aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/AMDGPUPerfHintAnalysis.cpp
blob: 3a3751892c8b673b25c59d5db18130f1b4d64087 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
//===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Analyzes if a function potentially memory bound and if a kernel
/// kernel may benefit from limiting number of waves to reduce cache thrashing.
///
//===----------------------------------------------------------------------===//

#include "AMDGPUPerfHintAnalysis.h"
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"

using namespace llvm;

#define DEBUG_TYPE "amdgpu-perf-hint"

static cl::opt<unsigned>
    MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden,
                   cl::desc("Function mem bound threshold in %"));

static cl::opt<unsigned>
    LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden,
                    cl::desc("Kernel limit wave threshold in %"));

static cl::opt<unsigned>
    IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden,
             cl::desc("Indirect access memory instruction weight"));

static cl::opt<unsigned>
    LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden,
             cl::desc("Large stride memory access weight"));

static cl::opt<unsigned>
    LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden,
                      cl::desc("Large stride memory access threshold"));

STATISTIC(NumMemBound, "Number of functions marked as memory bound");
STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave");

namespace {

struct AMDGPUPerfHint {
  friend AMDGPUPerfHintAnalysis;

public:
  AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_,
                 const SITargetLowering *TLI_)
      : FIM(FIM_), TLI(TLI_) {}

  bool runOnFunction(Function &F);

private:
  struct MemAccessInfo {
    const Value *V = nullptr;
    const Value *Base = nullptr;
    int64_t Offset = 0;
    MemAccessInfo() = default;
    bool isLargeStride(MemAccessInfo &Reference) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    Printable print() const {
      return Printable([this](raw_ostream &OS) {
        OS << "Value: " << *V << '\n'
           << "Base: " << *Base << " Offset: " << Offset << '\n';
      });
    }
#endif
  };

  MemAccessInfo makeMemAccessInfo(Instruction *) const;

  MemAccessInfo LastAccess; // Last memory access info

  AMDGPUPerfHintAnalysis::FuncInfoMap &FIM;

  const DataLayout *DL = nullptr;

  const SITargetLowering *TLI;

  AMDGPUPerfHintAnalysis::FuncInfo *visit(const Function &F);
  static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F);
  static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F);

  bool isIndirectAccess(const Instruction *Inst) const;

  /// Check if the instruction is large stride.
  /// The purpose is to identify memory access pattern like:
  /// x = a[i];
  /// y = a[i+1000];
  /// z = a[i+2000];
  /// In the above example, the second and third memory access will be marked
  /// large stride memory access.
  bool isLargeStride(const Instruction *Inst);

  bool isGlobalAddr(const Value *V) const;
  bool isLocalAddr(const Value *V) const;
  bool isGlobalLoadUsedInBB(const Instruction &) const;
};

static std::pair<const Value *, const Type *> getMemoryInstrPtrAndType(
    const Instruction *Inst) {
  if (const auto *LI = dyn_cast<LoadInst>(Inst))
    return {LI->getPointerOperand(), LI->getType()};
  if (const auto *SI = dyn_cast<StoreInst>(Inst))
    return {SI->getPointerOperand(), SI->getValueOperand()->getType()};
  if (const auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
    return {AI->getPointerOperand(), AI->getCompareOperand()->getType()};
  if (const auto *AI = dyn_cast<AtomicRMWInst>(Inst))
    return {AI->getPointerOperand(), AI->getValOperand()->getType()};
  if (const auto *MI = dyn_cast<AnyMemIntrinsic>(Inst))
    return {MI->getRawDest(), Type::getInt8Ty(MI->getContext())};

  return {nullptr, nullptr};
}

bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const {
  LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n');
  SmallSet<const Value *, 32> WorkSet;
  SmallSet<const Value *, 32> Visited;
  if (const Value *MO = getMemoryInstrPtrAndType(Inst).first) {
    if (isGlobalAddr(MO))
      WorkSet.insert(MO);
  }

  while (!WorkSet.empty()) {
    const Value *V = *WorkSet.begin();
    WorkSet.erase(*WorkSet.begin());
    if (!Visited.insert(V).second)
      continue;
    LLVM_DEBUG(dbgs() << "  check: " << *V << '\n');

    if (const auto *LD = dyn_cast<LoadInst>(V)) {
      const auto *M = LD->getPointerOperand();
      if (isGlobalAddr(M)) {
        LLVM_DEBUG(dbgs() << "    is IA\n");
        return true;
      }
      continue;
    }

    if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
      const auto *P = GEP->getPointerOperand();
      WorkSet.insert(P);
      for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I)
        WorkSet.insert(GEP->getOperand(I));
      continue;
    }

    if (const auto *U = dyn_cast<UnaryInstruction>(V)) {
      WorkSet.insert(U->getOperand(0));
      continue;
    }

    if (const auto *BO = dyn_cast<BinaryOperator>(V)) {
      WorkSet.insert(BO->getOperand(0));
      WorkSet.insert(BO->getOperand(1));
      continue;
    }

    if (const auto *S = dyn_cast<SelectInst>(V)) {
      WorkSet.insert(S->getFalseValue());
      WorkSet.insert(S->getTrueValue());
      continue;
    }

    if (const auto *E = dyn_cast<ExtractElementInst>(V)) {
      WorkSet.insert(E->getVectorOperand());
      continue;
    }

