1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
//===-- AMDGPURegBankLegalize.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Lower G_ instructions that can't be inst-selected with register bank
/// assignment from AMDGPURegBankSelect based on machine uniformity info.
/// Given types on all operands, some register bank assignments require lowering
/// while others do not.
/// Note: cases where all register bank assignments would require lowering are
/// lowered in legalizer.
/// For example vgpr S64 G_AND requires lowering to S32 while sgpr S64 does not.
/// Eliminate sgpr S1 by lowering to sgpr S32.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUGlobalISelUtils.h"
#include "AMDGPURegBankLegalizeHelper.h"
#include "GCNSubtarget.h"
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineUniformityAnalysis.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/InitializePasses.h"
#define DEBUG_TYPE "amdgpu-regbanklegalize"
using namespace llvm;
using namespace AMDGPU;
namespace {
class AMDGPURegBankLegalize : public MachineFunctionPass {
public:
static char ID;
public:
AMDGPURegBankLegalize() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "AMDGPU Register Bank Legalize";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetPassConfig>();
AU.addRequired<GISelCSEAnalysisWrapperPass>();
AU.addRequired<MachineUniformityAnalysisPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
// If there were no phis and we do waterfall expansion machine verifier would
// fail.
MachineFunctionProperties getClearedProperties() const override {
return MachineFunctionProperties().setNoPHIs();
}
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(AMDGPURegBankLegalize, DEBUG_TYPE,
"AMDGPU Register Bank Legalize", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineUniformityAnalysisPass)
INITIALIZE_PASS_END(AMDGPURegBankLegalize, DEBUG_TYPE,
"AMDGPU Register Bank Legalize", false, false)
char AMDGPURegBankLegalize::ID = 0;
char &llvm::AMDGPURegBankLegalizeID = AMDGPURegBankLegalize::ID;
FunctionPass *llvm::createAMDGPURegBankLegalizePass() {
return new AMDGPURegBankLegalize();
}
const RegBankLegalizeRules &getRules(const GCNSubtarget &ST,
MachineRegisterInfo &MRI) {
static std::mutex GlobalMutex;
static SmallDenseMap<unsigned, std::unique_ptr<RegBankLegalizeRules>>
CacheForRuleSet;
std::lock_guard<std::mutex> Lock(GlobalMutex);
auto [It, Inserted] = CacheForRuleSet.try_emplace(ST.getGeneration());
if (Inserted)
It->second = std::make_unique<RegBankLegalizeRules>(ST, MRI);
else
It->second->refreshRefs(ST, MRI);
return *It->second;
}
class AMDGPURegBankLegalizeCombiner {
MachineIRBuilder &B;
MachineRegisterInfo &MRI;
const SIRegisterInfo &TRI;
const RegisterBank *SgprRB;
const RegisterBank *VgprRB;
const RegisterBank *VccRB;
static constexpr LLT S1 = LLT::scalar(1);
static constexpr LLT S16 = LLT::scalar(16);
static constexpr LLT S32 = LLT::scalar(32);
static constexpr LLT S64 = LLT::scalar(64);
public:
AMDGPURegBankLegalizeCombiner(MachineIRBuilder &B, const SIRegisterInfo &TRI,
const RegisterBankInfo &RBI)
: B(B), MRI(*B.getMRI()), TRI(TRI),
SgprRB(&RBI.getRegBank(AMDGPU::SGPRRegBankID)),
VgprRB(&RBI.getRegBank(AMDGPU::VGPRRegBankID)),
VccRB(&RBI.getRegBank(AMDGPU::VCCRegBankID)) {};
bool isLaneMask(Register Reg);
std::pair<MachineInstr *, Register> tryMatch(Register Src, unsigned Opcode);
std::pair<GUnmerge *, int> tryMatchRALFromUnmerge(Register Src);
Register getReadAnyLaneSrc(Register Src);
void replaceRegWithOrBuildCopy(Register Dst, Register Src);
bool tryEliminateReadAnyLane(MachineInstr &Copy);
void tryCombineCopy(MachineInstr &MI);
void tryCombineS1AnyExt(MachineInstr &MI);
};
bool AMDGPURegBankLegalizeCombiner::isLaneMask(Register Reg) {
const RegisterBank *RB = MRI.getRegBankOrNull(Reg);
if (RB && RB->getID() == AMDGPU::VCCRegBankID)
return true;
const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
return RC && TRI.isSGPRClass(RC) && MRI.getType(Reg) == LLT::scalar(1);
