aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/AMDGPULowerBufferFatPointers.cpp
blob: fa8af68817dfc8da6f2978d121587feeaff7604c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
//===-- AMDGPULowerBufferFatPointers.cpp ---------------------------=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers operations on buffer fat pointers (addrspace 7) to
// operations on buffer resources (addrspace 8) and is needed for correct
// codegen.
//
// # Background
//
// Address space 7 (the buffer fat pointer) is a 160-bit pointer that consists
// of a 128-bit buffer descriptor and a 32-bit offset into that descriptor.
// The buffer resource part needs to be it needs to be a "raw" buffer resource
// (it must have a stride of 0 and bounds checks must be in raw buffer mode
// or disabled).
//
// When these requirements are met, a buffer resource can be treated as a
// typical (though quite wide) pointer that follows typical LLVM pointer
// semantics. This allows the frontend to reason about such buffers (which are
// often encountered in the context of SPIR-V kernels).
//
// However, because of their non-power-of-2 size, these fat pointers cannot be
// present during translation to MIR (though this restriction may be lifted
// during the transition to GlobalISel). Therefore, this pass is needed in order
// to correctly implement these fat pointers.
//
// The resource intrinsics take the resource part (the address space 8 pointer)
// and the offset part (the 32-bit integer) as separate arguments. In addition,
// many users of these buffers manipulate the offset while leaving the resource
// part alone. For these reasons, we want to typically separate the resource
// and offset parts into separate variables, but combine them together when
// encountering cases where this is required, such as by inserting these values
// into aggretates or moving them to memory.
//
// Therefore, at a high level, `ptr addrspace(7) %x` becomes `ptr addrspace(8)
// %x.rsrc` and `i32 %x.off`, which will be combined into `{ptr addrspace(8),
// i32} %x = {%x.rsrc, %x.off}` if needed. Similarly, `vector<Nxp7>` becomes
// `{vector<Nxp8>, vector<Nxi32 >}` and its component parts.
//
// # Implementation
//
// This pass proceeds in three main phases:
//
// ## Rewriting loads and stores of p7 and memcpy()-like handling
//
// The first phase is to rewrite away all loads and stors of `ptr addrspace(7)`,
// including aggregates containing such pointers, to ones that use `i160`. This
// is handled by `StoreFatPtrsAsIntsAndExpandMemcpyVisitor` , which visits
// loads, stores, and allocas and, if the loaded or stored type contains `ptr
// addrspace(7)`, rewrites that type to one where the p7s are replaced by i160s,
// copying other parts of aggregates as needed. In the case of a store, each
// pointer is `ptrtoint`d to i160 before storing, and load integers are
// `inttoptr`d back. This same transformation is applied to vectors of pointers.
//
// Such a transformation allows the later phases of the pass to not need
// to handle buffer fat pointers moving to and from memory, where we load
// have to handle the incompatibility between a `{Nxp8, Nxi32}` representation
// and `Nxi60` directly. Instead, that transposing action (where the vectors
// of resources and vectors of offsets are concatentated before being stored to
// memory) are handled through implementing `inttoptr` and `ptrtoint` only.
//
// Atomics operations on `ptr addrspace(7)` values are not suppported, as the
// hardware does not include a 160-bit atomic.
//
// In order to save on O(N) work and to ensure that the contents type
// legalizer correctly splits up wide loads, also unconditionally lower
// memcpy-like intrinsics into loops here.
//
// ## Buffer contents type legalization
//
// The underlying buffer intrinsics only support types up to 128 bits long,
// and don't support complex types. If buffer operations were
// standard pointer operations that could be represented as MIR-level loads,
// this would be handled by the various legalization schemes in instruction
// selection. However, because we have to do the conversion from `load` and
// `store` to intrinsics at LLVM IR level, we must perform that legalization
// ourselves.
//
// This involves a combination of
// - Converting arrays to vectors where possible
// - Otherwise, splitting loads and stores of aggregates into loads/stores of
//   each component.
// - Zero-extending things to fill a whole number of bytes
// - Casting values of types that don't neatly correspond to supported machine
// value
//   (for example, an i96 or i256) into ones that would work (
//    like <3 x i32> and <8 x i32>, respectively)
// - Splitting values that are too long (such as aforementioned <8 x i32>) into
//   multiple operations.
//
// ## Type remapping
//
// We use a `ValueMapper` to mangle uses of [vectors of] buffer fat pointers
// to the corresponding struct type, which has a resource part and an offset
// part.
//
// This uses a `BufferFatPtrToStructTypeMap` and a `FatPtrConstMaterializer`
// to, usually by way of `setType`ing values. Constants are handled here
// because there isn't a good way to fix them up later.
//
// This has the downside of leaving the IR in an invalid state (for example,
// the instruction `getelementptr {ptr addrspace(8), i32} %p, ...` will exist),
// but all such invalid states will be resolved by the third phase.
//
// Functions that don't take buffer fat pointers are modified in place. Those
// that do take such pointers have their basic blocks moved to a new function
// with arguments that are {ptr addrspace(8), i32} arguments and return values.
// This phase also records intrinsics so that they can be remangled or deleted
// later.
//
// ## Splitting pointer structs
//
// The meat of this pass consists of defining semantics for operations that
// produce or consume [vectors of] buffer fat pointers in terms of their
// resource and offset parts. This is accomplished throgh the `SplitPtrStructs`
// visitor.
//
// In the first pass through each function that is being lowered, the splitter
// inserts new instructions to implement the split-structures behavior, which is
// needed for correctness and performance. It records a list of "split users",
// instructions that are being replaced by operations on the resource and offset
// parts.
//
// Split users do not necessarily need to produce parts themselves (
// a `load float, ptr addrspace(7)` does not, for example), but, if they do not
// generate fat buffer pointers, they must RAUW in their replacement
// instructions during the initial visit.
//
// When these new instructions are created, they use the split parts recorded
// for their initial arguments in order to generate their replacements, creating
// a parallel set of instructions that does not refer to the original fat
// pointer values but instead to their resource and offset components.
//
// Instructions, such as `extractvalue`, that produce buffer fat pointers from
// sources that do not have split parts, have such parts generated using
// `extractvalue`. This is also the initial handling of PHI nodes, which
// are then cleaned up.
//
// ### Conditionals
//
// PHI nodes are initially given resource parts via `extractvalue`. However,
// this is not an efficient rewrite of such nodes, as, in most cases, the
// resource part in a conditional or loop remains constant throughout the loop
// and only the offset varies. Failing to optimize away these constant resources
// would cause additional registers to be sent around loops and might lead to
// waterfall loops being generated for buffer operations due to the
// "non-uniform" resource argument.
//
// Therefore, after all instructions have been visited, the pointer splitter
// post-processes all encountered conditionals. Given a PHI node or select,
// getPossibleRsrcRoots() collects all values that the resource parts of that
// conditional's input could come from as well as collecting all conditional
// instructions encountered during the search. If, after filtering out the
// initial node itself, the set of encountered conditionals is a subset of the
// potential roots and there is a single potential resource that isn't in the
// conditional set, that value is the only possible value the resource argument
// could have throughout the control flow.
//
// If that condition is met, then a PHI node can have its resource part changed
// to the singleton value and then be replaced by a PHI on the offsets.
// Otherwise, each PHI node is split into two, one for the resource part and one
// for the offset part, which replace the temporary `extractvalue` instructions
// that were added during the first pass.
//
// Similar logic applies to `select`, where
// `%z = select i1 %cond, %cond, ptr addrspace(7) %x, ptr addrspace(7) %y`
// can be split into `%z.rsrc = %x.rsrc` and
// `%z.off = select i1 %cond, ptr i32 %x.off, i32 %y.off`
// if both `%x` and `%y` have the same resource part, but two `select`
// operations will be needed if they do not.
//
// ### Final processing
//
// After conditionals have been cleaned up, the IR for each function is
// rewritten to remove all the old instructions that have been split up.
//
// Any instruction that used to produce a buffer fat pointer (and therefore now
// produces a resource-and-offset struct after type remapping) is
// replaced as follows:
// 1. All debug value annotations are cloned to reflect that the resource part
//    and offset parts are computed separately and constitute different
//    fragments of the underlying source language variable.
// 2. All uses that were themselves split are replaced by a `poison` of the
//    struct type, as they will themselves be erased soon. This rule, combined
//    with debug handling, should leave the use lists of split instructions
//    empty in almost all cases.
// 3. If a user of the original struct-valued result remains, the structure
//    needed for the new types to work is constructed out of the newly-defined
//    parts, and the original instruction is replaced by this structure
//    before being erased. Instructions requiring this construction include
//    `ret` and `insertvalue`.
//
// # Consequences
//
// This pass does not alter the CFG.
//
// Alias analysis information will become coarser, as the LLVM alias analyzer
// cannot handle the buffer intrinsics. Specifically, while we can determine
// that the following two loads do not alias:
// ```
//   %y = getelementptr i32, ptr addrspace(7) %x, i32 1
//   %a = load i32, ptr addrspace(7) %x
//   %b = load i32, ptr addrspace(7) %y
// ```
// we cannot (except through some code that runs during scheduling) determine
// that the rewritten loads below do not alias.
// ```
//   %y.off = add i32 %x.off, 1
//   %a = call @llvm.amdgcn.raw.ptr.buffer.load(ptr addrspace(8) %x.rsrc, i32
//     %x.off, ...)
//   %b = call @llvm.amdgcn.raw.ptr.buffer.load(ptr addrspace(8)
//     %x.rsrc, i32 %y.off, ...)
// ```
// However, existing alias information is preserved.
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "GCNSubtarget.h"
#include "SIDefines.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstSimplifyFolder.h"
#include "llvm/Analysis/Utils/Local.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/AMDGPUAddrSpace.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
#include "llvm/Transforms/Utils/ValueMapper.h"

#define DEBUG_TYPE "amdgpu-lower-buffer-fat-pointers"

using namespace llvm;

static constexpr unsigned BufferOffsetWidth = 32;

namespace {
/// Recursively replace instances of ptr addrspace(7) and vector<Nxptr
/// addrspace(7)> with some other type as defined by the relevant subclass.
class BufferFatPtrTypeLoweringBase : public ValueMapTypeRemapper {
  DenseMap<Type *, Type *> Map;

  Type *remapTypeImpl(Type *Ty);

protected:
  virtual Type *remapScalar(PointerType *PT) = 0;
  virtual Type *remapVector(VectorType *VT) = 0;

  const DataLayout &DL;

public:
  BufferFatPtrTypeLoweringBase(const DataLayout &DL) : DL(DL) {}
  Type *remapType(Type *SrcTy) override;
  void clear() { Map.clear(); }
};

/// Remap ptr addrspace(7) to i160 and vector<Nxptr addrspace(7)> to
/// vector<Nxi60> in order to correctly handling loading/storing these values
/// from memory.
class BufferFatPtrToIntTypeMap : public BufferFatPtrTypeLoweringBase {
  using BufferFatPtrTypeLoweringBase::BufferFatPtrTypeLoweringBase;

protected:
  Type *remapScalar(PointerType *PT) override { return DL.getIntPtrType(PT); }
  Type *remapVector(VectorType *VT) override { return DL.getIntPtrType(VT); }
};

/// Remap ptr addrspace(7) to {ptr addrspace(8), i32} (the resource and offset
/// parts of the pointer) so that we can easily rewrite operations on these
/// values that aren't loading them from or storing them to memory.
class BufferFatPtrToStructTypeMap : public BufferFatPtrTypeLoweringBase {
  using BufferFatPtrTypeLoweringBase::BufferFatPtrTypeLoweringBase;

protected:
  Type *remapScalar(PointerType *PT) override;
  Type *remapVector(VectorType *VT) override;
};
} // namespace

// This code is adapted from the type remapper in lib/Linker/IRMover.cpp
Type *BufferFatPtrTypeLoweringBase::remapTypeImpl(Type *Ty) {
  Type **Entry = &Map[Ty];
  if (*Entry)
    return *Entry;
  if (auto *PT = dyn_cast<PointerType>(Ty)) {
    if (PT->getAddressSpace() == AMDGPUAS::BUFFER_FAT_POINTER) {
      return *Entry = remapScalar(PT);
    }
  }
  if (auto *VT = dyn_cast<VectorType>(Ty)) {
    auto *PT = dyn_cast<PointerType>(VT->getElementType());
    if (PT && PT->getAddressSpace() == AMDGPUAS::BUFFER_FAT_POINTER) {
      return *Entry = remapVector(VT);
    }
    return *Entry = Ty;
  }
  // Whether the type is one that is structurally uniqued - that is, if it is
  // not a named struct (the only kind of type where multiple structurally
  // identical types that have a distinct `Type*`)
  StructType *TyAsStruct = dyn_cast<StructType>(Ty);
  bool IsUniqued = !TyAsStruct || TyAsStruct->isLiteral();
  // Base case for ints, floats, opaque pointers, and so on, which don't
  // require recursion.
  if (Ty->getNumContainedTypes() == 0 && IsUniqued)
    return *Entry = Ty;
  bool Changed = false;
  SmallVector<Type *> ElementTypes(Ty->getNumContainedTypes(), nullptr);
  for (unsigned int I = 0, E = Ty->getNumContainedTypes(); I < E; ++I) {
    Type *OldElem = Ty->getContainedType(I);
    Type *NewElem = remapTypeImpl(OldElem);
    ElementTypes[I] = NewElem;
    Changed |= (OldElem != NewElem);
  }
  // Recursive calls to remapTypeImpl() may have invalidated pointer.
  Entry = &Map[Ty];
  if (!Changed) {
    return *Entry = Ty;
  }
  if (auto *ArrTy = dyn_cast<ArrayType>(Ty))
    return *Entry = ArrayType::get(ElementTypes[0], ArrTy->getNumElements());
  if (auto *FnTy = dyn_cast<FunctionType>(Ty))
    return *Entry = FunctionType::get(ElementTypes[0],
                                      ArrayRef(ElementTypes).slice(1),
                                      FnTy->isVarArg());
  if (auto *STy = dyn_cast<StructType>(Ty)) {
    // Genuine opaque types don't have a remapping.
    if (STy->isOpaque())
      return *Entry = Ty;
    bool IsPacked = STy->isPacked();
    if (IsUniqued)
      return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
    SmallString<16> Name(STy->getName());
    STy->setName("");
    return *Entry = StructType::create(Ty->getContext(), ElementTypes, Name,
                                       IsPacked);
  }
  llvm_unreachable("Unknown type of type that contains elements");
}

