64 : AMDGPU::S_BFE_U64;
  unsigned Opc = Ty == S32 ? Opc32 : Opc64;

  // Select machine instruction, because of reg class constraining, insert
  // copies from reg class to reg bank.
  auto S_BFE = B.buildInstr(Opc, {{SgprRB, Ty}},
                            {B.buildCopy(Ty, Src), B.buildCopy(S32, Src1)});
  if (!constrainSelectedInstRegOperands(*S_BFE, *ST.getInstrInfo(),
                                        *ST.getRegisterInfo(), RBI))
    llvm_unreachable("failed to constrain BFE");

  B.buildCopy(DstReg, S_BFE->getOperand(0).getReg());
  MI.eraseFromParent();
}

void RegBankLegalizeHelper::lowerSplitTo32(MachineInstr &MI) {
  Register Dst = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(Dst);
  assert(DstTy == V4S16 || DstTy == V2S32 || DstTy == S64);
  LLT Ty = DstTy == V4S16 ? V2S16 : S32;
  auto Op1 = B.buildUnmerge({VgprRB, Ty}, MI.getOperand(1).getReg());
  auto Op2 = B.buildUnmerge({VgprRB, Ty}, MI.getOperand(2).getReg());
  unsigned Opc = MI.getOpcode();
  auto Flags = MI.getFlags();
  auto Lo =
      B.buildInstr(Opc, {{VgprRB, Ty}}, {Op1.getReg(0), Op2.getReg(0)}, Flags);
  auto Hi =
      B.buildInstr(Opc, {{VgprRB, Ty}}, {Op1.getReg(1), Op2.getReg(1)}, Flags);
  B.buildMergeLikeInstr(Dst, {Lo, Hi});
  MI.eraseFromParent();
}

void RegBankLegalizeHelper::lowerSplitTo32Select(MachineInstr &MI) {
  Register Dst = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(Dst);
  assert(DstTy == V4S16 || DstTy == V2S32 || DstTy == S64 ||
         (DstTy.isPointer() && DstTy.getSizeInBits() == 64));
  LLT Ty = DstTy == V4S16 ? V2S16 : S32;
  auto Op2 = B.buildUnmerge({VgprRB, Ty}, MI.getOperand(2).getReg());
  auto Op3 = B.buildUnmerge({VgprRB, Ty}, MI.getOperand(3).getReg());
  Register Cond = MI.getOperand(1).getReg();
  auto Flags = MI.getFlags();
  auto Lo =
      B.buildSelect({VgprRB, Ty}, Cond, Op2.getReg(0), Op3.getReg(0), Flags);
  auto Hi =
      B.buildSelect({VgprRB, Ty}, Cond, Op2.getReg(1), Op3.getReg(1), Flags);

  B.buildMergeLikeInstr(Dst, {Lo, Hi});
  MI.eraseFromParent();
}

void RegBankLegalizeHelper::lowerSplitTo32SExtInReg(MachineInstr &MI) {
  auto Op1 = B.buildUnmerge(VgprRB_S32, MI.getOperand(1).getReg());
  int Amt = MI.getOperand(2).getImm();
  Register Lo, Hi;
  // Hi|Lo: s sign bit, ?/x bits changed/not changed by sign-extend
  if (Amt <= 32) {
    auto Freeze = B.buildFreeze(VgprRB_S32, Op1.getReg(0));
    if (Amt == 32) {
      // Hi|Lo: ????????|sxxxxxxx -> ssssssss|sxxxxxxx
      Lo = Freeze.getReg(0);
    } else {
      // Hi|Lo: ????????|???sxxxx -> ssssssss|ssssxxxx
      Lo = B.buildSExtInReg(VgprRB_S32, Freeze, Amt).getReg(0);
    }

    auto SignExtCst = B.buildConstant(SgprRB_S32, 31);
    Hi = B.buildAShr(VgprRB_S32, Lo, SignExtCst).getReg(0);
  } else {
    // Hi|Lo: ?????sxx|xxxxxxxx -> ssssssxx|xxxxxxxx
    Lo = Op1.getReg(0);
    Hi = B.buildSExtInReg(VgprRB_S32, Op1.getReg(1), Amt - 32).getReg(0);
  }