}
std::pair<MachineInstr *, Register>
AMDGPURegBankLegalizeCombiner::tryMatch(Register Src, unsigned Opcode) {
MachineInstr *MatchMI = MRI.getVRegDef(Src);
if (MatchMI->getOpcode() != Opcode)
return {nullptr, Register()};
return {MatchMI, MatchMI->getOperand(1).getReg()};
}
std::pair<GUnmerge *, int>
AMDGPURegBankLegalizeCombiner::tryMatchRALFromUnmerge(Register Src) {
MachineInstr *ReadAnyLane = MRI.getVRegDef(Src);
if (ReadAnyLane->getOpcode() != AMDGPU::G_AMDGPU_READANYLANE)
return {nullptr, -1};
Register RALSrc = ReadAnyLane->getOperand(1).getReg();
if (auto *UnMerge = getOpcodeDef<GUnmerge>(RALSrc, MRI))
return {UnMerge, UnMerge->findRegisterDefOperandIdx(RALSrc, nullptr)};
return {nullptr, -1};
}
Register AMDGPURegBankLegalizeCombiner::getReadAnyLaneSrc(Register Src) {
// Src = G_AMDGPU_READANYLANE RALSrc
auto [RAL, RALSrc] = tryMatch(Src, AMDGPU::G_AMDGPU_READANYLANE);
if (RAL)
return RALSrc;
// LoVgpr, HiVgpr = G_UNMERGE_VALUES UnmergeSrc
// LoSgpr = G_AMDGPU_READANYLANE LoVgpr
// HiSgpr = G_AMDGPU_READANYLANE HiVgpr
// Src G_MERGE_VALUES LoSgpr, HiSgpr
auto *Merge = getOpcodeDef<GMergeLikeInstr>(Src, MRI);
if (Merge) {
unsigned NumElts = Merge->getNumSources();
auto [Unmerge, Idx] = tryMatchRALFromUnmerge(Merge->getSourceReg(0));
if (!Unmerge || Unmerge->getNumDefs() != NumElts || Idx != 0)
return {};
// Check if all elements are from same unmerge and there is no shuffling.
for (unsigned i = 1; i < NumElts; ++i) {
auto [UnmergeI, IdxI] = tryMatchRALFromUnmerge(Merge->getSourceReg(i));
if (UnmergeI != Unmerge || (unsigned)IdxI != i)
return {};
}
return Unmerge->getSourceReg();
}
// SrcRegIdx = G_AMDGPU_READANYLANE RALElSrc
// SourceReg G_MERGE_VALUES ..., SrcRegIdx, ...
// ..., Src, ... = G_UNMERGE_VALUES SourceReg
auto *UnMerge = getOpcodeDef<GUnmerge>(Src, MRI);
if (!UnMerge)
return {};
int Idx = UnMerge->findRegisterDefOperandIdx(Src, nullptr);
Merge = getOpcodeDef<GMergeLikeInstr>(UnMerge->getSourceReg(), MRI);
if (!Merge || UnMerge->getNumDefs() != Merge->getNumSources())
return {};
Register SrcRegIdx = Merge->getSourceReg(Idx);
if (MRI.getType(Src) != MRI.getType(SrcRegIdx))
return {};
auto [RALEl, RALElSrc] = tryMatch(SrcRegIdx, AMDGPU::G_AMDGPU_READANYLANE);
if (RALEl)
return RALElSrc;
return {};
}
void AMDGPURegBankLegalizeCombiner::replaceRegWithOrBuildCopy(Register Dst,
Register Src) {
if (Dst.isVirtual())
MRI.replaceRegWith(Dst, Src);
else
B.buildCopy(Dst, Src);
}
bool AMDGPURegBankLegalizeCombiner::tryEliminateReadAnyLane(
MachineInstr &Copy) {
Register Dst = Copy.getOperand(0).getReg();
Register Src = Copy.getOperand(1).getReg();
// Skip non-vgpr Dst
if (Dst.isVirtual() ? (MRI.getRegBankOrNull(Dst) != VgprRB)
: !TRI.isVGPR(MRI, Dst))
return false;
// Skip physical source registers and source registers with register class
if (!Src.isVirtual() || MRI.getRegClassOrNull(Src))
return false;
Register RALDst = Src;
MachineInstr &SrcMI = *MRI.getVRegDef(Src);
if (SrcMI.getOpcode() == AMDGPU::G_BITCAST)
RALDst = SrcMI.getOperand(1).getReg();
Register RALSrc = getReadAnyLaneSrc(RALDst);
if (!RALSrc)
return false;
B.setInstr(Copy);
if (SrcMI.getOpcode() != AMDGPU::G_BITCAST) {
// Src = READANYLANE RALSrc Src = READANYLANE RALSrc
// Dst = Copy Src $Dst = Copy Src
// -> ->
// Dst = RALSrc $Dst = Copy RALSrc
replaceRegWithOrBuildCopy(Dst, RALSrc);
} else {
// RALDst = READANYLANE RALSrc RALDst = READANYLANE RALSrc
// Src = G_BITCAST RALDst Src = G_BITCAST RALDst
// Dst = Copy Src Dst = Copy Src
// -> ->
// NewVgpr = G_BITCAST RALDst NewVgpr = G_BITCAST RALDst
// Dst = NewVgpr $Dst = Copy NewVgpr
auto Bitcast = B.buildBitcast({VgprRB, MRI.getType(Src)}, RALSrc);
replaceRegWithOrBuildCopy(Dst, Bitcast.getReg(0));
}
eraseInstr(Copy, MRI);
return true;
}
void AMDGPURegBankLegalizeCombiner::tryCombineCopy(MachineInstr &MI) {
if (tryEliminateReadAnyLane(MI))
return;
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
// Skip copies of physical registers.