Type *BufferFatPtrTypeLoweringBase::remapType(Type *SrcTy) {
  return remapTypeImpl(SrcTy);
}

Type *BufferFatPtrToStructTypeMap::remapScalar(PointerType *PT) {
  LLVMContext &Ctx = PT->getContext();
  return StructType::get(PointerType::get(Ctx, AMDGPUAS::BUFFER_RESOURCE),
                         IntegerType::get(Ctx, BufferOffsetWidth));
}

Type *BufferFatPtrToStructTypeMap::remapVector(VectorType *VT) {
  ElementCount EC = VT->getElementCount();
  LLVMContext &Ctx = VT->getContext();
  Type *RsrcVec =
      VectorType::get(PointerType::get(Ctx, AMDGPUAS::BUFFER_RESOURCE), EC);
  Type *OffVec = VectorType::get(IntegerType::get(Ctx, BufferOffsetWidth), EC);
  return StructType::get(RsrcVec, OffVec);
}

static bool isBufferFatPtrOrVector(Type *Ty) {
  if (auto *PT = dyn_cast<PointerType>(Ty->getScalarType()))
    return PT->getAddressSpace() == AMDGPUAS::BUFFER_FAT_POINTER;
  return false;
}

// True if the type is {ptr addrspace(8), i32} or a struct containing vectors of
// those types. Used to quickly skip instructions we don't need to process.
static bool isSplitFatPtr(Type *Ty) {
  auto *ST = dyn_cast<StructType>(Ty);
  if (!ST)
    return false;
  if (!ST->isLiteral() || ST->getNumElements() != 2)
    return false;
  auto *MaybeRsrc =
      dyn_cast<PointerType>(ST->getElementType(0)->getScalarType());
  auto *MaybeOff =
      dyn_cast<IntegerType>(ST->getElementType(1)->getScalarType());
  return MaybeRsrc && MaybeOff &&
         MaybeRsrc->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE &&
         MaybeOff->getBitWidth() == BufferOffsetWidth;
}

// True if the result type or any argument types are buffer fat pointers.
static bool isBufferFatPtrConst(Constant *C) {
  Type *T = C->getType();
  return isBufferFatPtrOrVector(T) || any_of(C->operands(), [](const Use &U) {
           return isBufferFatPtrOrVector(U.get()->getType());
         });
}

namespace {
/// Convert [vectors of] buffer fat pointers to integers when they are read from
/// or stored to memory. This ensures that these pointers will have the same
/// memory layout as before they are lowered, even though they will no longer
/// have their previous layout in registers/in the program (they'll be broken
/// down into resource and offset parts). This has the downside of imposing
/// marshalling costs when reading or storing these values, but since placing
/// such pointers into memory is an uncommon operation at best, we feel that
/// this cost is acceptable for better performance in the common case.
class StoreFatPtrsAsIntsAndExpandMemcpyVisitor
    : public InstVisitor<StoreFatPtrsAsIntsAndExpandMemcpyVisitor, bool> {
  BufferFatPtrToIntTypeMap *TypeMap;

  ValueToValueMapTy ConvertedForStore;

  IRBuilder<InstSimplifyFolder> IRB;

  const TargetMachine *TM;

  // Convert all the buffer fat pointers within the input value to inttegers
  // so that it can be stored in memory.
  Value *fatPtrsToInts(Value *V, Type *From, Type *To, const Twine &Name);
  // Convert all the i160s that need to be buffer fat pointers (as specified)
  // by the To type) into those pointers to preserve the semantics of the rest
  // of the program.
  Value *intsToFatPtrs(Value *V, Type *From, Type *To, const Twine &Name);

public:
  StoreFatPtrsAsIntsAndExpandMemcpyVisitor(BufferFatPtrToIntTypeMap *TypeMap,
                                           const DataLayout &DL,
                                           LLVMContext &Ctx,
                                           const TargetMachine *TM)
      : TypeMap(TypeMap), IRB(Ctx, InstSimplifyFolder(DL)), TM(TM) {}
  bool processFunction(Function &F);

  bool visitInstruction(Instruction &I) { return false; }
  bool visitAllocaInst(AllocaInst &I);
  bool visitLoadInst(LoadInst &LI);
  bool visitStoreInst(StoreInst &SI);
  bool visitGetElementPtrInst(GetElementPtrInst &I);

  bool visitMemCpyInst(MemCpyInst &MCI);
  bool visitMemMoveInst(MemMoveInst &MMI);
  bool visitMemSetInst(MemSetInst &MSI);
  bool visitMemSetPatternInst(MemSetPatternInst &MSPI);
};
} // namespace

Value *StoreFatPtrsAsIntsAndExpandMemcpyVisitor::fatPtrsToInts(
    Value *V, Type *From, Type *To, const Twine &Name) {
  if (From == To)
    return V;
  ValueToValueMapTy::iterator Find = ConvertedForStore.find(V);
  if (Find != ConvertedForStore.end())
    return Find->second;
  if (isBufferFatPtrOrVector(From)) {
    Value *Cast = IRB.CreatePtrToInt(V, To, Name + ".int");
    ConvertedForStore[V] = Cast;
    return Cast;
  }
  if (From->getNumContainedTypes() == 0)
    return V;
  // Structs, arrays, and other compound types.
  Value *Ret = PoisonValue::get(To);
  if (auto *AT = dyn_cast<ArrayType>(From)) {
    Type *FromPart = AT->getArrayElementType();
    Type *ToPart = cast<ArrayType>(To)->getElementType();
    for (uint64_t I = 0, E = AT->getArrayNumElements(); I < E; ++I) {
      Value *Field = IRB.CreateExtractValue(V, I);
      Value *NewField =
          fatPtrsToInts(Field, FromPart, ToPart, Name + "." + Twine(I));
      Ret = IRB.CreateInsertValue(Ret, NewField, I);
    }
  } else {
    for (auto [Idx, FromPart, ToPart] :
         enumerate(From->subtypes(), To->subtypes())) {
      Value *Field = IRB.CreateExtractValue(V, Idx);
      Value *NewField =
          fatPtrsToInts(Field, FromPart, ToPart, Name + "." + Twine(Idx));
      Ret = IRB.CreateInsertValue(Ret, NewField, Idx);
    }
  }
  ConvertedForStore[V] = Ret;
  return Ret;
}

Value *StoreFatPtrsAsIntsAndExpandMemcpyVisitor::intsToFatPtrs(
    Value *V, Type *From, Type *To, const Twine &Name) {
  if (From == To)
    return V;
  if (isBufferFatPtrOrVector(To)) {
    Value *Cast = IRB.CreateIntToPtr(V, To, Name + ".ptr");
    return Cast;
  }
  if (From->getNumContainedTypes() == 0)
    return V;
  // Structs, arrays, and other compound types.
  Value *Ret = PoisonValue::get(To);
  if (auto *AT = dyn_cast<ArrayType>(From)) {
    Type *FromPart = AT->getArrayElementType();
    Type *ToPart = cast<ArrayType>(To)->getElementType();
    for (uint64_t I = 0, E = AT->getArrayNumElements(); I < E; ++I) {
      Value *Field = IRB.CreateExtractValue(V, I);
      Value *NewField =
          intsToFatPtrs(Field, FromPart, ToPart, Name + "." + Twine(I));
      Ret = IRB.CreateInsertValue(Ret, NewField, I);
    }
  } else {
    for (auto [Idx, FromPart, ToPart] :
         enumerate(From->subtypes(), To->subtypes())) {
      Value *Field = IRB.CreateExtractValue(V, Idx);
      Value *NewField =
          intsToFatPtrs(Field, FromPart, ToPart, Name + "." + Twine(Idx));
      Ret = IRB.CreateInsertValue(Ret, NewField, Idx);
    }
  }
  return Ret;
}

bool StoreFatPtrsAsIntsAndExpandMemcpyVisitor::processFunction(Function &F) {
  bool Changed = false;
  // Process memcpy-like instructions after the main iteration because they can
  // invalidate iterators.
  SmallVector<WeakTrackingVH> CanBecomeLoops;
  for (Instruction &I : make_early_inc_range(instructions(F))) {
    if (isa<MemTransferInst, MemSetInst, MemSetPatternInst>(I))
      CanBecomeLoops.push_back(&I);
    else
      Changed |= visit(I);
  }
  for (WeakTrackingVH VH : make_early_inc_range(CanBecomeLoops)) {
    Changed |= visit(cast<Instruction>(VH));
  }
  ConvertedForStore.clear();
  return Changed;
}

bool StoreFatPtrsAsIntsAndExpandMemcpyVisitor::visitAllocaInst(AllocaInst &I) {
  Type *Ty = I.getAllocatedType();
  Type *NewTy = TypeMap->remapType(Ty);
  if (Ty == NewTy)
    return false;
  I.setAllocatedType(NewTy);
  return true;
}

bool StoreFatPtrsAsIntsAndExpandMemcpyVisitor::visitGetElementPtrInst(
    GetElementPtrInst &I) {
  Type *Ty = I.getSourceElementType();
  Type *NewTy = TypeMap->remapType(Ty);
  if (Ty == NewTy)
    return false;
  // We'll be rewriting the type `ptr addrspace(7)` out of existence soon, so
  // make sure GEPs don't have different semantics with the new type.
  I.setSourceElementType(NewTy);
  I.setResultElementType(TypeMap->remapType(I.getResultElementType()));
  return true;
}

bool StoreFatPtrsAsIntsAndExpandMemcpyVisitor::visitLoadInst(LoadInst &LI) {
  Type *Ty = LI.getType();
  Type *IntTy = TypeMap->remapType(Ty);
  if (Ty == IntTy)
    return false;

  IRB.SetInsertPoint(&LI);
  auto *NLI = cast<LoadInst>(LI.clone());
  NLI->mutateType(IntTy);
  NLI = IRB.Insert(NLI);
  NLI->takeName(&LI);

  Value *CastBack = intsToFatPtrs(NLI, IntTy, Ty, NLI->getName());
  LI.replaceAllUsesWith(CastBack);
  LI.eraseFromParent();
  return true;
}

bool StoreFatPtrsAsIntsAndExpandMemcpyVisitor::visitStoreInst(StoreInst &SI) {
  Value *V = SI.getValueOperand();
  Type *Ty = V->getType();
  Type *IntTy = TypeMap->remapType(Ty);
  if (Ty == IntTy)
    return false;

  IRB.SetInsertPoint(&SI);
  Value *IntV = fatPtrsToInts(V, Ty, IntTy, V->getName());
  for (auto *Dbg : at::getAssignmentMarkers(&SI))
    Dbg->setValue(IntV);

  SI.setOperand(0, IntV);
  return true;
}

bool StoreFatPtrsAsIntsAndExpandMemcpyVisitor::visitMemCpyInst(
    MemCpyInst &MCI) {
  // TODO: Allow memcpy.p7.p3 as a synonym for the direct-to-LDS copy, which'll
  // need loop expansion here.
  if (MCI.getSourceAddressSpace() != AMDGPUAS::BUFFER_FAT_POINTER &&
      MCI.getDestAddressSpace() != AMDGPUAS::BUFFER_FAT_POINTER)
    return false;
  llvm::expandMemCpyAsLoop(&MCI,
                           TM->getTargetTransformInfo(*MCI.getFunction()));
  MCI.eraseFromParent();
  return true;
}

bool StoreFatPtrsAsIntsAndExpandMemcpyVisitor::visitMemMoveInst(
    MemMoveInst &MMI) {
  if (MMI.getSourceAddressSpace() != AMDGPUAS::BUFFER_FAT_POINTER &&
      MMI.getDestAddressSpace() != AMDGPUAS::BUFFER_FAT_POINTER)
    return false;
  reportFatalUsageError(
      "memmove() on buffer descriptors is not implemented because pointer "
      "comparison on buffer descriptors isn't implemented\n");
}

bool StoreFatPtrsAsIntsAndExpandMemcpyVisitor::visitMemSetInst(
    MemSetInst &MSI) {
  if (MSI.getDestAddressSpace() != AMDGPUAS::BUFFER_FAT_POINTER)
    return false;
  llvm::expandMemSetAsLoop(&MSI);
  MSI.eraseFromParent();
  return true;
}

bool StoreFatPtrsAsIntsAndExpandMemcpyVisitor::visitMemSetPatternInst(
    MemSetPatternInst &MSPI) {
  if (MSPI.getDestAddressSpace() != AMDGPUAS::BUFFER_FAT_POINTER)
    return false;
  llvm::expandMemSetPatternAsLoop(&MSPI);
  MSPI.eraseFromParent();
  return true;
}

namespace {
/// Convert loads/stores of types that the buffer intrinsics can't handle into
/// one ore more such loads/stores that consist of legal types.
///
/// Do this by
/// 1. Recursing into structs (and arrays that don't share a memory layout with
/// vectors) since the intrinsics can't handle complex types.
/// 2. Converting arrays of non-aggregate, byte-sized types into their
/// corresponding vectors
/// 3. Bitcasting unsupported types, namely overly-long scalars and byte
/// vectors, into vectors of supported types.
/// 4. Splitting up excessively long reads/writes into multiple operations.
///
/// Note that this doesn't handle complex data strucures, but, in the future,
/// the aggregate load splitter from SROA could be refactored to allow for that
/// case.
class LegalizeBufferContentTypesVisitor
    : public InstVisitor<LegalizeBufferContentTypesVisitor, bool> {
  friend class InstVisitor<LegalizeBufferContentTypesVisitor, bool>;