  B.buildMergeLikeInstr(MI.getOperand(0).getReg(), {Lo, Hi});
  MI.eraseFromParent();
}

void RegBankLegalizeHelper::lower(MachineInstr &MI,
                                  const RegBankLLTMapping &Mapping,
                                  SmallSet<Register, 4> &WaterfallSgprs) {

  switch (Mapping.LoweringMethod) {
  case DoNotLower:
    break;
  case VccExtToSel:
    return lowerVccExtToSel(MI);
  case UniExtToSel: {
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());
    auto True = B.buildConstant({SgprRB, Ty},
                                MI.getOpcode() == AMDGPU::G_SEXT ? -1 : 1);
    auto False = B.buildConstant({SgprRB, Ty}, 0);
    // Input to G_{Z|S}EXT is 'Legalizer legal' S1. Most common case is compare.
    // We are making select here. S1 cond was already 'any-extended to S32' +
    // 'AND with 1 to clean high bits' by Sgpr32AExtBoolInReg.
    B.buildSelect(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), True,
                  False);
    MI.eraseFromParent();
    return;
  }
  case UnpackBitShift:
    return lowerUnpackBitShift(MI);
  case Ext32To64: {
    const RegisterBank *RB = MRI.getRegBank(MI.getOperand(0).getReg());
    MachineInstrBuilder Hi;
    switch (MI.getOpcode()) {
    case AMDGPU::G_ZEXT: {
      Hi = B.buildConstant({RB, S32}, 0);
      break;
    }
    case AMDGPU::G_SEXT: {
      // Replicate sign bit from 32-bit extended part.
      auto ShiftAmt = B.buildConstant({RB, S32}, 31);
      Hi = B.buildAShr({RB, S32}, MI.getOperand(1).getReg(), ShiftAmt);
      break;
    }
    case AMDGPU::G_ANYEXT: {
      Hi = B.buildUndef({RB, S32});
      break;
    }
    default:
      llvm_unreachable("Unsuported Opcode in Ext32To64");
    }

    B.buildMergeLikeInstr(MI.getOperand(0).getReg(),
                          {MI.getOperand(1).getReg(), Hi});
    MI.eraseFromParent();
    return;
  }
  case UniCstExt: {
    uint64_t ConstVal = MI.getOperand(1).getCImm()->getZExtValue();
    B.buildConstant(MI.getOperand(0).getReg(), ConstVal);

    MI.eraseFromParent();
    return;
  }
  case VgprToVccCopy: {
    Register Src = MI.getOperand(1).getReg();
    LLT Ty = MRI.getType(Src);
    // Take lowest bit from each lane and put it in lane mask.
    // Lowering via compare, but we need to clean high bits first as compare
    // compares all bits in register.
    Register BoolSrc = MRI.createVirtualRegister({VgprRB, Ty});
    if (Ty == S64) {
      auto Src64 = B.buildUnmerge(VgprRB_S32, Src);
      auto One = B.buildConstant(VgprRB_S32, 1);
      auto AndLo = B.buildAnd(VgprRB_S32, Src64.getReg(0), One);
      auto Zero = B.buildConstant(VgprRB_S32, 0);
      auto AndHi = B.buildAnd(VgprRB_S32, Src64.getReg(1), Zero);
      B.buildMergeLikeInstr(BoolSrc, {AndLo, AndHi});
    } else {
      assert(Ty == S32 || Ty == S16);
      auto One = B.buildConstant({VgprRB, Ty}, 1);
      B.buildAnd(BoolSrc, Src, One);
    }
    auto Zero = B.buildConstant({VgprRB, Ty}, 0);
    B.buildICmp(CmpInst::ICMP_NE, MI.getOperand(0).getReg(), BoolSrc, Zero);
    MI.eraseFromParent();
    return;
  }
  case V_BFE:
    return lowerV_BFE(MI);
  case S_BFE:
    return lowerS_BFE(MI);
  case SplitTo32:
    return lowerSplitTo32(MI);
  case SplitTo32Select:
    return lowerSplitTo32Select(MI);
  case SplitTo32SExtInReg:
    return lowerSplitTo32SExtInReg(MI);
  case SplitLoad: {
    LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
    unsigned Size = DstTy.getSizeInBits();
    // Even split to 128-bit loads
    if (Size > 128) {
      LLT B128;
      if (DstTy.isVector()) {
        LLT EltTy = DstTy.getElementType();
        B128 = LLT::fixed_vector(128 / EltTy.getSizeInBits(), EltTy);
      } else {
        B128 = LLT::scalar(128);
      }
      if (Size / 128 == 2)
        splitLoad(MI, {B128, B128});
      else if (Size / 128 == 4)
        splitLoad(MI, {B128, B128, B128, B128});
      else {
        LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
        llvm_unreachable("SplitLoad type not supported for MI");
      }
    }
    // 64 and 32 bit load
    else if (DstTy == S96)
      splitLoad(MI, {S64, S32}, S32);
    else if (DstTy == V3S32)
      splitLoad(MI, {V2S32, S32}, S32);
    else if (DstTy == V6S16)
      splitLoad(MI, {V4S16, V2S16}, V2S16);
    else {
      LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
      llvm_unreachable("SplitLoad type not supported for MI");
    }
    break;
  }
  case WidenLoad: {
    LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
    if (DstTy == S96)
      widenLoad(MI, S128);
    else if (DstTy == V3S32)
      widenLoad(MI, V4S32, S32);
    else if (DstTy == V6S16)
      widenLoad(MI, V8S16, V2S16);
    else {
      LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
      llvm_unreachable("WidenLoad type not supported for MI");
    }
    break;
  }
  }

