1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
//=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// \file
//
// The pass bind printfs to a kernel arg pointer that will be bound to a buffer
// later by the runtime.
//
// This pass traverses the functions in the module and converts
// each call to printf to a sequence of operations that
// store the following into the printf buffer:
// - format string (passed as a module's metadata unique ID)
// - bitwise copies of printf arguments
// The backend passes will need to store metadata in the kernel
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
#define DEBUG_TYPE "printfToRuntime"
enum { DWORD_ALIGN = 4 };
namespace {
class AMDGPUPrintfRuntimeBinding final : public ModulePass {
public:
static char ID;
explicit AMDGPUPrintfRuntimeBinding() : ModulePass(ID) {}
private:
bool runOnModule(Module &M) override;
};
class AMDGPUPrintfRuntimeBindingImpl {
public:
AMDGPUPrintfRuntimeBindingImpl() = default;
bool run(Module &M);
private:
void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
StringRef fmt, size_t num_ops) const;
bool lowerPrintfForGpu(Module &M);
const DataLayout *TD;
SmallVector<CallInst *, 32> Printfs;
};
} // namespace
char AMDGPUPrintfRuntimeBinding::ID = 0;
INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
"amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
"AMDGPU Printf lowering", false, false)
char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
ModulePass *llvm::createAMDGPUPrintfRuntimeBinding() {
return new AMDGPUPrintfRuntimeBinding();
}
void AMDGPUPrintfRuntimeBindingImpl::getConversionSpecifiers(
SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
size_t NumOps) const {
// not all format characters are collected.
// At this time the format characters of interest
// are %p and %s, which use to know if we
// are either storing a literal string or a
// pointer to the printf buffer.
static const char ConvSpecifiers[] = "cdieEfFgGaAosuxXp";
size_t CurFmtSpecifierIdx = 0;
size_t PrevFmtSpecifierIdx = 0;
while ((CurFmtSpecifierIdx = Fmt.find_first_of(
ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
bool ArgDump = false;
StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
size_t pTag = CurFmt.find_last_of('%');
if (pTag != StringRef::npos) {
ArgDump = true;
while (pTag && CurFmt[--pTag] == '%') {
ArgDump = !ArgDump;
}
}
if (ArgDump)
OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
}
}
static bool shouldPrintAsStr(char Specifier, Type *OpType) {
return Specifier == 's' && isa<PointerType>(OpType);
}
constexpr StringLiteral NonLiteralStr("???");
static_assert(NonLiteralStr.size() == 3);
static StringRef getAsConstantStr(Value *V) {
StringRef S;
if (!getConstantStringInfo(V, S))
S = NonLiteralStr;
return S;
}
static void diagnoseInvalidFormatString(const CallBase *CI) {
CI->getContext().diagnose(DiagnosticInfoUnsupported(
*CI->getParent()->getParent(),
"printf format string must be a trivially resolved constant string "
"global variable",
CI->getDebugLoc()));
}
bool AMDGPUPrintfRuntimeBindingImpl::lowerPrintfForGpu(Module &M) {
LLVMContext &Ctx = M.getContext();
IRBuilder<> Builder(Ctx);
Type *I32Ty = Type::getInt32Ty(Ctx);
// Instead of creating global variables, the printf format strings are
// extracted and passed as metadata. This avoids polluting llvm's symbol
// tables in this module. Metadata is going to be extracted by the backend
// passes and inserted into the OpenCL binary as appropriate.
NamedMDNode *metaD = M.getOrInsertNamedMetadata("llvm.printf.fmts");
unsigned UniqID = metaD->getNumOperands();
for (auto *CI : Printfs) {
unsigned NumOps = CI->arg_size();
SmallString<16> OpConvSpecifiers;
Value *Op = CI->getArgOperand(0);
StringRef FormatStr;
if (!getConstantStringInfo(Op, FormatStr)) {
Value *Stripped = Op->stripPointerCasts();
if (!isa<UndefValue>(Stripped) && !isa<ConstantPointerNull>(Stripped))
diagnoseInvalidFormatString(CI);
continue;
}
// We need this call to ascertain that we are printing a string or a
// pointer. It takes out the specifiers and fills up the first arg.
getConversionSpecifiers(OpConvSpecifiers, FormatStr, NumOps - 1);
// Add metadata for the string
std::string AStreamHolder;
raw_string_ostream Sizes(AStreamHolder);
int Sum = DWORD_ALIGN;
Sizes << CI->arg_size() - 1;
Sizes << ':';
for (unsigned ArgCount = 1;
ArgCount < CI->arg_size() && ArgCount <= OpConvSpecifiers.size();
ArgCount++) {
Value *Arg = CI->getArgOperand(ArgCount);
Type *ArgType = Arg->getType();
unsigned ArgSize = TD->getTypeAllocSize(ArgType);
//
// ArgSize by design should be a multiple of DWORD_ALIGN,
// expand the arguments that do not follow this rule.