  IRBuilder<InstSimplifyFolder> IRB;

  const DataLayout &DL;

  /// If T is [N x U], where U is a scalar type, return the vector type
  /// <N x U>, otherwise, return T.
  Type *scalarArrayTypeAsVector(Type *MaybeArrayType);
  Value *arrayToVector(Value *V, Type *TargetType, const Twine &Name);
  Value *vectorToArray(Value *V, Type *OrigType, const Twine &Name);

  /// Break up the loads of a struct into the loads of its components

  /// Convert a vector or scalar type that can't be operated on by buffer
  /// intrinsics to one that would be legal through bitcasts and/or truncation.
  /// Uses the wider of i32, i16, or i8 where possible.
  Type *legalNonAggregateFor(Type *T);
  Value *makeLegalNonAggregate(Value *V, Type *TargetType, const Twine &Name);
  Value *makeIllegalNonAggregate(Value *V, Type *OrigType, const Twine &Name);

  struct VecSlice {
    uint64_t Index = 0;
    uint64_t Length = 0;
    VecSlice() = delete;
    // Needed for some Clangs
    VecSlice(uint64_t Index, uint64_t Length) : Index(Index), Length(Length) {}
  };
  /// Return the [index, length] pairs into which `T` needs to be cut to form
  /// legal buffer load or store operations. Clears `Slices`. Creates an empty
  /// `Slices` for non-vector inputs and creates one slice if no slicing will be
  /// needed.
  void getVecSlices(Type *T, SmallVectorImpl<VecSlice> &Slices);

  Value *extractSlice(Value *Vec, VecSlice S, const Twine &Name);
  Value *insertSlice(Value *Whole, Value *Part, VecSlice S, const Twine &Name);

  /// In most cases, return `LegalType`. However, when given an input that would
  /// normally be a legal type for the buffer intrinsics to return but that
  /// isn't hooked up through SelectionDAG, return a type of the same width that
  /// can be used with the relevant intrinsics. Specifically, handle the cases:
  /// - <1 x T> => T for all T
  /// - <N x i8> <=> i16, i32, 2xi32, 4xi32 (as needed)
  /// - <N x T> where T is under 32 bits and the total size is 96 bits <=> <3 x
  /// i32>
  Type *intrinsicTypeFor(Type *LegalType);

  bool visitLoadImpl(LoadInst &OrigLI, Type *PartType,
                     SmallVectorImpl<uint32_t> &AggIdxs, uint64_t AggByteOffset,
                     Value *&Result, const Twine &Name);
  /// Return value is (Changed, ModifiedInPlace)
  std::pair<bool, bool> visitStoreImpl(StoreInst &OrigSI, Type *PartType,
                                       SmallVectorImpl<uint32_t> &AggIdxs,
                                       uint64_t AggByteOffset,
                                       const Twine &Name);

  bool visitInstruction(Instruction &I) { return false; }
  bool visitLoadInst(LoadInst &LI);
  bool visitStoreInst(StoreInst &SI);

public:
  LegalizeBufferContentTypesVisitor(const DataLayout &DL, LLVMContext &Ctx)
      : IRB(Ctx, InstSimplifyFolder(DL)), DL(DL) {}
  bool processFunction(Function &F);
};
} // namespace

Type *LegalizeBufferContentTypesVisitor::scalarArrayTypeAsVector(Type *T) {
  ArrayType *AT = dyn_cast<ArrayType>(T);
  if (!AT)
    return T;
  Type *ET = AT->getElementType();
  if (!ET->isSingleValueType() || isa<VectorType>(ET))
    reportFatalUsageError("loading non-scalar arrays from buffer fat pointers "
                          "should have recursed");
  if (!DL.typeSizeEqualsStoreSize(AT))
    reportFatalUsageError(
        "loading padded arrays from buffer fat pinters should have recursed");
  return FixedVectorType::get(ET, AT->getNumElements());
}

Value *LegalizeBufferContentTypesVisitor::arrayToVector(Value *V,
                                                        Type *TargetType,
                                                        const Twine &Name) {
  Value *VectorRes = PoisonValue::get(TargetType);
  auto *VT = cast<FixedVectorType>(TargetType);
  unsigned EC = VT->getNumElements();
  for (auto I : iota_range<unsigned>(0, EC, /*Inclusive=*/false)) {
    Value *Elem = IRB.CreateExtractValue(V, I, Name + ".elem." + Twine(I));
    VectorRes = IRB.CreateInsertElement(VectorRes, Elem, I,
                                        Name + ".as.vec." + Twine(I));
  }
  return VectorRes;
}

Value *LegalizeBufferContentTypesVisitor::vectorToArray(Value *V,
                                                        Type *OrigType,
                                                        const Twine &Name) {
  Value *ArrayRes = PoisonValue::get(OrigType);
  ArrayType *AT = cast<ArrayType>(OrigType);
  unsigned EC = AT->getNumElements();
  for (auto I : iota_range<unsigned>(0, EC, /*Inclusive=*/false)) {
    Value *Elem = IRB.CreateExtractElement(V, I, Name + ".elem." + Twine(I));
    ArrayRes = IRB.CreateInsertValue(ArrayRes, Elem, I,
                                     Name + ".as.array." + Twine(I));
  }
  return ArrayRes;
}

Type *LegalizeBufferContentTypesVisitor::legalNonAggregateFor(Type *T) {
  TypeSize Size = DL.getTypeStoreSizeInBits(T);
  // Implicitly zero-extend to the next byte if needed
  if (!DL.typeSizeEqualsStoreSize(T))
    T = IRB.getIntNTy(Size.getFixedValue());
  Type *ElemTy = T->getScalarType();
  if (isa<PointerType, ScalableVectorType>(ElemTy)) {
    // Pointers are always big enough, and we'll let scalable vectors through to
    // fail in codegen.
    return T;
  }
  unsigned ElemSize = DL.getTypeSizeInBits(ElemTy).getFixedValue();
  if (isPowerOf2_32(ElemSize) && ElemSize >= 16 && ElemSize <= 128) {
    // [vectors of] anything that's 16/32/64/128 bits can be cast and split into
    // legal buffer operations.
    return T;
  }
  Type *BestVectorElemType = nullptr;
  if (Size.isKnownMultipleOf(32))
    BestVectorElemType = IRB.getInt32Ty();
  else if (Size.isKnownMultipleOf(16))
    BestVectorElemType = IRB.getInt16Ty();
  else
    BestVectorElemType = IRB.getInt8Ty();
  unsigned NumCastElems =
      Size.getFixedValue() / BestVectorElemType->getIntegerBitWidth();
  if (NumCastElems == 1)
    return BestVectorElemType;
  return FixedVectorType::get(BestVectorElemType, NumCastElems);
}

Value *LegalizeBufferContentTypesVisitor::makeLegalNonAggregate(
    Value *V, Type *TargetType, const Twine &Name) {
  Type *SourceType = V->getType();
  TypeSize SourceSize = DL.getTypeSizeInBits(SourceType);
  TypeSize TargetSize = DL.getTypeSizeInBits(TargetType);
  if (SourceSize != TargetSize) {
    Type *ShortScalarTy = IRB.getIntNTy(SourceSize.getFixedValue());
    Type *ByteScalarTy = IRB.getIntNTy(TargetSize.getFixedValue());
    Value *AsScalar = IRB.CreateBitCast(V, ShortScalarTy, Name + ".as.scalar");
    Value *Zext = IRB.CreateZExt(AsScalar, ByteScalarTy, Name + ".zext");
    V = Zext;
    SourceType = ByteScalarTy;
  }
  return IRB.CreateBitCast(V, TargetType, Name + ".legal");
}

Value *LegalizeBufferContentTypesVisitor::makeIllegalNonAggregate(
    Value *V, Type *OrigType, const Twine &Name) {
  Type *LegalType = V->getType();
  TypeSize LegalSize = DL.getTypeSizeInBits(LegalType);
  TypeSize OrigSize = DL.getTypeSizeInBits(OrigType);
  if (LegalSize != OrigSize) {
    Type *ShortScalarTy = IRB.getIntNTy(OrigSize.getFixedValue());
    Type *ByteScalarTy = IRB.getIntNTy(LegalSize.getFixedValue());
    Value *AsScalar = IRB.CreateBitCast(V, ByteScalarTy, Name + ".bytes.cast");
    Value *Trunc = IRB.CreateTrunc(AsScalar, ShortScalarTy, Name + ".trunc");
    return IRB.CreateBitCast(Trunc, OrigType, Name + ".orig");
  }
  return IRB.CreateBitCast(V, OrigType, Name + ".real.ty");
}

Type *LegalizeBufferContentTypesVisitor::intrinsicTypeFor(Type *LegalType) {
  auto *VT = dyn_cast<FixedVectorType>(LegalType);
  if (!VT)
    return LegalType;
  Type *ET = VT->getElementType();
  // Explicitly return the element type of 1-element vectors because the
  // underlying intrinsics don't like <1 x T> even though it's a synonym for T.
  if (VT->getNumElements() == 1)
    return ET;
  if (DL.getTypeSizeInBits(LegalType) == 96 && DL.getTypeSizeInBits(ET) < 32)
    return FixedVectorType::get(IRB.getInt32Ty(), 3);
  if (ET->isIntegerTy(8)) {
    switch (VT->getNumElements()) {
    default:
      return LegalType; // Let it crash later
    case 1:
      return IRB.getInt8Ty();
    case 2:
      return IRB.getInt16Ty();
    case 4:
      return IRB.getInt32Ty();
    case 8:
      return FixedVectorType::get(IRB.getInt32Ty(), 2);
    case 16:
      return FixedVectorType::get(IRB.getInt32Ty(), 4);
    }
  }
  return LegalType;
}

void LegalizeBufferContentTypesVisitor::getVecSlices(
    Type *T, SmallVectorImpl<VecSlice> &Slices) {
  Slices.clear();
  auto *VT = dyn_cast<FixedVectorType>(T);
  if (!VT)
    return;

  uint64_t ElemBitWidth =
      DL.getTypeSizeInBits(VT->getElementType()).getFixedValue();

  uint64_t ElemsPer4Words = 128 / ElemBitWidth;
  uint64_t ElemsPer2Words = ElemsPer4Words / 2;
  uint64_t ElemsPerWord = ElemsPer2Words / 2;
  uint64_t ElemsPerShort = ElemsPerWord / 2;
  uint64_t ElemsPerByte = ElemsPerShort / 2;
  // If the elements evenly pack into 32-bit words, we can use 3-word stores,
  // such as for <6 x bfloat> or <3 x i32>, but we can't dot his for, for
  // example, <3 x i64>, since that's not slicing.
  uint64_t ElemsPer3Words = ElemsPerWord * 3;

  uint64_t TotalElems = VT->getNumElements();
  uint64_t Index = 0;
  auto TrySlice = [&](unsigned MaybeLen) {
    if (MaybeLen > 0 && Index + MaybeLen <= TotalElems) {
      VecSlice Slice{/*Index=*/Index, /*Length=*/MaybeLen};
      Slices.push_back(Slice);
      Index += MaybeLen;
      return true;
    }
    return false;
  };
  while (Index < TotalElems) {
    TrySlice(ElemsPer4Words) || TrySlice(ElemsPer3Words) ||
        TrySlice(ElemsPer2Words) || TrySlice(ElemsPerWord) ||
        TrySlice(ElemsPerShort) || TrySlice(ElemsPerByte);
  }
}

Value *LegalizeBufferContentTypesVisitor::extractSlice(Value *Vec, VecSlice S,
                                                       const Twine &Name) {
  auto *VecVT = dyn_cast<FixedVectorType>(Vec->getType());
  if (!VecVT)
    return Vec;
  if (S.Length == VecVT->getNumElements() && S.Index == 0)
    return Vec;
  if (S.Length == 1)
    return IRB.CreateExtractElement(Vec, S.Index,
                                    Name + ".slice." + Twine(S.Index));
  SmallVector<int> Mask = llvm::to_vector(
      llvm::iota_range<int>(S.Index, S.Index + S.Length, /*Inclusive=*/false));
  return IRB.CreateShuffleVector(Vec, Mask, Name + ".slice." + Twine(S.Index));
}

Value *LegalizeBufferContentTypesVisitor::insertSlice(Value *Whole, Value *Part,
                                                      VecSlice S,
                                                      const Twine &Name) {
  auto *WholeVT = dyn_cast<FixedVectorType>(Whole->getType());
  if (!WholeVT)
    return Part;
  if (S.Length == WholeVT->getNumElements() && S.Index == 0)
    return Part;
  if (S.Length == 1) {
    return IRB.CreateInsertElement(Whole, Part, S.Index,
                                   Name + ".slice." + Twine(S.Index));
  }
  int NumElems = cast<FixedVectorType>(Whole->getType())->getNumElements();

  // Extend the slice with poisons to make the main shufflevector happy.
  SmallVector<int> ExtPartMask(NumElems, -1);
  for (auto [I, E] : llvm::enumerate(
           MutableArrayRef<int>(ExtPartMask).take_front(S.Length))) {
    E = I;
  }
  Value *ExtPart = IRB.CreateShuffleVector(Part, ExtPartMask,
                                           Name + ".ext." + Twine(S.Index));