  if (!WaterfallSgprs.empty()) {
    MachineBasicBlock::iterator I = MI.getIterator();
    executeInWaterfallLoop(B, make_range(I, std::next(I)), WaterfallSgprs);
  }
}

LLT RegBankLegalizeHelper::getTyFromID(RegBankLLTMappingApplyID ID) {
  switch (ID) {
  case Vcc:
  case UniInVcc:
    return LLT::scalar(1);
  case Sgpr16:
  case Vgpr16:
    return LLT::scalar(16);
  case Sgpr32:
  case Sgpr32_WF:
  case Sgpr32Trunc:
  case Sgpr32AExt:
  case Sgpr32AExtBoolInReg:
  case Sgpr32SExt:
  case Sgpr32ZExt:
  case UniInVgprS32:
  case Vgpr32:
  case Vgpr32SExt:
  case Vgpr32ZExt:
    return LLT::scalar(32);
  case Sgpr64:
  case Vgpr64:
    return LLT::scalar(64);
  case Sgpr128:
  case Vgpr128:
    return LLT::scalar(128);
  case VgprP0:
    return LLT::pointer(0, 64);
  case SgprP1:
  case VgprP1:
    return LLT::pointer(1, 64);
  case SgprP3:
  case VgprP3:
    return LLT::pointer(3, 32);
  case SgprP4:
  case VgprP4:
    return LLT::pointer(4, 64);
  case SgprP5:
  case VgprP5:
    return LLT::pointer(5, 32);
  case SgprV2S16:
  case VgprV2S16:
  case UniInVgprV2S16:
    return LLT::fixed_vector(2, 16);
  case SgprV2S32:
  case VgprV2S32:
    return LLT::fixed_vector(2, 32);
  case SgprV4S32:
  case SgprV4S32_WF:
  case VgprV4S32:
  case UniInVgprV4S32:
    return LLT::fixed_vector(4, 32);
  default:
    return LLT();
  }
}