    LLVM_DEBUG(dbgs() << "    dropped\n");
  }

  LLVM_DEBUG(dbgs() << "  is not IA\n");
  return false;
}

// Returns true if the global load `I` is used in its own basic block.
bool AMDGPUPerfHint::isGlobalLoadUsedInBB(const Instruction &I) const {
  const auto *Ld = dyn_cast<LoadInst>(&I);
  if (!Ld)
    return false;
  if (!isGlobalAddr(Ld->getPointerOperand()))
    return false;

  for (const User *Usr : Ld->users()) {
    if (const Instruction *UsrInst = dyn_cast<Instruction>(Usr)) {
      if (UsrInst->getParent() == I.getParent())
        return true;
    }
  }

  return false;
}

AMDGPUPerfHintAnalysis::FuncInfo *AMDGPUPerfHint::visit(const Function &F) {
  AMDGPUPerfHintAnalysis::FuncInfo &FI = FIM[&F];

  LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n');

  for (auto &B : F) {
    LastAccess = MemAccessInfo();
    unsigned UsedGlobalLoadsInBB = 0;
    for (auto &I : B) {
      if (const Type *Ty = getMemoryInstrPtrAndType(&I).second) {
        unsigned Size = divideCeil(Ty->getPrimitiveSizeInBits(), 32);
        // TODO: Check if the global load and its user are close to each other
        // instead (Or do this analysis in GCNSchedStrategy?).
        if (isGlobalLoadUsedInBB(I))
          UsedGlobalLoadsInBB += Size;
        if (isIndirectAccess(&I))
          FI.IAMInstCost += Size;
        if (isLargeStride(&I))
          FI.LSMInstCost += Size;
        FI.MemInstCost += Size;
        FI.InstCost += Size;
        continue;
      }
      if (auto *CB = dyn_cast<CallBase>(&I)) {
        Function *Callee = CB->getCalledFunction();
        if (!Callee || Callee->isDeclaration()) {
          ++FI.InstCost;
          continue;
        }
        if (&F == Callee) // Handle immediate recursion
          continue;

        auto Loc = FIM.find(Callee);
        if (Loc == FIM.end())
          continue;

        FI.MemInstCost += Loc->second.MemInstCost;
        FI.InstCost += Loc->second.InstCost;
        FI.IAMInstCost += Loc->second.IAMInstCost;
        FI.LSMInstCost += Loc->second.LSMInstCost;
      } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
        TargetLoweringBase::AddrMode AM;
        auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL);
        AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr));
        AM.HasBaseReg = !AM.BaseGV;
        if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(),
                                       GEP->getPointerAddressSpace()))
          // Offset will likely be folded into load or store
          continue;
        ++FI.InstCost;
      } else {
        ++FI.InstCost;
      }
    }

    if (!FI.HasDenseGlobalMemAcc) {
      unsigned GlobalMemAccPercentage = UsedGlobalLoadsInBB * 100 / B.size();
      if (GlobalMemAccPercentage > 50) {
        LLVM_DEBUG(dbgs() << "[HasDenseGlobalMemAcc] Set to true since "
                          << B.getName() << " has " << GlobalMemAccPercentage
                          << "% global memory access\n");
        FI.HasDenseGlobalMemAcc = true;
      }
    }
  }

  return &FI;
}

bool AMDGPUPerfHint::runOnFunction(Function &F) {
  const Module &M = *F.getParent();
  DL = &M.getDataLayout();

  if (F.hasFnAttribute("amdgpu-wave-limiter") &&
      F.hasFnAttribute("amdgpu-memory-bound"))
    return false;

  const AMDGPUPerfHintAnalysis::FuncInfo *Info = visit(F);

  LLVM_DEBUG(dbgs() << F.getName() << " MemInst cost: " << Info->MemInstCost
                    << '\n'
                    << " IAMInst cost: " << Info->IAMInstCost << '\n'
                    << " LSMInst cost: " << Info->LSMInstCost << '\n'
                    << " TotalInst cost: " << Info->InstCost << '\n');

  bool Changed = false;

  if (isMemBound(*Info)) {
    LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n");
    NumMemBound++;
    F.addFnAttr("amdgpu-memory-bound", "true");
    Changed = true;
  }

  if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(*Info)) {
    LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n");
    NumLimitWave++;
    F.addFnAttr("amdgpu-wave-limiter", "true");
    Changed = true;
  }