  SmallVector<int> Mask =
      llvm::to_vector(llvm::iota_range<int>(0, NumElems, /*Inclusive=*/false));
  for (auto [I, E] :
       llvm::enumerate(MutableArrayRef<int>(Mask).slice(S.Index, S.Length)))
    E = I + NumElems;
  return IRB.CreateShuffleVector(Whole, ExtPart, Mask,
                                 Name + ".parts." + Twine(S.Index));
}

bool LegalizeBufferContentTypesVisitor::visitLoadImpl(
    LoadInst &OrigLI, Type *PartType, SmallVectorImpl<uint32_t> &AggIdxs,
    uint64_t AggByteOff, Value *&Result, const Twine &Name) {
  if (auto *ST = dyn_cast<StructType>(PartType)) {
    const StructLayout *Layout = DL.getStructLayout(ST);
    bool Changed = false;
    for (auto [I, ElemTy, Offset] :
         llvm::enumerate(ST->elements(), Layout->getMemberOffsets())) {
      AggIdxs.push_back(I);
      Changed |= visitLoadImpl(OrigLI, ElemTy, AggIdxs,
                               AggByteOff + Offset.getFixedValue(), Result,
                               Name + "." + Twine(I));
      AggIdxs.pop_back();
    }
    return Changed;
  }
  if (auto *AT = dyn_cast<ArrayType>(PartType)) {
    Type *ElemTy = AT->getElementType();
    if (!ElemTy->isSingleValueType() || !DL.typeSizeEqualsStoreSize(ElemTy) ||
        ElemTy->isVectorTy()) {
      TypeSize ElemStoreSize = DL.getTypeStoreSize(ElemTy);
      bool Changed = false;
      for (auto I : llvm::iota_range<uint32_t>(0, AT->getNumElements(),
                                               /*Inclusive=*/false)) {
        AggIdxs.push_back(I);
        Changed |= visitLoadImpl(OrigLI, ElemTy, AggIdxs,
                                 AggByteOff + I * ElemStoreSize.getFixedValue(),
                                 Result, Name + Twine(I));
        AggIdxs.pop_back();
      }
      return Changed;
    }
  }

  // Typical case

  Type *ArrayAsVecType = scalarArrayTypeAsVector(PartType);
  Type *LegalType = legalNonAggregateFor(ArrayAsVecType);

  SmallVector<VecSlice> Slices;
  getVecSlices(LegalType, Slices);
  bool HasSlices = Slices.size() > 1;
  bool IsAggPart = !AggIdxs.empty();
  Value *LoadsRes;
  if (!HasSlices && !IsAggPart) {
    Type *LoadableType = intrinsicTypeFor(LegalType);
    if (LoadableType == PartType)
      return false;

    IRB.SetInsertPoint(&OrigLI);
    auto *NLI = cast<LoadInst>(OrigLI.clone());
    NLI->mutateType(LoadableType);
    NLI = IRB.Insert(NLI);
    NLI->setName(Name + ".loadable");

    LoadsRes = IRB.CreateBitCast(NLI, LegalType, Name + ".from.loadable");
  } else {
    IRB.SetInsertPoint(&OrigLI);
    LoadsRes = PoisonValue::get(LegalType);
    Value *OrigPtr = OrigLI.getPointerOperand();
    // If we're needing to spill something into more than one load, its legal
    // type will be a vector (ex. an i256 load will have LegalType = <8 x i32>).
    // But if we're already a scalar (which can happen if we're splitting up a
    // struct), the element type will be the legal type itself.
    Type *ElemType = LegalType->getScalarType();
    unsigned ElemBytes = DL.getTypeStoreSize(ElemType);
    AAMDNodes AANodes = OrigLI.getAAMetadata();
    if (IsAggPart && Slices.empty())
      Slices.push_back(VecSlice{/*Index=*/0, /*Length=*/1});
    for (VecSlice S : Slices) {
      Type *SliceType =
          S.Length != 1 ? FixedVectorType::get(ElemType, S.Length) : ElemType;
      int64_t ByteOffset = AggByteOff + S.Index * ElemBytes;
      // You can't reasonably expect loads to wrap around the edge of memory.
      Value *NewPtr = IRB.CreateGEP(
          IRB.getInt8Ty(), OrigLI.getPointerOperand(), IRB.getInt32(ByteOffset),
          OrigPtr->getName() + ".off.ptr." + Twine(ByteOffset),
          GEPNoWrapFlags::noUnsignedWrap());
      Type *LoadableType = intrinsicTypeFor(SliceType);
      LoadInst *NewLI = IRB.CreateAlignedLoad(
          LoadableType, NewPtr, commonAlignment(OrigLI.getAlign(), ByteOffset),
          Name + ".off." + Twine(ByteOffset));
      copyMetadataForLoad(*NewLI, OrigLI);
      NewLI->setAAMetadata(
          AANodes.adjustForAccess(ByteOffset, LoadableType, DL));
      NewLI->setAtomic(OrigLI.getOrdering(), OrigLI.getSyncScopeID());
      NewLI->setVolatile(OrigLI.isVolatile());
      Value *Loaded = IRB.CreateBitCast(NewLI, SliceType,
                                        NewLI->getName() + ".from.loadable");
      LoadsRes = insertSlice(LoadsRes, Loaded, S, Name);
    }
  }
  if (LegalType != ArrayAsVecType)
    LoadsRes = makeIllegalNonAggregate(LoadsRes, ArrayAsVecType, Name);
  if (ArrayAsVecType != PartType)
    LoadsRes = vectorToArray(LoadsRes, PartType, Name);

  if (IsAggPart)
    Result = IRB.CreateInsertValue(Result, LoadsRes, AggIdxs, Name);
  else
    Result = LoadsRes;
  return true;
}

bool LegalizeBufferContentTypesVisitor::visitLoadInst(LoadInst &LI) {
  if (LI.getPointerAddressSpace() != AMDGPUAS::BUFFER_FAT_POINTER)
    return false;

  SmallVector<uint32_t> AggIdxs;
  Type *OrigType = LI.getType();
  Value *Result = PoisonValue::get(OrigType);
  bool Changed = visitLoadImpl(LI, OrigType, AggIdxs, 0, Result, LI.getName());
  if (!Changed)
    return false;
  Result->takeName(&LI);
  LI.replaceAllUsesWith(Result);
  LI.eraseFromParent();
  return Changed;
}

std::pair<bool, bool> LegalizeBufferContentTypesVisitor::visitStoreImpl(
    StoreInst &OrigSI, Type *PartType, SmallVectorImpl<uint32_t> &AggIdxs,
    uint64_t AggByteOff, const Twine &Name) {
  if (auto *ST = dyn_cast<StructType>(PartType)) {
    const StructLayout *Layout = DL.getStructLayout(ST);
    bool Changed = false;
    for (auto [I, ElemTy, Offset] :
         llvm::enumerate(ST->elements(), Layout->getMemberOffsets())) {
      AggIdxs.push_back(I);
      Changed |= std::get<0>(visitStoreImpl(OrigSI, ElemTy, AggIdxs,
                                            AggByteOff + Offset.getFixedValue(),
                                            Name + "." + Twine(I)));
      AggIdxs.pop_back();
    }
    return std::make_pair(Changed, /*ModifiedInPlace=*/false);
  }
  if (auto *AT = dyn_cast<ArrayType>(PartType)) {
    Type *ElemTy = AT->getElementType();
    if (!ElemTy->isSingleValueType() || !DL.typeSizeEqualsStoreSize(ElemTy) ||
        ElemTy->isVectorTy()) {
      TypeSize ElemStoreSize = DL.getTypeStoreSize(ElemTy);
      bool Changed = false;
      for (auto I : llvm::iota_range<uint32_t>(0, AT->getNumElements(),
                                               /*Inclusive=*/false)) {
        AggIdxs.push_back(I);
        Changed |= std::get<0>(visitStoreImpl(
            OrigSI, ElemTy, AggIdxs,
            AggByteOff + I * ElemStoreSize.getFixedValue(), Name + Twine(I)));
        AggIdxs.pop_back();
      }
      return std::make_pair(Changed, /*ModifiedInPlace=*/false);
    }
  }

  Value *OrigData = OrigSI.getValueOperand();
  Value *NewData = OrigData;

  bool IsAggPart = !AggIdxs.empty();
  if (IsAggPart)
    NewData = IRB.CreateExtractValue(NewData, AggIdxs, Name);

  Type *ArrayAsVecType = scalarArrayTypeAsVector(PartType);
  if (ArrayAsVecType != PartType) {
    NewData = arrayToVector(NewData, ArrayAsVecType, Name);
  }

  Type *LegalType = legalNonAggregateFor(ArrayAsVecType);
  if (LegalType != ArrayAsVecType) {
    NewData = makeLegalNonAggregate(NewData, LegalType, Name);
  }

  SmallVector<VecSlice> Slices;
  getVecSlices(LegalType, Slices);
  bool NeedToSplit = Slices.size() > 1 || IsAggPart;
  if (!NeedToSplit) {
    Type *StorableType = intrinsicTypeFor(LegalType);
    if (StorableType == PartType)
      return std::make_pair(/*Changed=*/false, /*ModifiedInPlace=*/false);
    NewData = IRB.CreateBitCast(NewData, StorableType, Name + ".storable");
    OrigSI.setOperand(0, NewData);
    return std::make_pair(/*Changed=*/true, /*ModifiedInPlace=*/true);
  }

  Value *OrigPtr = OrigSI.getPointerOperand();
  Type *ElemType = LegalType->getScalarType();
  if (IsAggPart && Slices.empty())
    Slices.push_back(VecSlice{/*Index=*/0, /*Length=*/1});
  unsigned ElemBytes = DL.getTypeStoreSize(ElemType);
  AAMDNodes AANodes = OrigSI.getAAMetadata();
  for (VecSlice S : Slices) {
    Type *SliceType =
        S.Length != 1 ? FixedVectorType::get(ElemType, S.Length) : ElemType;
    int64_t ByteOffset = AggByteOff + S.Index * ElemBytes;
    Value *NewPtr =
        IRB.CreateGEP(IRB.getInt8Ty(), OrigPtr, IRB.getInt32(ByteOffset),
                      OrigPtr->getName() + ".part." + Twine(S.Index),
                      GEPNoWrapFlags::noUnsignedWrap());
    Value *DataSlice = extractSlice(NewData, S, Name);
    Type *StorableType = intrinsicTypeFor(SliceType);
    DataSlice = IRB.CreateBitCast(DataSlice, StorableType,
                                  DataSlice->getName() + ".storable");
    auto *NewSI = cast<StoreInst>(OrigSI.clone());
    NewSI->setAlignment(commonAlignment(OrigSI.getAlign(), ByteOffset));
    IRB.Insert(NewSI);
    NewSI->setOperand(0, DataSlice);
    NewSI->setOperand(1, NewPtr);
    NewSI->setAAMetadata(AANodes.adjustForAccess(ByteOffset, StorableType, DL));
  }
  return std::make_pair(/*Changed=*/true, /*ModifiedInPlace=*/false);
}

bool LegalizeBufferContentTypesVisitor::visitStoreInst(StoreInst &SI) {
  if (SI.getPointerAddressSpace() != AMDGPUAS::BUFFER_FAT_POINTER)
    return false;
  IRB.SetInsertPoint(&SI);
  SmallVector<uint32_t> AggIdxs;
  Value *OrigData = SI.getValueOperand();
  auto [Changed, ModifiedInPlace] =
      visitStoreImpl(SI, OrigData->getType(), AggIdxs, 0, OrigData->getName());
  if (Changed && !ModifiedInPlace)
    SI.eraseFromParent();
  return Changed;
}

bool LegalizeBufferContentTypesVisitor::processFunction(Function &F) {
  bool Changed = false;
  // Note, memory transfer intrinsics won't
  for (Instruction &I : make_early_inc_range(instructions(F))) {
    Changed |= visit(I);
  }
  return Changed;
}

/// Return the ptr addrspace(8) and i32 (resource and offset parts) in a lowered
/// buffer fat pointer constant.
static std::pair<Constant *, Constant *>
splitLoweredFatBufferConst(Constant *C) {
  assert(isSplitFatPtr(C->getType()) && "Not a split fat buffer pointer");
  return std::make_pair(C->getAggregateElement(0u), C->getAggregateElement(1u));
}

namespace {
/// Handle the remapping of ptr addrspace(7) constants.
class FatPtrConstMaterializer final : public ValueMaterializer {
  BufferFatPtrToStructTypeMap *TypeMap;
  // An internal mapper that is used to recurse into the arguments of constants.
  // While the documentation for `ValueMapper` specifies not to use it
  // recursively, examination of the logic in mapValue() shows that it can
  // safely be used recursively when handling constants, like it does in its own
  // logic.
  ValueMapper InternalMapper;

  Constant *materializeBufferFatPtrConst(Constant *C);

public:
  // UnderlyingMap is the value map this materializer will be filling.
  FatPtrConstMaterializer(BufferFatPtrToStructTypeMap *TypeMap,
                          ValueToValueMapTy &UnderlyingMap)
      : TypeMap(TypeMap),
        InternalMapper(UnderlyingMap, RF_None, TypeMap, this) {}
  ~FatPtrConstMaterializer() = default;