LLT RegBankLegalizeHelper::getBTyFromID(RegBankLLTMappingApplyID ID, LLT Ty) {
  switch (ID) {
  case SgprB32:
  case VgprB32:
  case UniInVgprB32:
    if (Ty == LLT::scalar(32) || Ty == LLT::fixed_vector(2, 16) ||
        isAnyPtr(Ty, 32))
      return Ty;
    return LLT();
  case SgprPtr32:
  case VgprPtr32:
    return isAnyPtr(Ty, 32) ? Ty : LLT();
  case SgprPtr64:
  case VgprPtr64:
    return isAnyPtr(Ty, 64) ? Ty : LLT();
  case SgprPtr128:
  case VgprPtr128:
    return isAnyPtr(Ty, 128) ? Ty : LLT();
  case SgprB64:
  case VgprB64:
  case UniInVgprB64:
    if (Ty == LLT::scalar(64) || Ty == LLT::fixed_vector(2, 32) ||
        Ty == LLT::fixed_vector(4, 16) || isAnyPtr(Ty, 64))
      return Ty;
    return LLT();
  case SgprB96:
  case VgprB96:
  case UniInVgprB96:
    if (Ty == LLT::scalar(96) || Ty == LLT::fixed_vector(3, 32) ||
        Ty == LLT::fixed_vector(6, 16))
      return Ty;
    return LLT();
  case SgprB128:
  case VgprB128:
  case UniInVgprB128:
    if (Ty == LLT::scalar(128) || Ty == LLT::fixed_vector(4, 32) ||
        Ty == LLT::fixed_vector(2, 64) || isAnyPtr(Ty, 128))
      return Ty;
    return LLT();
  case SgprB256:
  case VgprB256:
  case UniInVgprB256:
    if (Ty == LLT::scalar(256) || Ty == LLT::fixed_vector(8, 32) ||
        Ty == LLT::fixed_vector(4, 64) || Ty == LLT::fixed_vector(16, 16))
      return Ty;
    return LLT();
  case SgprB512:
  case VgprB512:
  case UniInVgprB512:
    if (Ty == LLT::scalar(512) || Ty == LLT::fixed_vector(16, 32) ||
        Ty == LLT::fixed_vector(8, 64))
      return Ty;
    return LLT();
  default:
    return LLT();
  }
}

const RegisterBank *
RegBankLegalizeHelper::getRegBankFromID(RegBankLLTMappingApplyID ID) {
  switch (ID) {
  case Vcc:
    return VccRB;
  case Sgpr16:
  case Sgpr32:
  case Sgpr32_WF:
  case Sgpr64:
  case Sgpr128:
  case SgprP1:
  case SgprP3:
  case SgprP4:
  case SgprP5:
  case SgprPtr32:
  case SgprPtr64:
  case SgprPtr128:
  case SgprV2S16:
  case SgprV2S32:
  case SgprV4S32:
  case SgprV4S32_WF:
  case SgprB32:
  case SgprB64:
  case SgprB96:
  case SgprB128:
  case SgprB256:
  case SgprB512:
  case UniInVcc:
  case UniInVgprS32:
  case UniInVgprV2S16:
  case UniInVgprV4S32:
  case UniInVgprB32:
  case UniInVgprB64:
  case UniInVgprB96:
  case UniInVgprB128:
  case UniInVgprB256:
  case UniInVgprB512:
  case Sgpr32Trunc:
  case Sgpr32AExt:
  case Sgpr32AExtBoolInReg:
  case Sgpr32SExt:
  case Sgpr32ZExt:
    return SgprRB;
  case Vgpr16:
  case Vgpr32:
  case Vgpr64:
  case Vgpr128:
  case VgprP0:
  case VgprP1:
  case VgprP3:
  case VgprP4:
  case VgprP5:
  case VgprPtr32:
  case VgprPtr64:
  case VgprPtr128:
  case VgprV2S16:
  case VgprV2S32:
  case VgprV4S32:
  case VgprB32:
  case VgprB64:
  case VgprB96:
  case VgprB128:
  case VgprB256:
  case VgprB512:
  case Vgpr32SExt:
  case Vgpr32ZExt:
    return VgprRB;
  default:
    return nullptr;
  }
}

void RegBankLegalizeHelper::applyMappingDst(
    MachineInstr &MI, unsigned &OpIdx,
    const SmallVectorImpl<RegBankLLTMappingApplyID> &MethodIDs) {
  // Defs start from operand 0
  for (; OpIdx < MethodIDs.size(); ++OpIdx) {
    if (MethodIDs[OpIdx] == None)
      continue;
    MachineOperand &Op = MI.getOperand(OpIdx);
    Register Reg = Op.getReg();
    LLT Ty = MRI.getType(Reg);
    [[maybe_unused]] const RegisterBank *RB = MRI.getRegBank(Reg);