if (!Dst.isVirtual() || !Src.isVirtual())
return;
// This is a cross bank copy, sgpr S1 to lane mask.
//
// %Src:sgpr(s1) = G_TRUNC %TruncS32Src:sgpr(s32)
// %Dst:lane-mask(s1) = COPY %Src:sgpr(s1)
// ->
// %BoolSrc:sgpr(s32) = G_AND %TruncS32Src:sgpr(s32), 1
// %Dst:lane-mask(s1) = G_AMDGPU_COPY_VCC_SCC %BoolSrc:sgpr(s32)
if (isLaneMask(Dst) && MRI.getRegBankOrNull(Src) == SgprRB) {
auto [Trunc, TruncS32Src] = tryMatch(Src, AMDGPU::G_TRUNC);
assert(Trunc && MRI.getType(TruncS32Src) == S32 &&
"sgpr S1 must be result of G_TRUNC of sgpr S32");
B.setInstr(MI);
// Ensure that truncated bits in BoolSrc are 0.
auto One = B.buildConstant({SgprRB, S32}, 1);
auto BoolSrc = B.buildAnd({SgprRB, S32}, TruncS32Src, One);
B.buildInstr(AMDGPU::G_AMDGPU_COPY_VCC_SCC, {Dst}, {BoolSrc});
eraseInstr(MI, MRI);
}
}
void AMDGPURegBankLegalizeCombiner::tryCombineS1AnyExt(MachineInstr &MI) {
// %Src:sgpr(S1) = G_TRUNC %TruncSrc
// %Dst = G_ANYEXT %Src:sgpr(S1)
// ->
// %Dst = G_... %TruncSrc
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
if (MRI.getType(Src) != S1)
return;
auto [Trunc, TruncSrc] = tryMatch(Src, AMDGPU::G_TRUNC);
if (!Trunc)
return;
LLT DstTy = MRI.getType(Dst);
LLT TruncSrcTy = MRI.getType(TruncSrc);
if (DstTy == TruncSrcTy) {
MRI.replaceRegWith(Dst, TruncSrc);
eraseInstr(MI, MRI);
return;
}
B.setInstr(MI);
if (DstTy == S32 && TruncSrcTy == S64) {
auto Unmerge = B.buildUnmerge({SgprRB, S32}, TruncSrc);
MRI.replaceRegWith(Dst, Unmerge.getReg(0));
eraseInstr(MI, MRI);
return;
}
if (DstTy == S64 && TruncSrcTy == S32) {
B.buildMergeLikeInstr(MI.getOperand(0).getReg(),
{TruncSrc, B.buildUndef({SgprRB, S32})});
eraseInstr(MI, MRI);
return;
}
if (DstTy == S32 && TruncSrcTy == S16) {
B.buildAnyExt(Dst, TruncSrc);
eraseInstr(MI, MRI);
return;
}
if (DstTy == S16 && TruncSrcTy == S32) {
B.buildTrunc(Dst, TruncSrc);
eraseInstr(MI, MRI);
return;
}
llvm_unreachable("missing anyext + trunc combine");
}
// Search through MRI for virtual registers with sgpr register bank and S1 LLT.
[[maybe_unused]] static Register getAnySgprS1(const MachineRegisterInfo &MRI) {
const LLT S1 = LLT::scalar(1);
for (unsigned i = 0; i < MRI.getNumVirtRegs(); ++i) {
Register Reg = Register::index2VirtReg(i);
if (MRI.def_empty(Reg) || MRI.getType(Reg) != S1)
continue;
const RegisterBank *RB = MRI.getRegBankOrNull(Reg);
if (RB && RB->getID() == AMDGPU::SGPRRegBankID) {
LLVM_DEBUG(dbgs() << "Warning: detected sgpr S1 register in: ";
MRI.getVRegDef(Reg)->dump(););
return Reg;
}
}
return {};
}
bool AMDGPURegBankLegalize::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasFailedISel())
return false;
// Setup the instruction builder with CSE.