  Value *materialize(Value *V) override;
};
} // namespace

Constant *FatPtrConstMaterializer::materializeBufferFatPtrConst(Constant *C) {
  Type *SrcTy = C->getType();
  auto *NewTy = dyn_cast<StructType>(TypeMap->remapType(SrcTy));
  if (C->isNullValue())
    return ConstantAggregateZero::getNullValue(NewTy);
  if (isa<PoisonValue>(C)) {
    return ConstantStruct::get(NewTy,
                               {PoisonValue::get(NewTy->getElementType(0)),
                                PoisonValue::get(NewTy->getElementType(1))});
  }
  if (isa<UndefValue>(C)) {
    return ConstantStruct::get(NewTy,
                               {UndefValue::get(NewTy->getElementType(0)),
                                UndefValue::get(NewTy->getElementType(1))});
  }

  if (auto *VC = dyn_cast<ConstantVector>(C)) {
    if (Constant *S = VC->getSplatValue()) {
      Constant *NewS = InternalMapper.mapConstant(*S);
      if (!NewS)
        return nullptr;
      auto [Rsrc, Off] = splitLoweredFatBufferConst(NewS);
      auto EC = VC->getType()->getElementCount();
      return ConstantStruct::get(NewTy, {ConstantVector::getSplat(EC, Rsrc),
                                         ConstantVector::getSplat(EC, Off)});
    }
    SmallVector<Constant *> Rsrcs;
    SmallVector<Constant *> Offs;
    for (Value *Op : VC->operand_values()) {
      auto *NewOp = dyn_cast_or_null<Constant>(InternalMapper.mapValue(*Op));
      if (!NewOp)
        return nullptr;
      auto [Rsrc, Off] = splitLoweredFatBufferConst(NewOp);
      Rsrcs.push_back(Rsrc);
      Offs.push_back(Off);
    }
    Constant *RsrcVec = ConstantVector::get(Rsrcs);
    Constant *OffVec = ConstantVector::get(Offs);
    return ConstantStruct::get(NewTy, {RsrcVec, OffVec});
  }

  if (isa<GlobalValue>(C))
    reportFatalUsageError("global values containing ptr addrspace(7) (buffer "
                          "fat pointer) values are not supported");

  if (isa<ConstantExpr>(C))
    reportFatalUsageError(
        "constant exprs containing ptr addrspace(7) (buffer "
        "fat pointer) values should have been expanded earlier");

  return nullptr;
}

Value *FatPtrConstMaterializer::materialize(Value *V) {
  Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return nullptr;
  // Structs and other types that happen to contain fat pointers get remapped
  // by the mapValue() logic.
  if (!isBufferFatPtrConst(C))
    return nullptr;
  return materializeBufferFatPtrConst(C);
}

using PtrParts = std::pair<Value *, Value *>;
namespace {
// The visitor returns the resource and offset parts for an instruction if they
// can be computed, or (nullptr, nullptr) for cases that don't have a meaningful
// value mapping.
class SplitPtrStructs : public InstVisitor<SplitPtrStructs, PtrParts> {
  ValueToValueMapTy RsrcParts;
  ValueToValueMapTy OffParts;

  // Track instructions that have been rewritten into a user of the component
  // parts of their ptr addrspace(7) input. Instructions that produced
  // ptr addrspace(7) parts should **not** be RAUW'd before being added to this
  // set, as that replacement will be handled in a post-visit step. However,
  // instructions that yield values that aren't fat pointers (ex. ptrtoint)
  // should RAUW themselves with new instructions that use the split parts
  // of their arguments during processing.
  DenseSet<Instruction *> SplitUsers;

  // Nodes that need a second look once we've computed the parts for all other
  // instructions to see if, for example, we really need to phi on the resource
  // part.
  SmallVector<Instruction *> Conditionals;
  // Temporary instructions produced while lowering conditionals that should be
  // killed.
  SmallVector<Instruction *> ConditionalTemps;

  // Subtarget info, needed for determining what cache control bits to set.
  const TargetMachine *TM;
  const GCNSubtarget *ST = nullptr;

  IRBuilder<InstSimplifyFolder> IRB;

  // Copy metadata between instructions if applicable.
  void copyMetadata(Value *Dest, Value *Src);

  // Get the resource and offset parts of the value V, inserting appropriate
  // extractvalue calls if needed.
  PtrParts getPtrParts(Value *V);

  // Given an instruction that could produce multiple resource parts (a PHI or
  // select), collect the set of possible instructions that could have provided
  // its resource parts  that it could have (the `Roots`) and the set of
  // conditional instructions visited during the search (`Seen`). If, after
  // removing the root of the search from `Seen` and `Roots`, `Seen` is a subset
  // of `Roots` and `Roots - Seen` contains one element, the resource part of
  // that element can replace the resource part of all other elements in `Seen`.
  void getPossibleRsrcRoots(Instruction *I, SmallPtrSetImpl<Value *> &Roots,
                            SmallPtrSetImpl<Value *> &Seen);
  void processConditionals();

  // If an instruction hav been split into resource and offset parts,
  // delete that instruction. If any of its uses have not themselves been split
  // into parts (for example, an insertvalue), construct the structure
  // that the type rewrites declared should be produced by the dying instruction
  // and use that.
  // Also, kill the temporary extractvalue operations produced by the two-stage
  // lowering of PHIs and conditionals.
  void killAndReplaceSplitInstructions(SmallVectorImpl<Instruction *> &Origs);

  void setAlign(CallInst *Intr, Align A, unsigned RsrcArgIdx);
  void insertPreMemOpFence(AtomicOrdering Order, SyncScope::ID SSID);
  void insertPostMemOpFence(AtomicOrdering Order, SyncScope::ID SSID);
  Value *handleMemoryInst(Instruction *I, Value *Arg, Value *Ptr, Type *Ty,
                          Align Alignment, AtomicOrdering Order,
                          bool IsVolatile, SyncScope::ID SSID);

public:
  SplitPtrStructs(const DataLayout &DL, LLVMContext &Ctx,
                  const TargetMachine *TM)
      : TM(TM), IRB(Ctx, InstSimplifyFolder(DL)) {}

  void processFunction(Function &F);

  PtrParts visitInstruction(Instruction &I);
  PtrParts visitLoadInst(LoadInst &LI);
  PtrParts visitStoreInst(StoreInst &SI);
  PtrParts visitAtomicRMWInst(AtomicRMWInst &AI);
  PtrParts visitAtomicCmpXchgInst(AtomicCmpXchgInst &AI);
  PtrParts visitGetElementPtrInst(GetElementPtrInst &GEP);

  PtrParts visitPtrToIntInst(PtrToIntInst &PI);
  PtrParts visitIntToPtrInst(IntToPtrInst &IP);
  PtrParts visitAddrSpaceCastInst(AddrSpaceCastInst &I);
  PtrParts visitICmpInst(ICmpInst &Cmp);
  PtrParts visitFreezeInst(FreezeInst &I);

  PtrParts visitExtractElementInst(ExtractElementInst &I);
  PtrParts visitInsertElementInst(InsertElementInst &I);
  PtrParts visitShuffleVectorInst(ShuffleVectorInst &I);

  PtrParts visitPHINode(PHINode &PHI);
  PtrParts visitSelectInst(SelectInst &SI);

  PtrParts visitIntrinsicInst(IntrinsicInst &II);
};
} // namespace

void SplitPtrStructs::copyMetadata(Value *Dest, Value *Src) {
  auto *DestI = dyn_cast<Instruction>(Dest);
  auto *SrcI = dyn_cast<Instruction>(Src);

  if (!DestI || !SrcI)
    return;

  DestI->copyMetadata(*SrcI);
}

PtrParts SplitPtrStructs::getPtrParts(Value *V) {
  assert(isSplitFatPtr(V->getType()) && "it's not meaningful to get the parts "
                                        "of something that wasn't rewritten");
  auto *RsrcEntry = &RsrcParts[V];
  auto *OffEntry = &OffParts[V];
  if (*RsrcEntry && *OffEntry)
    return {*RsrcEntry, *OffEntry};

  if (auto *C = dyn_cast<Constant>(V)) {
    auto [Rsrc, Off] = splitLoweredFatBufferConst(C);
    return {*RsrcEntry = Rsrc, *OffEntry = Off};
  }

  IRBuilder<InstSimplifyFolder>::InsertPointGuard Guard(IRB);
  if (auto *I = dyn_cast<Instruction>(V)) {
    LLVM_DEBUG(dbgs() << "Recursing to split parts of " << *I << "\n");
    auto [Rsrc, Off] = visit(*I);
    if (Rsrc && Off)
      return {*RsrcEntry = Rsrc, *OffEntry = Off};
    // We'll be creating the new values after the relevant instruction.
    // This instruction generates a value and so isn't a terminator.
    IRB.SetInsertPoint(*I->getInsertionPointAfterDef());
    IRB.SetCurrentDebugLocation(I->getDebugLoc());
  } else if (auto *A = dyn_cast<Argument>(V)) {
    IRB.SetInsertPointPastAllocas(A->getParent());
    IRB.SetCurrentDebugLocation(DebugLoc());
  }
  Value *Rsrc = IRB.CreateExtractValue(V, 0, V->getName() + ".rsrc");
  Value *Off = IRB.CreateExtractValue(V, 1, V->getName() + ".off");
  return {*RsrcEntry = Rsrc, *OffEntry = Off};
}

/// Returns the instruction that defines the resource part of the value V.
/// Note that this is not getUnderlyingObject(), since that looks through
/// operations like ptrmask which might modify the resource part.
///
/// We can limit ourselves to just looking through GEPs followed by looking
/// through addrspacecasts because only those two operations preserve the
/// resource part, and because operations on an `addrspace(8)` (which is the
/// legal input to this addrspacecast) would produce a different resource part.
static Value *rsrcPartRoot(Value *V) {
  while (auto *GEP = dyn_cast<GEPOperator>(V))
    V = GEP->getPointerOperand();
  while (auto *ASC = dyn_cast<AddrSpaceCastOperator>(V))
    V = ASC->getPointerOperand();
  return V;
}

void SplitPtrStructs::getPossibleRsrcRoots(Instruction *I,
                                           SmallPtrSetImpl<Value *> &Roots,
                                           SmallPtrSetImpl<Value *> &Seen) {
  if (auto *PHI = dyn_cast<PHINode>(I)) {
    if (!Seen.insert(I).second)
      return;
    for (Value *In : PHI->incoming_values()) {
      In = rsrcPartRoot(In);
      Roots.insert(In);
      if (isa<PHINode, SelectInst>(In))
        getPossibleRsrcRoots(cast<Instruction>(In), Roots, Seen);
    }
  } else if (auto *SI = dyn_cast<SelectInst>(I)) {
    if (!Seen.insert(SI).second)
      return;
    Value *TrueVal = rsrcPartRoot(SI->getTrueValue());
    Value *FalseVal = rsrcPartRoot(SI->getFalseValue());
    Roots.insert(TrueVal);
    Roots.insert(FalseVal);
    if (isa<PHINode, SelectInst>(TrueVal))
      getPossibleRsrcRoots(cast<Instruction>(TrueVal), Roots, Seen);
    if (isa<PHINode, SelectInst>(FalseVal))
      getPossibleRsrcRoots(cast<Instruction>(FalseVal), Roots, Seen);
  } else {
    llvm_unreachable("getPossibleRsrcParts() only works on phi and select");
  }
}

void SplitPtrStructs::processConditionals() {
  SmallDenseMap<Value *, Value *> FoundRsrcs;
  SmallPtrSet<Value *, 4> Roots;
  SmallPtrSet<Value *, 4> Seen;
  for (Instruction *I : Conditionals) {
    // These have to exist by now because we've visited these nodes.
    Value *Rsrc = RsrcParts[I];
    Value *Off = OffParts[I];
    assert(Rsrc && Off && "must have visited conditionals by now");

    std::optional<Value *> MaybeRsrc;
    auto MaybeFoundRsrc = FoundRsrcs.find(I);
    if (MaybeFoundRsrc != FoundRsrcs.end()) {
      MaybeRsrc = MaybeFoundRsrc->second;
    } else {
      IRBuilder<InstSimplifyFolder>::InsertPointGuard Guard(IRB);
      Roots.clear();
      Seen.clear();
      getPossibleRsrcRoots(I, Roots, Seen);
      LLVM_DEBUG(dbgs() << "Processing conditional: " << *I << "\n");
#ifndef NDEBUG
      for (Value *V : Roots)
        LLVM_DEBUG(dbgs() << "Root: " << *V << "\n");
      for (Value *V : Seen)
        LLVM_DEBUG(dbgs() << "Seen: " << *V << "\n");
#endif
      // If we are our own possible root, then we shouldn't block our
      // replacement with a valid incoming value.
      Roots.erase(I);
      // We don't want to block the optimization for conditionals that don't
      // refer to themselves but did see themselves during the traversal.
      Seen.erase(I);

      if (set_is_subset(Seen, Roots)) {
        auto Diff = set_difference(Roots, Seen);
        if (Diff.size() == 1) {
          Value *RootVal = *Diff.begin();
          // Handle the case where previous loops already looked through
          // an addrspacecast.
          if (isSplitFatPtr(RootVal->getType()))
            MaybeRsrc = std::get<0>(getPtrParts(RootVal));
          else
            MaybeRsrc = RootVal;
        }
      }
    }

    if (auto *PHI = dyn_cast<PHINode>(I)) {
      Value *NewRsrc;
      StructType *PHITy = cast<StructType>(PHI->getType());
      IRB.SetInsertPoint(*PHI->getInsertionPointAfterDef());
      IRB.SetCurrentDebugLocation(PHI->getDebugLoc());
      if (MaybeRsrc) {
        NewRsrc = *MaybeRsrc;
      } else {
        Type *RsrcTy = PHITy->getElementType(0);
        auto *RsrcPHI = IRB.CreatePHI(RsrcTy, PHI->getNumIncomingValues());
        RsrcPHI->takeName(Rsrc);
        for (auto [V, BB] : llvm::zip(PHI->incoming_values(), PHI->blocks())) {
          Value *VRsrc = std::get<0>(getPtrParts(V));
          RsrcPHI->addIncoming(VRsrc, BB);
        }
        copyMetadata(RsrcPHI, PHI);
        NewRsrc = RsrcPHI;
      }

      Type *OffTy = PHITy->getElementType(1);
      auto *NewOff = IRB.CreatePHI(OffTy, PHI->getNumIncomingValues());
      NewOff->takeName(Off);
      for (auto [V, BB] : llvm::zip(PHI->incoming_values(), PHI->blocks())) {
        assert(OffParts.count(V) && "An offset part had to be created by now");
        Value *VOff = std::get<1>(getPtrParts(V));
        NewOff->addIncoming(VOff, BB);
      }
      copyMetadata(NewOff, PHI);