    switch (MethodIDs[OpIdx]) {
    // vcc, sgpr and vgpr scalars, pointers and vectors
    case Vcc:
    case Sgpr16:
    case Sgpr32:
    case Sgpr64:
    case Sgpr128:
    case SgprP1:
    case SgprP3:
    case SgprP4:
    case SgprP5:
    case SgprV2S16:
    case SgprV2S32:
    case SgprV4S32:
    case Vgpr16:
    case Vgpr32:
    case Vgpr64:
    case Vgpr128:
    case VgprP0:
    case VgprP1:
    case VgprP3:
    case VgprP4:
    case VgprP5:
    case VgprV2S16:
    case VgprV2S32:
    case VgprV4S32: {
      assert(Ty == getTyFromID(MethodIDs[OpIdx]));
      assert(RB == getRegBankFromID(MethodIDs[OpIdx]));
      break;
    }
    // sgpr and vgpr B-types
    case SgprB32:
    case SgprB64:
    case SgprB96:
    case SgprB128:
    case SgprB256:
    case SgprB512:
    case SgprPtr32:
    case SgprPtr64:
    case SgprPtr128:
    case VgprB32:
    case VgprB64:
    case VgprB96:
    case VgprB128:
    case VgprB256:
    case VgprB512:
    case VgprPtr32:
    case VgprPtr64:
    case VgprPtr128: {
      assert(Ty == getBTyFromID(MethodIDs[OpIdx], Ty));
      assert(RB == getRegBankFromID(MethodIDs[OpIdx]));
      break;
    }
    // uniform in vcc/vgpr: scalars, vectors and B-types
    case UniInVcc: {
      assert(Ty == S1);
      assert(RB == SgprRB);
      Register NewDst = MRI.createVirtualRegister(VccRB_S1);
      Op.setReg(NewDst);
      auto CopyS32_Vcc =
          B.buildInstr(AMDGPU::G_AMDGPU_COPY_SCC_VCC, {SgprRB_S32}, {NewDst});
      B.buildTrunc(Reg, CopyS32_Vcc);
      break;
    }
    case UniInVgprS32:
    case UniInVgprV2S16:
    case UniInVgprV4S32: {
      assert(Ty == getTyFromID(MethodIDs[OpIdx]));
      assert(RB == SgprRB);
      Register NewVgprDst = MRI.createVirtualRegister({VgprRB, Ty});
      Op.setReg(NewVgprDst);
      buildReadAnyLane(B, Reg, NewVgprDst, RBI);
      break;
    }
    case UniInVgprB32:
    case UniInVgprB64:
    case UniInVgprB96:
    case UniInVgprB128:
    case UniInVgprB256:
    case UniInVgprB512: {
      assert(Ty == getBTyFromID(MethodIDs[OpIdx], Ty));
      assert(RB == SgprRB);
      Register NewVgprDst = MRI.createVirtualRegister({VgprRB, Ty});
      Op.setReg(NewVgprDst);
      AMDGPU::buildReadAnyLane(B, Reg, NewVgprDst, RBI);
      break;
    }
    // sgpr trunc
    case Sgpr32Trunc: {
      assert(Ty.getSizeInBits() < 32);
      assert(RB == SgprRB);
      Register NewDst = MRI.createVirtualRegister(SgprRB_S32);
      Op.setReg(NewDst);
      B.buildTrunc(Reg, NewDst);
      break;
    }
    case InvalidMapping: {
      LLVM_DEBUG(dbgs() << "Instruction with Invalid mapping: "; MI.dump(););
      llvm_unreachable("missing fast rule for MI");
    }
    default:
      llvm_unreachable("ID not supported");
    }
  }
}

void RegBankLegalizeHelper::applyMappingSrc(
    MachineInstr &MI, unsigned &OpIdx,
    const SmallVectorImpl<RegBankLLTMappingApplyID> &MethodIDs,
    SmallSet<Register, 4> &SgprWaterfallOperandRegs) {
  for (unsigned i = 0; i < MethodIDs.size(); ++OpIdx, ++i) {
    if (MethodIDs[i] == None || MethodIDs[i] == IntrId || MethodIDs[i] == Imm)
      continue;