//
if (ArgSize % DWORD_ALIGN != 0) {
Type *ResType = Type::getInt32Ty(Ctx);
if (auto *VecType = dyn_cast<VectorType>(ArgType))
ResType = VectorType::get(ResType, VecType->getElementCount());
Builder.SetInsertPoint(CI);
Builder.SetCurrentDebugLocation(CI->getDebugLoc());
if (ArgType->isFloatingPointTy()) {
Arg = Builder.CreateBitCast(
Arg,
IntegerType::getIntNTy(Ctx, ArgType->getPrimitiveSizeInBits()));
}
if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
OpConvSpecifiers[ArgCount - 1] == 'X' ||
OpConvSpecifiers[ArgCount - 1] == 'u' ||
OpConvSpecifiers[ArgCount - 1] == 'o')
Arg = Builder.CreateZExt(Arg, ResType);
else
Arg = Builder.CreateSExt(Arg, ResType);
ArgType = Arg->getType();
ArgSize = TD->getTypeAllocSize(ArgType);
CI->setOperand(ArgCount, Arg);
}
if (OpConvSpecifiers[ArgCount - 1] == 'f') {
ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
if (FpCons)
ArgSize = 4;
else {
FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
if (FpExt && FpExt->getType()->isDoubleTy() &&
FpExt->getOperand(0)->getType()->isFloatTy())
ArgSize = 4;
}
}
if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType))
ArgSize = alignTo(getAsConstantStr(Arg).size() + 1, 4);
LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
<< " for type: " << *ArgType << '\n');
Sizes << ArgSize << ':';
Sum += ArgSize;
}
LLVM_DEBUG(dbgs() << "Printf format string in source = " << FormatStr
<< '\n');
for (char C : FormatStr) {
// Rest of the C escape sequences (e.g. \') are handled correctly
// by the MDParser
switch (C) {
case '\a':
Sizes << "\\a";
break;
case '\b':
Sizes << "\\b";
break;
case '\f':
Sizes << "\\f";
break;
case '\n':
Sizes << "\\n";
break;
case '\r':
Sizes << "\\r";
break;
case '\v':
Sizes << "\\v";
break;
case ':':
// ':' cannot be scanned by Flex, as it is defined as a delimiter
// Replace it with it's octal representation \72
Sizes << "\\72";
break;
default:
Sizes << C;
break;
}
}
// Insert the printf_alloc call
Builder.SetInsertPoint(CI);
Builder.SetCurrentDebugLocation(CI->getDebugLoc());
AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
Attribute::NoUnwind);
Type *SizetTy = Type::getInt32Ty(Ctx);
Type *Tys_alloc[1] = {SizetTy};
Type *I8Ty = Type::getInt8Ty(Ctx);
Type *I8Ptr = PointerType::get(Ctx, 1);
FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
FunctionCallee PrintfAllocFn =
M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str();
MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
metaD->addOperand(myMD);
Value *sumC = ConstantInt::get(SizetTy, Sum, false);
SmallVector<Value *, 1> alloc_args;
alloc_args.push_back(sumC);
CallInst *pcall = CallInst::Create(PrintfAllocFn, alloc_args,
"printf_alloc_fn", CI->getIterator());
//
// Insert code to split basicblock with a
// piece of hammock code.