      // Note: We don't eraseFromParent() the temporaries because we don't want
      // to put the corrections maps in an inconstent state. That'll be handed
      // during the rest of the killing. Also, `ValueToValueMapTy` guarantees
      // that references in that map will be updated as well.
      // Note that if the temporary instruction got `InstSimplify`'d away, it
      // might be something like a block argument.
      if (auto *RsrcInst = dyn_cast<Instruction>(Rsrc)) {
        ConditionalTemps.push_back(RsrcInst);
        RsrcInst->replaceAllUsesWith(NewRsrc);
      }
      if (auto *OffInst = dyn_cast<Instruction>(Off)) {
        ConditionalTemps.push_back(OffInst);
        OffInst->replaceAllUsesWith(NewOff);
      }

      // Save on recomputing the cycle traversals in known-root cases.
      if (MaybeRsrc)
        for (Value *V : Seen)
          FoundRsrcs[V] = NewRsrc;
    } else if (isa<SelectInst>(I)) {
      if (MaybeRsrc) {
        if (auto *RsrcInst = dyn_cast<Instruction>(Rsrc)) {
          ConditionalTemps.push_back(RsrcInst);
          RsrcInst->replaceAllUsesWith(*MaybeRsrc);
        }
        for (Value *V : Seen)
          FoundRsrcs[V] = *MaybeRsrc;
      }
    } else {
      llvm_unreachable("Only PHIs and selects go in the conditionals list");
    }
  }
}

void SplitPtrStructs::killAndReplaceSplitInstructions(
    SmallVectorImpl<Instruction *> &Origs) {
  for (Instruction *I : ConditionalTemps)
    I->eraseFromParent();

  for (Instruction *I : Origs) {
    if (!SplitUsers.contains(I))
      continue;

    SmallVector<DbgValueInst *> Dbgs;
    findDbgValues(Dbgs, I);
    for (auto *Dbg : Dbgs) {
      IRB.SetInsertPoint(Dbg);
      auto &DL = I->getDataLayout();
      assert(isSplitFatPtr(I->getType()) &&
             "We should've RAUW'd away loads, stores, etc. at this point");
      auto *OffDbg = cast<DbgValueInst>(Dbg->clone());
      copyMetadata(OffDbg, Dbg);
      auto [Rsrc, Off] = getPtrParts(I);

      int64_t RsrcSz = DL.getTypeSizeInBits(Rsrc->getType());
      int64_t OffSz = DL.getTypeSizeInBits(Off->getType());

      std::optional<DIExpression *> RsrcExpr =
          DIExpression::createFragmentExpression(Dbg->getExpression(), 0,
                                                 RsrcSz);
      std::optional<DIExpression *> OffExpr =
          DIExpression::createFragmentExpression(Dbg->getExpression(), RsrcSz,
                                                 OffSz);
      if (OffExpr) {
        OffDbg->setExpression(*OffExpr);
        OffDbg->replaceVariableLocationOp(I, Off);
        IRB.Insert(OffDbg);
      } else {
        OffDbg->deleteValue();
      }
      if (RsrcExpr) {
        Dbg->setExpression(*RsrcExpr);
        Dbg->replaceVariableLocationOp(I, Rsrc);
      } else {
        Dbg->replaceVariableLocationOp(I, PoisonValue::get(I->getType()));
      }
    }

    Value *Poison = PoisonValue::get(I->getType());
    I->replaceUsesWithIf(Poison, [&](const Use &U) -> bool {
      if (const auto *UI = dyn_cast<Instruction>(U.getUser()))
        return SplitUsers.contains(UI);
      return false;
    });

    if (I->use_empty()) {
      I->eraseFromParent();
      continue;
    }
    IRB.SetInsertPoint(*I->getInsertionPointAfterDef());
    IRB.SetCurrentDebugLocation(I->getDebugLoc());
    auto [Rsrc, Off] = getPtrParts(I);
    Value *Struct = PoisonValue::get(I->getType());
    Struct = IRB.CreateInsertValue(Struct, Rsrc, 0);
    Struct = IRB.CreateInsertValue(Struct, Off, 1);
    copyMetadata(Struct, I);
    Struct->takeName(I);
    I->replaceAllUsesWith(Struct);
    I->eraseFromParent();
  }
}

void SplitPtrStructs::setAlign(CallInst *Intr, Align A, unsigned RsrcArgIdx) {
  LLVMContext &Ctx = Intr->getContext();
  Intr->addParamAttr(RsrcArgIdx, Attribute::getWithAlignment(Ctx, A));
}

void SplitPtrStructs::insertPreMemOpFence(AtomicOrdering Order,
                                          SyncScope::ID SSID) {
  switch (Order) {
  case AtomicOrdering::Release:
  case AtomicOrdering::AcquireRelease:
  case AtomicOrdering::SequentiallyConsistent:
    IRB.CreateFence(AtomicOrdering::Release, SSID);
    break;
  default:
    break;
  }
}

void SplitPtrStructs::insertPostMemOpFence(AtomicOrdering Order,
                                           SyncScope::ID SSID) {
  switch (Order) {
  case AtomicOrdering::Acquire:
  case AtomicOrdering::AcquireRelease:
  case AtomicOrdering::SequentiallyConsistent:
    IRB.CreateFence(AtomicOrdering::Acquire, SSID);
    break;
  default:
    break;
  }
}

Value *SplitPtrStructs::handleMemoryInst(Instruction *I, Value *Arg, Value *Ptr,
                                         Type *Ty, Align Alignment,
                                         AtomicOrdering Order, bool IsVolatile,
                                         SyncScope::ID SSID) {
  IRB.SetInsertPoint(I);

  auto [Rsrc, Off] = getPtrParts(Ptr);
  SmallVector<Value *, 5> Args;
  if (Arg)
    Args.push_back(Arg);
  Args.push_back(Rsrc);
  Args.push_back(Off);
  insertPreMemOpFence(Order, SSID);
  // soffset is always 0 for these cases, where we always want any offset to be
  // part of bounds checking and we don't know which parts of the GEPs is
  // uniform.
  Args.push_back(IRB.getInt32(0));

  uint32_t Aux = 0;
  if (IsVolatile)
    Aux |= AMDGPU::CPol::VOLATILE;
  Args.push_back(IRB.getInt32(Aux));

  Intrinsic::ID IID = Intrinsic::not_intrinsic;
  if (isa<LoadInst>(I))
    IID = Order == AtomicOrdering::NotAtomic
              ? Intrinsic::amdgcn_raw_ptr_buffer_load
              : Intrinsic::amdgcn_raw_ptr_atomic_buffer_load;
  else if (isa<StoreInst>(I))
    IID = Intrinsic::amdgcn_raw_ptr_buffer_store;
  else if (auto *RMW = dyn_cast<AtomicRMWInst>(I)) {
    switch (RMW->getOperation()) {
    case AtomicRMWInst::Xchg:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap;
      break;
    case AtomicRMWInst::Add:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_add;
      break;
    case AtomicRMWInst::Sub:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub;
      break;
    case AtomicRMWInst::And:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_and;
      break;
    case AtomicRMWInst::Or:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_or;
      break;
    case AtomicRMWInst::Xor:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor;
      break;
    case AtomicRMWInst::Max:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax;
      break;
    case AtomicRMWInst::Min:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin;
      break;
    case AtomicRMWInst::UMax:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax;
      break;
    case AtomicRMWInst::UMin:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin;
      break;
    case AtomicRMWInst::FAdd:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd;
      break;
    case AtomicRMWInst::FMax:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax;
      break;
    case AtomicRMWInst::FMin:
      IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin;
      break;
    case AtomicRMWInst::FSub: {
      reportFatalUsageError(
          "atomic floating point subtraction not supported for "
          "buffer resources and should've been expanded away");
      break;
    }
    case AtomicRMWInst::FMaximum: {
      reportFatalUsageError(
          "atomic floating point fmaximum not supported for "
          "buffer resources and should've been expanded away");
      break;
    }
    case AtomicRMWInst::FMinimum: {
      reportFatalUsageError(
          "atomic floating point fminimum not supported for "
          "buffer resources and should've been expanded away");
      break;
    }
    case AtomicRMWInst::Nand:
      reportFatalUsageError(
          "atomic nand not supported for buffer resources and "
          "should've been expanded away");
      break;
    case AtomicRMWInst::UIncWrap:
    case AtomicRMWInst::UDecWrap:
      reportFatalUsageError("wrapping increment/decrement not supported for "
                            "buffer resources and should've ben expanded away");
      break;
    case AtomicRMWInst::BAD_BINOP:
      llvm_unreachable("Not sure how we got a bad binop");
    case AtomicRMWInst::USubCond:
    case AtomicRMWInst::USubSat:
      break;
    }
  }

  auto *Call = IRB.CreateIntrinsic(IID, Ty, Args);
  copyMetadata(Call, I);
  setAlign(Call, Alignment, Arg ? 1 : 0);
  Call->takeName(I);

  insertPostMemOpFence(Order, SSID);
  // The "no moving p7 directly" rewrites ensure that this load or store won't
  // itself need to be split into parts.
  SplitUsers.insert(I);
  I->replaceAllUsesWith(Call);
  return Call;
}

PtrParts SplitPtrStructs::visitInstruction(Instruction &I) {
  return {nullptr, nullptr};
}

PtrParts SplitPtrStructs::visitLoadInst(LoadInst &LI) {
  if (!isSplitFatPtr(LI.getPointerOperandType()))
    return {nullptr, nullptr};
  handleMemoryInst(&LI, nullptr, LI.getPointerOperand(), LI.getType(),
                   LI.getAlign(), LI.getOrdering(), LI.isVolatile(),
                   LI.getSyncScopeID());
  return {nullptr, nullptr};
}

PtrParts SplitPtrStructs::visitStoreInst(StoreInst &SI) {
  if (!isSplitFatPtr(SI.getPointerOperandType()))
    return {nullptr, nullptr};
  Value *Arg = SI.getValueOperand();
  handleMemoryInst(&SI, Arg, SI.getPointerOperand(), Arg->getType(),
                   SI.getAlign(), SI.getOrdering(), SI.isVolatile(),
                   SI.getSyncScopeID());
  return {nullptr, nullptr};
}

PtrParts SplitPtrStructs::visitAtomicRMWInst(AtomicRMWInst &AI) {
  if (!isSplitFatPtr(AI.getPointerOperand()->getType()))
    return {nullptr, nullptr};
  Value *Arg = AI.getValOperand();
  handleMemoryInst(&AI, Arg, AI.getPointerOperand(), Arg->getType(),
                   AI.getAlign(), AI.getOrdering(), AI.isVolatile(),
                   AI.getSyncScopeID());
  return {nullptr, nullptr};
}

// Unlike load, store, and RMW, cmpxchg needs special handling to account
// for the boolean argument.
PtrParts SplitPtrStructs::visitAtomicCmpXchgInst(AtomicCmpXchgInst &AI) {
  Value *Ptr = AI.getPointerOperand();
  if (!isSplitFatPtr(Ptr->getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(&AI);

  Type *Ty = AI.getNewValOperand()->getType();
  AtomicOrdering Order = AI.getMergedOrdering();
  SyncScope::ID SSID = AI.getSyncScopeID();
  bool IsNonTemporal = AI.getMetadata(LLVMContext::MD_nontemporal);

  auto [Rsrc, Off] = getPtrParts(Ptr);
  insertPreMemOpFence(Order, SSID);

  uint32_t Aux = 0;
  if (IsNonTemporal)
    Aux |= AMDGPU::CPol::SLC;
  if (AI.isVolatile())
    Aux |= AMDGPU::CPol::VOLATILE;
  auto *Call =
      IRB.CreateIntrinsic(Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap, Ty,
                          {AI.getNewValOperand(), AI.getCompareOperand(), Rsrc,
                           Off, IRB.getInt32(0), IRB.getInt32(Aux)});
  copyMetadata(Call, &AI);
  setAlign(Call, AI.getAlign(), 2);
  Call->takeName(&AI);
  insertPostMemOpFence(Order, SSID);

  Value *Res = PoisonValue::get(AI.getType());
  Res = IRB.CreateInsertValue(Res, Call, 0);
  if (!AI.isWeak()) {
    Value *Succeeded = IRB.CreateICmpEQ(Call, AI.getCompareOperand());
    Res = IRB.CreateInsertValue(Res, Succeeded, 1);
  }
  SplitUsers.insert(&AI);
  AI.replaceAllUsesWith(Res);
  return {nullptr, nullptr};
}

PtrParts SplitPtrStructs::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  using namespace llvm::PatternMatch;
  Value *Ptr = GEP.getPointerOperand();
  if (!isSplitFatPtr(Ptr->getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(&GEP);

  auto [Rsrc, Off] = getPtrParts(Ptr);
  const DataLayout &DL = GEP.getDataLayout();
  bool IsNUW = GEP.hasNoUnsignedWrap();
  bool IsNUSW = GEP.hasNoUnsignedSignedWrap();

  StructType *ResTy = cast<StructType>(GEP.getType());
  Type *ResRsrcTy = ResTy->getElementType(0);
  VectorType *ResRsrcVecTy = dyn_cast<VectorType>(ResRsrcTy);
  bool BroadcastsPtr = ResRsrcVecTy && !isa<VectorType>(Off->getType());

  // In order to call emitGEPOffset() and thus not have to reimplement it,
  // we need the GEP result to have ptr addrspace(7) type.
  Type *FatPtrTy =
      ResRsrcTy->getWithNewType(IRB.getPtrTy(AMDGPUAS::BUFFER_FAT_POINTER));
  GEP.mutateType(FatPtrTy);
  Value *OffAccum = emitGEPOffset(&IRB, DL, &GEP);
  GEP.mutateType(ResTy);

  if (BroadcastsPtr) {
    Rsrc = IRB.CreateVectorSplat(ResRsrcVecTy->getElementCount(), Rsrc,
                                 Rsrc->getName());
    Off = IRB.CreateVectorSplat(ResRsrcVecTy->getElementCount(), Off,
                                Off->getName());
  }
  if (match(OffAccum, m_Zero())) { // Constant-zero offset
    SplitUsers.insert(&GEP);
    return {Rsrc, Off};
  }

  bool HasNonNegativeOff = false;
  if (auto *CI = dyn_cast<ConstantInt>(OffAccum)) {
    HasNonNegativeOff = !CI->isNegative();
  }
  Value *NewOff;
  if (match(Off, m_Zero())) {
    NewOff = OffAccum;
  } else {
    NewOff = IRB.CreateAdd(Off, OffAccum, "",
                           /*hasNUW=*/IsNUW || (IsNUSW && HasNonNegativeOff),
                           /*hasNSW=*/false);
  }
  copyMetadata(NewOff, &GEP);
  NewOff->takeName(&GEP);
  SplitUsers.insert(&GEP);
  return {Rsrc, NewOff};
}