    MachineOperand &Op = MI.getOperand(OpIdx);
    Register Reg = Op.getReg();
    LLT Ty = MRI.getType(Reg);
    const RegisterBank *RB = MRI.getRegBank(Reg);

    switch (MethodIDs[i]) {
    case Vcc: {
      assert(Ty == S1);
      assert(RB == VccRB || RB == SgprRB);
      if (RB == SgprRB) {
        auto Aext = B.buildAnyExt(SgprRB_S32, Reg);
        auto CopyVcc_Scc =
            B.buildInstr(AMDGPU::G_AMDGPU_COPY_VCC_SCC, {VccRB_S1}, {Aext});
        Op.setReg(CopyVcc_Scc.getReg(0));
      }
      break;
    }
    // sgpr scalars, pointers and vectors
    case Sgpr16:
    case Sgpr32:
    case Sgpr64:
    case Sgpr128:
    case SgprP1:
    case SgprP3:
    case SgprP4:
    case SgprP5:
    case SgprV2S16:
    case SgprV2S32:
    case SgprV4S32: {
      assert(Ty == getTyFromID(MethodIDs[i]));
      assert(RB == getRegBankFromID(MethodIDs[i]));
      break;
    }
    // sgpr B-types
    case SgprB32:
    case SgprB64:
    case SgprB96:
    case SgprB128:
    case SgprB256:
    case SgprB512:
    case SgprPtr32:
    case SgprPtr64:
    case SgprPtr128: {
      assert(Ty == getBTyFromID(MethodIDs[i], Ty));
      assert(RB == getRegBankFromID(MethodIDs[i]));
      break;
    }
    // vgpr scalars, pointers and vectors
    case Vgpr16:
    case Vgpr32:
    case Vgpr64:
    case Vgpr128:
    case VgprP0:
    case VgprP1:
    case VgprP3:
    case VgprP4:
    case VgprP5:
    case VgprV2S16:
    case VgprV2S32:
    case VgprV4S32: {
      assert(Ty == getTyFromID(MethodIDs[i]));
      if (RB != VgprRB) {
        auto CopyToVgpr = B.buildCopy({VgprRB, Ty}, Reg);
        Op.setReg(CopyToVgpr.getReg(0));
      }
      break;
    }
    // vgpr B-types
    case VgprB32:
    case VgprB64:
    case VgprB96:
    case VgprB128:
    case VgprB256:
    case VgprB512:
    case VgprPtr32:
    case VgprPtr64:
    case VgprPtr128: {
      assert(Ty == getBTyFromID(MethodIDs[i], Ty));
      if (RB != VgprRB) {
        auto CopyToVgpr = B.buildCopy({VgprRB, Ty}, Reg);
        Op.setReg(CopyToVgpr.getReg(0));
      }
      break;
    }
    // sgpr waterfall, scalars and vectors
    case Sgpr32_WF:
    case SgprV4S32_WF: {
      assert(Ty == getTyFromID(MethodIDs[i]));
      if (RB != SgprRB)
        SgprWaterfallOperandRegs.insert(Reg);
      break;
    }
    // sgpr and vgpr scalars with extend
    case Sgpr32AExt: {
      // Note: this ext allows S1, and it is meant to be combined away.
      assert(Ty.getSizeInBits() < 32);
      assert(RB == SgprRB);
      auto Aext = B.buildAnyExt(SgprRB_S32, Reg);
      Op.setReg(Aext.getReg(0));
      break;
    }
    case Sgpr32AExtBoolInReg: {
      // Note: this ext allows S1, and it is meant to be combined away.
      assert(Ty.getSizeInBits() == 1);
      assert(RB == SgprRB);
      auto Aext = B.buildAnyExt(SgprRB_S32, Reg);
      // Zext SgprS1 is not legal, make AND with 1 instead. This instruction is
      // most of times meant to be combined away in AMDGPURegBankCombiner.
      auto Cst1 = B.buildConstant(SgprRB_S32, 1);
      auto BoolInReg = B.buildAnd(SgprRB_S32, Aext, Cst1);
      Op.setReg(BoolInReg.getReg(0));
      break;
    }
    case Sgpr32SExt: {
      assert(1 < Ty.getSizeInBits() && Ty.getSizeInBits() < 32);
      assert(RB == SgprRB);
      auto Sext = B.buildSExt(SgprRB_S32, Reg);
      Op.setReg(Sext.getReg(0));
      break;
    }
    case Sgpr32ZExt: {
      assert(1 < Ty.getSizeInBits() && Ty.getSizeInBits() < 32);
      assert(RB == SgprRB);
      auto Zext = B.buildZExt({SgprRB, S32}, Reg);
      Op.setReg(Zext.getReg(0));
      break;
    }
    case Vgpr32SExt: {
      // Note this ext allows S1, and it is meant to be combined away.
      assert(Ty.getSizeInBits() < 32);
      assert(RB == VgprRB);
      auto Sext = B.buildSExt({VgprRB, S32}, Reg);
      Op.setReg(Sext.getReg(0));
      break;
    }
    case Vgpr32ZExt: {
      // Note this ext allows S1, and it is meant to be combined away.
      assert(Ty.getSizeInBits() < 32);
      assert(RB == VgprRB);
      auto Zext = B.buildZExt({VgprRB, S32}, Reg);
      Op.setReg(Zext.getReg(0));
      break;
    }
    default:
      llvm_unreachable("ID not supported");
    }
  }
}