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
GISelCSEAnalysisWrapper &Wrapper =
getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
GISelCSEInfo &CSEInfo = Wrapper.get(TPC.getCSEConfig());
GISelObserverWrapper Observer;
Observer.addObserver(&CSEInfo);
CSEMIRBuilder B(MF);
B.setCSEInfo(&CSEInfo);
B.setChangeObserver(Observer);
RAIIDelegateInstaller DelegateInstaller(MF, &Observer);
RAIIMFObserverInstaller MFObserverInstaller(MF, Observer);
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
MachineRegisterInfo &MRI = MF.getRegInfo();
const RegisterBankInfo &RBI = *ST.getRegBankInfo();
const MachineUniformityInfo &MUI =
getAnalysis<MachineUniformityAnalysisPass>().getUniformityInfo();
// RegBankLegalizeRules is initialized with assigning sets of IDs to opcodes.
const RegBankLegalizeRules &RBLRules = getRules(ST, MRI);
// Logic that does legalization based on IDs assigned to Opcode.
RegBankLegalizeHelper RBLHelper(B, MUI, RBI, RBLRules);
SmallVector<MachineInstr *> AllInst;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
AllInst.push_back(&MI);
}
}
for (MachineInstr *MI : AllInst) {
if (!MI->isPreISelOpcode())
continue;
unsigned Opc = MI->getOpcode();
// Insert point for use operands needs some calculation.
if (Opc == AMDGPU::G_PHI) {
RBLHelper.applyMappingPHI(*MI);
continue;
}
// Opcodes that support pretty much all combinations of reg banks and LLTs
// (except S1). There is no point in writing rules for them.
if (Opc == AMDGPU::G_BUILD_VECTOR || Opc == AMDGPU::G_UNMERGE_VALUES ||
Opc == AMDGPU::G_MERGE_VALUES || Opc == AMDGPU::G_BITCAST) {
RBLHelper.applyMappingTrivial(*MI);
continue;
}
// Opcodes that also support S1.
if (Opc == G_FREEZE &&
MRI.getType(MI->getOperand(0).getReg()) != LLT::scalar(1)) {
RBLHelper.applyMappingTrivial(*MI);
continue;
}
if ((Opc == AMDGPU::G_CONSTANT || Opc == AMDGPU::G_FCONSTANT ||
Opc == AMDGPU::G_IMPLICIT_DEF)) {
Register Dst = MI->getOperand(0).getReg();
// Non S1 types are trivially accepted.
if (MRI.getType(Dst) != LLT::scalar(1)) {
assert(MRI.getRegBank(Dst)->getID() == AMDGPU::SGPRRegBankID);
continue;
}
// S1 rules are in RegBankLegalizeRules.
}
RBLHelper.findRuleAndApplyMapping(*MI);
}
// Sgpr S1 clean up combines:
// - Sgpr S1(S32) to sgpr S1(S32) Copy: anyext + trunc combine.
// In RegBankLegalize 'S1 Dst' are legalized into S32 as
// 'S1Dst = Trunc S32Dst' and 'S1 Src' into 'S32Src = Anyext S1Src'.
// S1 Truncs and Anyexts that come from legalizer, that can have non-S32
// types e.g. S16 = Anyext S1 or S1 = Trunc S64, will also be cleaned up.
// - Sgpr S1(S32) to vcc Copy: G_AMDGPU_COPY_VCC_SCC combine.
// Divergent instruction uses sgpr S1 as input that should be lane mask(vcc)
// Legalizing this use creates sgpr S1(S32) to vcc Copy.
// Note: Remaining S1 copies, S1s are either sgpr S1(S32) or vcc S1:
// - Vcc to vcc Copy: nothing to do here, just a regular copy.
// - Vcc to sgpr S1 Copy: Should not exist in a form of COPY instruction(*).
// Note: For 'uniform-in-vcc to sgpr-S1 copy' G_AMDGPU_COPY_SCC_VCC is used
// instead. When only available instruction creates vcc result, use of
// UniformInVcc results in creating G_AMDGPU_COPY_SCC_VCC.
// (*)Explanation for 'sgpr S1(uniform) = COPY vcc(divergent)':
// Copy from divergent to uniform register indicates an error in either:
// - Uniformity analysis: Uniform instruction has divergent input. If one of
// the inputs is divergent, instruction should be divergent!
// - RegBankLegalizer not executing in waterfall loop (missing implementation)
AMDGPURegBankLegalizeCombiner Combiner(B, *ST.getRegisterInfo(), RBI);
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : make_early_inc_range(MBB)) {
if (MI.getOpcode() == AMDGPU::COPY) {
Combiner.tryCombineCopy(MI);
continue;
}
if (MI.getOpcode() == AMDGPU::G_ANYEXT) {
Combiner.tryCombineS1AnyExt(MI);
continue;
}
}
}
assert(!getAnySgprS1(MRI).isValid() &&
"Registers with sgpr reg bank and S1 LLT are not legal after "
"AMDGPURegBankLegalize. Should lower to sgpr S32");
return true;
}
|