  return Changed;
}

bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
  // Reverting optimal scheduling in favour of occupancy with basic block(s)
  // having dense global memory access can potentially hurt performance.
  if (FI.HasDenseGlobalMemAcc)
    return true;

  return FI.MemInstCost * 100 / FI.InstCost > MemBoundThresh;
}

bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
  return ((FI.MemInstCost + FI.IAMInstCost * IAWeight +
           FI.LSMInstCost * LSWeight) * 100 / FI.InstCost) > LimitWaveThresh;
}

bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const {
  if (auto *PT = dyn_cast<PointerType>(V->getType())) {
    unsigned As = PT->getAddressSpace();
    // Flat likely points to global too.
    return As == AMDGPUAS::GLOBAL_ADDRESS || As == AMDGPUAS::FLAT_ADDRESS;
  }
  return false;
}

bool AMDGPUPerfHint::isLocalAddr(const Value *V) const {
  if (auto *PT = dyn_cast<PointerType>(V->getType()))
    return PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
  return false;
}

bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) {
  LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n');

  MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst));
  bool IsLargeStride = MAI.isLargeStride(LastAccess);
  if (MAI.Base)
    LastAccess = std::move(MAI);

  return IsLargeStride;
}

AMDGPUPerfHint::MemAccessInfo
AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const {
  MemAccessInfo MAI;
  const Value *MO = getMemoryInstrPtrAndType(Inst).first;

  LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n');
  // Do not treat local-addr memory access as large stride.
  if (isLocalAddr(MO))
    return MAI;

  MAI.V = MO;
  MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL);
  return MAI;
}

bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
    MemAccessInfo &Reference) const {

  if (!Base || !Reference.Base || Base != Reference.Base)
    return false;

  uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset
                                            : Reference.Offset - Offset;
  bool Result = Diff > LargeStrideThresh;
  LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
               << print() << "<=>\n"
               << Reference.print() << "Result:" << Result << '\n');
  return Result;
}

class AMDGPUPerfHintAnalysisLegacy : public CallGraphSCCPass {
private:
  // FIXME: This is relying on maintaining state between different SCCs.
  AMDGPUPerfHintAnalysis Impl;

public:
  static char ID;

  AMDGPUPerfHintAnalysisLegacy() : CallGraphSCCPass(ID) {}

  bool runOnSCC(CallGraphSCC &SCC) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }
};

} // namespace

bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const {
  auto FI = FIM.find(F);
  if (FI == FIM.end())
    return false;

  return AMDGPUPerfHint::isMemBound(FI->second);
}

bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const {
  auto FI = FIM.find(F);
  if (FI == FIM.end())
    return false;

  return AMDGPUPerfHint::needLimitWave(FI->second);
}

bool AMDGPUPerfHintAnalysis::runOnSCC(const GCNTargetMachine &TM,
                                      CallGraphSCC &SCC) {
  bool Changed = false;
  for (CallGraphNode *I : SCC) {
    Function *F = I->getFunction();
    if (!F || F->isDeclaration())
      continue;

    const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(*F);
    AMDGPUPerfHint Analyzer(FIM, ST.getTargetLowering());

    if (Analyzer.runOnFunction(*F))
      Changed = true;
  }

  return Changed;
}

bool AMDGPUPerfHintAnalysis::run(const GCNTargetMachine &TM,
                                 LazyCallGraph &CG) {
  bool Changed = false;

  CG.buildRefSCCs();

  for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) {
    for (LazyCallGraph::SCC &SCC : RC) {
      if (SCC.size() != 1)
        continue;
      Function &F = SCC.begin()->getFunction();
      // TODO: Skip without norecurse, or interposable?
      if (F.isDeclaration())
        continue;

      const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
      AMDGPUPerfHint Analyzer(FIM, ST.getTargetLowering());
      if (Analyzer.runOnFunction(F))
        Changed = true;
    }
  }

  return Changed;
}

char AMDGPUPerfHintAnalysisLegacy::ID = 0;
char &llvm::AMDGPUPerfHintAnalysisLegacyID = AMDGPUPerfHintAnalysisLegacy::ID;

INITIALIZE_PASS(AMDGPUPerfHintAnalysisLegacy, DEBUG_TYPE,
                "Analysis if a function is memory bound", true, true)

bool AMDGPUPerfHintAnalysisLegacy::runOnSCC(CallGraphSCC &SCC) {
  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
  if (!TPC)
    return false;

  const GCNTargetMachine &TM = TPC->getTM<GCNTargetMachine>();
  return Impl.runOnSCC(TM, SCC);
}

PreservedAnalyses AMDGPUPerfHintAnalysisPass::run(Module &M,
                                                  ModuleAnalysisManager &AM) {
  auto &CG = AM.getResult<LazyCallGraphAnalysis>(M);

  bool Changed = Impl->run(TM, CG);
  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<LazyCallGraphAnalysis>();
  return PA;
}