void RegBankLegalizeHelper::applyMappingPHI(MachineInstr &MI) {
  Register Dst = MI.getOperand(0).getReg();
  LLT Ty = MRI.getType(Dst);

  if (Ty == LLT::scalar(1) && MUI.isUniform(Dst)) {
    B.setInsertPt(*MI.getParent(), MI.getParent()->getFirstNonPHI());

    Register NewDst = MRI.createVirtualRegister(SgprRB_S32);
    MI.getOperand(0).setReg(NewDst);
    B.buildTrunc(Dst, NewDst);

    for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
      Register UseReg = MI.getOperand(i).getReg();

      auto DefMI = MRI.getVRegDef(UseReg)->getIterator();
      MachineBasicBlock *DefMBB = DefMI->getParent();

      B.setInsertPt(*DefMBB, DefMBB->SkipPHIsAndLabels(std::next(DefMI)));

      auto NewUse = B.buildAnyExt(SgprRB_S32, UseReg);
      MI.getOperand(i).setReg(NewUse.getReg(0));
    }

    return;
  }

  // ALL divergent i1 phis should be already lowered and inst-selected into PHI
  // with sgpr reg class and S1 LLT.
  // Note: this includes divergent phis that don't require lowering.
  if (Ty == LLT::scalar(1) && MUI.isDivergent(Dst)) {
    LLVM_DEBUG(dbgs() << "Divergent S1 G_PHI: "; MI.dump(););
    llvm_unreachable("Make sure to run AMDGPUGlobalISelDivergenceLowering "
                     "before RegBankLegalize to lower lane mask(vcc) phis");
  }

  // We accept all types that can fit in some register class.
  // Uniform G_PHIs have all sgpr registers.
  // Divergent G_PHIs have vgpr dst but inputs can be sgpr or vgpr.
  if (Ty == LLT::scalar(32) || Ty == LLT::pointer(1, 64) ||
      Ty == LLT::pointer(4, 64)) {
    return;
  }

  LLVM_DEBUG(dbgs() << "G_PHI not handled: "; MI.dump(););
  llvm_unreachable("type not supported");
}

[[maybe_unused]] static bool verifyRegBankOnOperands(MachineInstr &MI,
                                                     const RegisterBank *RB,
                                                     MachineRegisterInfo &MRI,
                                                     unsigned StartOpIdx,
                                                     unsigned EndOpIdx) {
  for (unsigned i = StartOpIdx; i <= EndOpIdx; ++i) {
    if (MRI.getRegBankOrNull(MI.getOperand(i).getReg()) != RB)
      return false;
  }
  return true;
}

void RegBankLegalizeHelper::applyMappingTrivial(MachineInstr &MI) {
  const RegisterBank *RB = MRI.getRegBank(MI.getOperand(0).getReg());
  // Put RB on all registers
  unsigned NumDefs = MI.getNumDefs();
  unsigned NumOperands = MI.getNumOperands();

  assert(verifyRegBankOnOperands(MI, RB, MRI, 0, NumDefs - 1));
  if (RB == SgprRB)
    assert(verifyRegBankOnOperands(MI, RB, MRI, NumDefs, NumOperands - 1));

  if (RB == VgprRB) {
    B.setInstr(MI);
    for (unsigned i = NumDefs; i < NumOperands; ++i) {
      Register Reg = MI.getOperand(i).getReg();
      if (MRI.getRegBank(Reg) != RB) {
        auto Copy = B.buildCopy({VgprRB, MRI.getType(Reg)}, Reg);
        MI.getOperand(i).setReg(Copy.getReg(0));
      }
    }
  }
}