// basicblock splits after buffer overflow check
//
ConstantPointerNull *zeroIntPtr =
ConstantPointerNull::get(PointerType::get(Ctx, 1));
auto *cmp = cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
if (!CI->use_empty()) {
Value *result =
Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
CI->replaceAllUsesWith(result);
}
SplitBlock(CI->getParent(), cmp);
Instruction *Brnch =
SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
BasicBlock::iterator BrnchPoint = Brnch->getIterator();
Builder.SetInsertPoint(Brnch);
// store unique printf id in the buffer
//
GetElementPtrInst *BufferIdx = GetElementPtrInst::Create(
I8Ty, pcall, ConstantInt::get(Ctx, APInt(32, 0)), "PrintBuffID",
BrnchPoint);
Type *idPointer = PointerType::get(Ctx, AMDGPUAS::GLOBAL_ADDRESS);
Value *id_gep_cast =
new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", BrnchPoint);
new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast, BrnchPoint);
// 1st 4 bytes hold the printf_id
// the following GEP is the buffer pointer
BufferIdx = GetElementPtrInst::Create(I8Ty, pcall,
ConstantInt::get(Ctx, APInt(32, 4)),
"PrintBuffGep", BrnchPoint);
Type *Int32Ty = Type::getInt32Ty(Ctx);
for (unsigned ArgCount = 1;
ArgCount < CI->arg_size() && ArgCount <= OpConvSpecifiers.size();
ArgCount++) {
Value *Arg = CI->getArgOperand(ArgCount);
Type *ArgType = Arg->getType();
SmallVector<Value *, 32> WhatToStore;
if (ArgType->isFPOrFPVectorTy() && !isa<VectorType>(ArgType)) {
if (OpConvSpecifiers[ArgCount - 1] == 'f') {
if (auto *FpCons = dyn_cast<ConstantFP>(Arg)) {
APFloat Val(FpCons->getValueAPF());
bool Lost = false;
Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
&Lost);
Arg = ConstantFP::get(Ctx, Val);
} else if (auto *FpExt = dyn_cast<FPExtInst>(Arg)) {
if (FpExt->getType()->isDoubleTy() &&
FpExt->getOperand(0)->getType()->isFloatTy()) {
Arg = FpExt->getOperand(0);
}
}
}
WhatToStore.push_back(Arg);
} else if (isa<PointerType>(ArgType)) {
if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
StringRef S = getAsConstantStr(Arg);
if (!S.empty()) {
const uint64_t ReadSize = 4;
DataExtractor Extractor(S, /*IsLittleEndian=*/true, 8);
DataExtractor::Cursor Offset(0);
while (Offset && Offset.tell() < S.size()) {
uint64_t ReadNow = std::min(ReadSize, S.size() - Offset.tell());
uint64_t ReadBytes = 0;
switch (ReadNow) {
default: llvm_unreachable("min(4, X) > 4?");
case 1:
ReadBytes = Extractor.getU8(Offset);
break;
case 2:
ReadBytes = Extractor.getU16(Offset);
break;
case 3:
ReadBytes = Extractor.getU24(Offset);
break;
case 4:
ReadBytes = Extractor.getU32(Offset);
break;
}
cantFail(Offset.takeError(),
"failed to read bytes from constant array");
APInt IntVal(8 * ReadSize, ReadBytes);
// TODO: Should not bothering aligning up.
if (ReadNow < ReadSize)
IntVal = IntVal.zext(8 * ReadSize);
Type *IntTy = Type::getIntNTy(Ctx, IntVal.getBitWidth());
WhatToStore.push_back(ConstantInt::get(IntTy, IntVal));
}
} else {
// Empty string, give a hint to RT it is no NULL
Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
WhatToStore.push_back(ANumV);
}
} else {
WhatToStore.push_back(Arg);
}
} else {
WhatToStore.push_back(Arg);
}
for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
Value *TheBtCast = WhatToStore[I];
unsigned ArgSize = TD->getTypeAllocSize(TheBtCast->getType());
StoreInst *StBuff = new StoreInst(TheBtCast, BufferIdx, BrnchPoint);
LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
<< *StBuff << '\n');
(void)StBuff;
if (I + 1 == E && ArgCount + 1 == CI->arg_size())
break;
BufferIdx = GetElementPtrInst::Create(
I8Ty, BufferIdx, {ConstantInt::get(I32Ty, ArgSize)},
"PrintBuffNextPtr", BrnchPoint);
LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
<< *BufferIdx << '\n');
}
}
}
// erase the printf calls
for (auto *CI : Printfs)
CI->eraseFromParent();
Printfs.clear();
return true;
}
bool AMDGPUPrintfRuntimeBindingImpl::run(Module &M) {
Triple TT(M.getTargetTriple());
if (TT.getArch() == Triple::r600)
return false;
auto *PrintfFunction = M.getFunction("printf");
if (!PrintfFunction || !PrintfFunction->isDeclaration() ||
M.getModuleFlag("openmp"))
return false;
for (auto &U : PrintfFunction->uses()) {
if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
if (CI->isCallee(&U) && !CI->isNoBuiltin())
Printfs.push_back(CI);
}
}
if (Printfs.empty())
return false;
TD = &M.getDataLayout();
return lowerPrintfForGpu(M);
}
bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
return AMDGPUPrintfRuntimeBindingImpl().run(M);
}
PreservedAnalyses
AMDGPUPrintfRuntimeBindingPass::run(Module &M, ModuleAnalysisManager &AM) {
bool Changed = AMDGPUPrintfRuntimeBindingImpl().run(M);
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
|