PtrParts SplitPtrStructs::visitPtrToIntInst(PtrToIntInst &PI) {
  Value *Ptr = PI.getPointerOperand();
  if (!isSplitFatPtr(Ptr->getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(&PI);

  Type *ResTy = PI.getType();
  unsigned Width = ResTy->getScalarSizeInBits();

  auto [Rsrc, Off] = getPtrParts(Ptr);
  const DataLayout &DL = PI.getDataLayout();
  unsigned FatPtrWidth = DL.getPointerSizeInBits(AMDGPUAS::BUFFER_FAT_POINTER);

  Value *Res;
  if (Width <= BufferOffsetWidth) {
    Res = IRB.CreateIntCast(Off, ResTy, /*isSigned=*/false,
                            PI.getName() + ".off");
  } else {
    Value *RsrcInt = IRB.CreatePtrToInt(Rsrc, ResTy, PI.getName() + ".rsrc");
    Value *Shl = IRB.CreateShl(
        RsrcInt,
        ConstantExpr::getIntegerValue(ResTy, APInt(Width, BufferOffsetWidth)),
        "", Width >= FatPtrWidth, Width > FatPtrWidth);
    Value *OffCast = IRB.CreateIntCast(Off, ResTy, /*isSigned=*/false,
                                       PI.getName() + ".off");
    Res = IRB.CreateOr(Shl, OffCast);
  }

  copyMetadata(Res, &PI);
  Res->takeName(&PI);
  SplitUsers.insert(&PI);
  PI.replaceAllUsesWith(Res);
  return {nullptr, nullptr};
}

PtrParts SplitPtrStructs::visitIntToPtrInst(IntToPtrInst &IP) {
  if (!isSplitFatPtr(IP.getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(&IP);
  const DataLayout &DL = IP.getDataLayout();
  unsigned RsrcPtrWidth = DL.getPointerSizeInBits(AMDGPUAS::BUFFER_RESOURCE);
  Value *Int = IP.getOperand(0);
  Type *IntTy = Int->getType();
  Type *RsrcIntTy = IntTy->getWithNewBitWidth(RsrcPtrWidth);
  unsigned Width = IntTy->getScalarSizeInBits();

  auto *RetTy = cast<StructType>(IP.getType());
  Type *RsrcTy = RetTy->getElementType(0);
  Type *OffTy = RetTy->getElementType(1);
  Value *RsrcPart = IRB.CreateLShr(
      Int,
      ConstantExpr::getIntegerValue(IntTy, APInt(Width, BufferOffsetWidth)));
  Value *RsrcInt = IRB.CreateIntCast(RsrcPart, RsrcIntTy, /*isSigned=*/false);
  Value *Rsrc = IRB.CreateIntToPtr(RsrcInt, RsrcTy, IP.getName() + ".rsrc");
  Value *Off =
      IRB.CreateIntCast(Int, OffTy, /*IsSigned=*/false, IP.getName() + ".off");

  copyMetadata(Rsrc, &IP);
  SplitUsers.insert(&IP);
  return {Rsrc, Off};
}

PtrParts SplitPtrStructs::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
  // TODO(krzysz00): handle casts from ptr addrspace(7) to global pointers
  // by computing the effective address.
  if (!isSplitFatPtr(I.getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(&I);
  Value *In = I.getPointerOperand();
  // No-op casts preserve parts
  if (In->getType() == I.getType()) {
    auto [Rsrc, Off] = getPtrParts(In);
    SplitUsers.insert(&I);
    return {Rsrc, Off};
  }

  auto *ResTy = cast<StructType>(I.getType());
  Type *RsrcTy = ResTy->getElementType(0);
  Type *OffTy = ResTy->getElementType(1);
  Value *ZeroOff = Constant::getNullValue(OffTy);

  // Special case for null pointers, undef, and poison, which can be created by
  // address space propagation.
  auto *InConst = dyn_cast<Constant>(In);
  if (InConst && InConst->isNullValue()) {
    Value *NullRsrc = Constant::getNullValue(RsrcTy);
    SplitUsers.insert(&I);
    return {NullRsrc, ZeroOff};
  }
  if (isa<PoisonValue>(In)) {
    Value *PoisonRsrc = PoisonValue::get(RsrcTy);
    Value *PoisonOff = PoisonValue::get(OffTy);
    SplitUsers.insert(&I);
    return {PoisonRsrc, PoisonOff};
  }
  if (isa<UndefValue>(In)) {
    Value *UndefRsrc = UndefValue::get(RsrcTy);
    Value *UndefOff = UndefValue::get(OffTy);
    SplitUsers.insert(&I);
    return {UndefRsrc, UndefOff};
  }

  if (I.getSrcAddressSpace() != AMDGPUAS::BUFFER_RESOURCE)
    reportFatalUsageError(
        "only buffer resources (addrspace 8) and null/poison pointers can be "
        "cast to buffer fat pointers (addrspace 7)");
  SplitUsers.insert(&I);
  return {In, ZeroOff};
}

PtrParts SplitPtrStructs::visitICmpInst(ICmpInst &Cmp) {
  Value *Lhs = Cmp.getOperand(0);
  if (!isSplitFatPtr(Lhs->getType()))
    return {nullptr, nullptr};
  Value *Rhs = Cmp.getOperand(1);
  IRB.SetInsertPoint(&Cmp);
  ICmpInst::Predicate Pred = Cmp.getPredicate();

  assert((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
         "Pointer comparison is only equal or unequal");
  auto [LhsRsrc, LhsOff] = getPtrParts(Lhs);
  auto [RhsRsrc, RhsOff] = getPtrParts(Rhs);
  Value *RsrcCmp =
      IRB.CreateICmp(Pred, LhsRsrc, RhsRsrc, Cmp.getName() + ".rsrc");
  copyMetadata(RsrcCmp, &Cmp);
  Value *OffCmp = IRB.CreateICmp(Pred, LhsOff, RhsOff, Cmp.getName() + ".off");
  copyMetadata(OffCmp, &Cmp);

  Value *Res = nullptr;
  if (Pred == ICmpInst::ICMP_EQ)
    Res = IRB.CreateAnd(RsrcCmp, OffCmp);
  else if (Pred == ICmpInst::ICMP_NE)
    Res = IRB.CreateOr(RsrcCmp, OffCmp);
  copyMetadata(Res, &Cmp);
  Res->takeName(&Cmp);
  SplitUsers.insert(&Cmp);
  Cmp.replaceAllUsesWith(Res);
  return {nullptr, nullptr};
}

PtrParts SplitPtrStructs::visitFreezeInst(FreezeInst &I) {
  if (!isSplitFatPtr(I.getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(&I);
  auto [Rsrc, Off] = getPtrParts(I.getOperand(0));

  Value *RsrcRes = IRB.CreateFreeze(Rsrc, I.getName() + ".rsrc");
  copyMetadata(RsrcRes, &I);
  Value *OffRes = IRB.CreateFreeze(Off, I.getName() + ".off");
  copyMetadata(OffRes, &I);
  SplitUsers.insert(&I);
  return {RsrcRes, OffRes};
}

PtrParts SplitPtrStructs::visitExtractElementInst(ExtractElementInst &I) {
  if (!isSplitFatPtr(I.getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(&I);
  Value *Vec = I.getVectorOperand();
  Value *Idx = I.getIndexOperand();
  auto [Rsrc, Off] = getPtrParts(Vec);

  Value *RsrcRes = IRB.CreateExtractElement(Rsrc, Idx, I.getName() + ".rsrc");
  copyMetadata(RsrcRes, &I);
  Value *OffRes = IRB.CreateExtractElement(Off, Idx, I.getName() + ".off");
  copyMetadata(OffRes, &I);
  SplitUsers.insert(&I);
  return {RsrcRes, OffRes};
}

PtrParts SplitPtrStructs::visitInsertElementInst(InsertElementInst &I) {
  // The mutated instructions temporarily don't return vectors, and so
  // we need the generic getType() here to avoid crashes.
  if (!isSplitFatPtr(cast<Instruction>(I).getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(&I);
  Value *Vec = I.getOperand(0);
  Value *Elem = I.getOperand(1);
  Value *Idx = I.getOperand(2);
  auto [VecRsrc, VecOff] = getPtrParts(Vec);
  auto [ElemRsrc, ElemOff] = getPtrParts(Elem);

  Value *RsrcRes =
      IRB.CreateInsertElement(VecRsrc, ElemRsrc, Idx, I.getName() + ".rsrc");
  copyMetadata(RsrcRes, &I);
  Value *OffRes =
      IRB.CreateInsertElement(VecOff, ElemOff, Idx, I.getName() + ".off");
  copyMetadata(OffRes, &I);
  SplitUsers.insert(&I);
  return {RsrcRes, OffRes};
}

PtrParts SplitPtrStructs::visitShuffleVectorInst(ShuffleVectorInst &I) {
  // Cast is needed for the same reason as insertelement's.
  if (!isSplitFatPtr(cast<Instruction>(I).getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(&I);

  Value *V1 = I.getOperand(0);
  Value *V2 = I.getOperand(1);
  ArrayRef<int> Mask = I.getShuffleMask();
  auto [V1Rsrc, V1Off] = getPtrParts(V1);
  auto [V2Rsrc, V2Off] = getPtrParts(V2);

  Value *RsrcRes =
      IRB.CreateShuffleVector(V1Rsrc, V2Rsrc, Mask, I.getName() + ".rsrc");
  copyMetadata(RsrcRes, &I);
  Value *OffRes =
      IRB.CreateShuffleVector(V1Off, V2Off, Mask, I.getName() + ".off");
  copyMetadata(OffRes, &I);
  SplitUsers.insert(&I);
  return {RsrcRes, OffRes};
}

PtrParts SplitPtrStructs::visitPHINode(PHINode &PHI) {
  if (!isSplitFatPtr(PHI.getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(*PHI.getInsertionPointAfterDef());
  // Phi nodes will be handled in post-processing after we've visited every
  // instruction. However, instead of just returning {nullptr, nullptr},
  // we explicitly create the temporary extractvalue operations that are our
  // temporary results so that they end up at the beginning of the block with
  // the PHIs.
  Value *TmpRsrc = IRB.CreateExtractValue(&PHI, 0, PHI.getName() + ".rsrc");
  Value *TmpOff = IRB.CreateExtractValue(&PHI, 1, PHI.getName() + ".off");
  Conditionals.push_back(&PHI);
  SplitUsers.insert(&PHI);
  return {TmpRsrc, TmpOff};
}

PtrParts SplitPtrStructs::visitSelectInst(SelectInst &SI) {
  if (!isSplitFatPtr(SI.getType()))
    return {nullptr, nullptr};
  IRB.SetInsertPoint(&SI);

  Value *Cond = SI.getCondition();
  Value *True = SI.getTrueValue();
  Value *False = SI.getFalseValue();
  auto [TrueRsrc, TrueOff] = getPtrParts(True);
  auto [FalseRsrc, FalseOff] = getPtrParts(False);

  Value *RsrcRes =
      IRB.CreateSelect(Cond, TrueRsrc, FalseRsrc, SI.getName() + ".rsrc", &SI);
  copyMetadata(RsrcRes, &SI);
  Conditionals.push_back(&SI);
  Value *OffRes =
      IRB.CreateSelect(Cond, TrueOff, FalseOff, SI.getName() + ".off", &SI);
  copyMetadata(OffRes, &SI);
  SplitUsers.insert(&SI);
  return {RsrcRes, OffRes};
}

/// Returns true if this intrinsic needs to be removed when it is
/// applied to `ptr addrspace(7)` values. Calls to these intrinsics are
/// rewritten into calls to versions of that intrinsic on the resource
/// descriptor.
static bool isRemovablePointerIntrinsic(Intrinsic::ID IID) {
  switch (IID) {
  default:
    return false;
  case Intrinsic::amdgcn_make_buffer_rsrc:
  case Intrinsic::ptrmask:
  case Intrinsic::invariant_start:
  case Intrinsic::invariant_end:
  case Intrinsic::launder_invariant_group:
  case Intrinsic::strip_invariant_group:
  case Intrinsic::memcpy:
  case Intrinsic::memcpy_inline:
  case Intrinsic::memmove:
  case Intrinsic::memset:
  case Intrinsic::memset_inline:
  case Intrinsic::experimental_memset_pattern:
  case Intrinsic::amdgcn_load_to_lds:
    return true;
  }
}

PtrParts SplitPtrStructs::visitIntrinsicInst(IntrinsicInst &I) {
  Intrinsic::ID IID = I.getIntrinsicID();
  switch (IID) {
  default:
    break;
  case Intrinsic::amdgcn_make_buffer_rsrc: {
    if (!isSplitFatPtr(I.getType()))
      return {nullptr, nullptr};
    Value *Base = I.getArgOperand(0);
    Value *Stride = I.getArgOperand(1);
    Value *NumRecords = I.getArgOperand(2);
    Value *Flags = I.getArgOperand(3);
    auto *SplitType = cast<StructType>(I.getType());
    Type *RsrcType = SplitType->getElementType(0);
    Type *OffType = SplitType->getElementType(1);
    IRB.SetInsertPoint(&I);
    Value *Rsrc = IRB.CreateIntrinsic(IID, {RsrcType, Base->getType()},
                                      {Base, Stride, NumRecords, Flags});
    copyMetadata(Rsrc, &I);
    Rsrc->takeName(&I);
    Value *Zero = Constant::getNullValue(OffType);
    SplitUsers.insert(&I);
    return {Rsrc, Zero};
  }
  case Intrinsic::ptrmask: {
    Value *Ptr = I.getArgOperand(0);
    if (!isSplitFatPtr(Ptr->getType()))
      return {nullptr, nullptr};
    Value *Mask = I.getArgOperand(1);
    IRB.SetInsertPoint(&I);
    auto [Rsrc, Off] = getPtrParts(Ptr);
    if (Mask->getType() != Off->getType())
      reportFatalUsageError("offset width is not equal to index width of fat "
                            "pointer (data layout not set up correctly?)");
    Value *OffRes = IRB.CreateAnd(Off, Mask, I.getName() + ".off");
    copyMetadata(OffRes, &I);
    SplitUsers.insert(&I);
    return {Rsrc, OffRes};
  }
  // Pointer annotation intrinsics that, given their object-wide nature
  // operate on the resource part.
  case Intrinsic::invariant_start: {
    Value *Ptr = I.getArgOperand(1);
    if (!isSplitFatPtr(Ptr->getType()))
      return {nullptr, nullptr};
    IRB.SetInsertPoint(&I);
    auto [Rsrc, Off] = getPtrParts(Ptr);
    Type *NewTy = PointerType::get(I.getContext(), AMDGPUAS::BUFFER_RESOURCE);
    auto *NewRsrc = IRB.CreateIntrinsic(IID, {NewTy}, {I.getOperand(0), Rsrc});
    copyMetadata(NewRsrc, &I);
    NewRsrc->takeName(&I);
    SplitUsers.insert(&I);
    I.replaceAllUsesWith(NewRsrc);
    return {nullptr, nullptr};
  }
  case Intrinsic::invariant_end: {
    Value *RealPtr = I.getArgOperand(2);
    if (!isSplitFatPtr(RealPtr->getType()))
      return {nullptr, nullptr};
    IRB.SetInsertPoint(&I);
    Value *RealRsrc = getPtrParts(RealPtr).first;
    Value *InvPtr = I.getArgOperand(0);
    Value *Size = I.getArgOperand(1);
    Value *NewRsrc = IRB.CreateIntrinsic(IID, {RealRsrc->getType()},
                                         {InvPtr, Size, RealRsrc});
    copyMetadata(NewRsrc, &I);
    NewRsrc->takeName(&I);
    SplitUsers.insert(&I);
    I.replaceAllUsesWith(NewRsrc);
    return {nullptr, nullptr};
  }
  case Intrinsic::launder_invariant_group:
  case Intrinsic::strip_invariant_group: {
    Value *Ptr = I.getArgOperand(0);
    if (!isSplitFatPtr(Ptr->getType()))
      return {nullptr, nullptr};
    IRB.SetInsertPoint(&I);
    auto [Rsrc, Off] = getPtrParts(Ptr);
    Value *NewRsrc = IRB.CreateIntrinsic(IID, {Rsrc->getType()}, {Rsrc});
    copyMetadata(NewRsrc, &I);
    NewRsrc->takeName(&I);
    SplitUsers.insert(&I);
    return {NewRsrc, Off};
  }
  case Intrinsic::amdgcn_load_to_lds: {
    Value *Ptr = I.getArgOperand(0);
    if (!isSplitFatPtr(Ptr->getType()))
      return {nullptr, nullptr};
    IRB.SetInsertPoint(&I);
    auto [Rsrc, Off] = getPtrParts(Ptr);
    Value *LDSPtr = I.getArgOperand(1);
    Value *LoadSize = I.getArgOperand(2);
    Value *ImmOff = I.getArgOperand(3);
    Value *Aux = I.getArgOperand(4);
    Value *SOffset = IRB.getInt32(0);
    Instruction *NewLoad = IRB.CreateIntrinsic(
        Intrinsic::amdgcn_raw_ptr_buffer_load_lds, {},
        {Rsrc, LDSPtr, LoadSize, Off, SOffset, ImmOff, Aux});
    copyMetadata(NewLoad, &I);
    SplitUsers.insert(&I);
    I.replaceAllUsesWith(NewLoad);
    return {nullptr, nullptr};
  }
  }
  return {nullptr, nullptr};
}

void SplitPtrStructs::processFunction(Function &F) {
  ST = &TM->getSubtarget<GCNSubtarget>(F);
  SmallVector<Instruction *, 0> Originals(
      llvm::make_pointer_range(instructions(F)));
  LLVM_DEBUG(dbgs() << "Splitting pointer structs in function: " << F.getName()
                    << "\n");
  for (Instruction *I : Originals) {
    auto [Rsrc, Off] = visit(I);
    assert(((Rsrc && Off) || (!Rsrc && !Off)) &&
           "Can't have a resource but no offset");
    if (Rsrc)
      RsrcParts[I] = Rsrc;
    if (Off)
      OffParts[I] = Off;
  }
  processConditionals();
  killAndReplaceSplitInstructions(Originals);

  // Clean up after ourselves to save on memory.
  RsrcParts.clear();
  OffParts.clear();
  SplitUsers.clear();
  Conditionals.clear();
  ConditionalTemps.clear();
}

namespace {
class AMDGPULowerBufferFatPointers : public ModulePass {
public:
  static char ID;

  AMDGPULowerBufferFatPointers() : ModulePass(ID) {}

  bool run(Module &M, const TargetMachine &TM);
  bool runOnModule(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // namespace

/// Returns true if there are values that have a buffer fat pointer in them,
/// which means we'll need to perform rewrites on this function. As a side
/// effect, this will populate the type remapping cache.
static bool containsBufferFatPointers(const Function &F,
                                      BufferFatPtrToStructTypeMap *TypeMap) {
  bool HasFatPointers = false;
  for (const BasicBlock &BB : F)
    for (const Instruction &I : BB)
      HasFatPointers |= (I.getType() != TypeMap->remapType(I.getType()));
  return HasFatPointers;
}

static bool hasFatPointerInterface(const Function &F,
                                   BufferFatPtrToStructTypeMap *TypeMap) {
  Type *Ty = F.getFunctionType();
  return Ty != TypeMap->remapType(Ty);
}

/// Move the body of `OldF` into a new function, returning it.
static Function *moveFunctionAdaptingType(Function *OldF, FunctionType *NewTy,
                                          ValueToValueMapTy &CloneMap) {
  bool IsIntrinsic = OldF->isIntrinsic();
  Function *NewF =
      Function::Create(NewTy, OldF->getLinkage(), OldF->getAddressSpace());
  NewF->copyAttributesFrom(OldF);
  NewF->copyMetadata(OldF, 0);
  NewF->takeName(OldF);
  NewF->updateAfterNameChange();
  NewF->setDLLStorageClass(OldF->getDLLStorageClass());
  OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), NewF);

  while (!OldF->empty()) {
    BasicBlock *BB = &OldF->front();
    BB->removeFromParent();
    BB->insertInto(NewF);
    CloneMap[BB] = BB;
    for (Instruction &I : *BB) {
      CloneMap[&I] = &I;
    }
  }

  SmallVector<AttributeSet> ArgAttrs;
  AttributeList OldAttrs = OldF->getAttributes();

  for (auto [I, OldArg, NewArg] : enumerate(OldF->args(), NewF->args())) {
    CloneMap[&NewArg] = &OldArg;
    NewArg.takeName(&OldArg);
    Type *OldArgTy = OldArg.getType(), *NewArgTy = NewArg.getType();
    // Temporarily mutate type of `NewArg` to allow RAUW to work.
    NewArg.mutateType(OldArgTy);
    OldArg.replaceAllUsesWith(&NewArg);
    NewArg.mutateType(NewArgTy);

    AttributeSet ArgAttr = OldAttrs.getParamAttrs(I);
    // Intrinsics get their attributes fixed later.
    if (OldArgTy != NewArgTy && !IsIntrinsic)
      ArgAttr = ArgAttr.removeAttributes(
          NewF->getContext(),
          AttributeFuncs::typeIncompatible(NewArgTy, ArgAttr));
    ArgAttrs.push_back(ArgAttr);
  }
  AttributeSet RetAttrs = OldAttrs.getRetAttrs();
  if (OldF->getReturnType() != NewF->getReturnType() && !IsIntrinsic)
    RetAttrs = RetAttrs.removeAttributes(
        NewF->getContext(),
        AttributeFuncs::typeIncompatible(NewF->getReturnType(), RetAttrs));
  NewF->setAttributes(AttributeList::get(
      NewF->getContext(), OldAttrs.getFnAttrs(), RetAttrs, ArgAttrs));
  return NewF;
}

static void makeCloneInPraceMap(Function *F, ValueToValueMapTy &CloneMap) {
  for (Argument &A : F->args())
    CloneMap[&A] = &A;
  for (BasicBlock &BB : *F) {
    CloneMap[&BB] = &BB;
    for (Instruction &I : BB)
      CloneMap[&I] = &I;
  }
}

bool AMDGPULowerBufferFatPointers::run(Module &M, const TargetMachine &TM) {
  bool Changed = false;
  const DataLayout &DL = M.getDataLayout();
  // Record the functions which need to be remapped.
  // The second element of the pair indicates whether the function has to have
  // its arguments or return types adjusted.
  SmallVector<std::pair<Function *, bool>> NeedsRemap;

  LLVMContext &Ctx = M.getContext();

  BufferFatPtrToStructTypeMap StructTM(DL);
  BufferFatPtrToIntTypeMap IntTM(DL);
  for (const GlobalVariable &GV : M.globals()) {
    if (GV.getAddressSpace() == AMDGPUAS::BUFFER_FAT_POINTER) {
      // FIXME: Use DiagnosticInfo unsupported but it requires a Function
      Ctx.emitError("global variables with a buffer fat pointer address "
                    "space (7) are not supported");
      continue;
    }

    Type *VT = GV.getValueType();
    if (VT != StructTM.remapType(VT)) {
      // FIXME: Use DiagnosticInfo unsupported but it requires a Function
      Ctx.emitError("global variables that contain buffer fat pointers "
                    "(address space 7 pointers) are unsupported. Use "
                    "buffer resource pointers (address space 8) instead");
      continue;
    }
  }

  {
    // Collect all constant exprs and aggregates referenced by any function.
    SmallVector<Constant *, 8> Worklist;
    for (Function &F : M.functions())
      for (Instruction &I : instructions(F))
        for (Value *Op : I.operands())
          if (isa<ConstantExpr, ConstantAggregate>(Op))
            Worklist.push_back(cast<Constant>(Op));

    // Recursively look for any referenced buffer pointer constants.
    SmallPtrSet<Constant *, 8> Visited;
    SetVector<Constant *> BufferFatPtrConsts;
    while (!Worklist.empty()) {
      Constant *C = Worklist.pop_back_val();
      if (!Visited.insert(C).second)
        continue;
      if (isBufferFatPtrOrVector(C->getType()))
        BufferFatPtrConsts.insert(C);
      for (Value *Op : C->operands())
        if (isa<ConstantExpr, ConstantAggregate>(Op))
          Worklist.push_back(cast<Constant>(Op));
    }

    // Expand all constant expressions using fat buffer pointers to
    // instructions.
    Changed |= convertUsersOfConstantsToInstructions(
        BufferFatPtrConsts.getArrayRef(), /*RestrictToFunc=*/nullptr,
        /*RemoveDeadConstants=*/false, /*IncludeSelf=*/true);
  }

  StoreFatPtrsAsIntsAndExpandMemcpyVisitor MemOpsRewrite(&IntTM, DL,
                                                         M.getContext(), &TM);
  LegalizeBufferContentTypesVisitor BufferContentsTypeRewrite(DL,
                                                              M.getContext());
  for (Function &F : M.functions()) {
    bool InterfaceChange = hasFatPointerInterface(F, &StructTM);
    bool BodyChanges = containsBufferFatPointers(F, &StructTM);
    Changed |= MemOpsRewrite.processFunction(F);
    if (InterfaceChange || BodyChanges) {
      NeedsRemap.push_back(std::make_pair(&F, InterfaceChange));
      Changed |= BufferContentsTypeRewrite.processFunction(F);
    }
  }
  if (NeedsRemap.empty())
    return Changed;

  SmallVector<Function *> NeedsPostProcess;
  SmallVector<Function *> Intrinsics;
  // Keep one big map so as to memoize constants across functions.
  ValueToValueMapTy CloneMap;
  FatPtrConstMaterializer Materializer(&StructTM, CloneMap);

  ValueMapper LowerInFuncs(CloneMap, RF_None, &StructTM, &Materializer);
  for (auto [F, InterfaceChange] : NeedsRemap) {
    Function *NewF = F;
    if (InterfaceChange)
      NewF = moveFunctionAdaptingType(
          F, cast<FunctionType>(StructTM.remapType(F->getFunctionType())),
          CloneMap);
    else
      makeCloneInPraceMap(F, CloneMap);
    LowerInFuncs.remapFunction(*NewF);
    if (NewF->isIntrinsic())
      Intrinsics.push_back(NewF);
    else
      NeedsPostProcess.push_back(NewF);
    if (InterfaceChange) {
      F->replaceAllUsesWith(NewF);
      F->eraseFromParent();
    }
    Changed = true;
  }
  StructTM.clear();
  IntTM.clear();
  CloneMap.clear();

  SplitPtrStructs Splitter(DL, M.getContext(), &TM);
  for (Function *F : NeedsPostProcess)
    Splitter.processFunction(*F);
  for (Function *F : Intrinsics) {
    if (isRemovablePointerIntrinsic(F->getIntrinsicID())) {
      F->eraseFromParent();
    } else {
      std::optional<Function *> NewF = Intrinsic::remangleIntrinsicFunction(F);
      if (NewF)
        F->replaceAllUsesWith(*NewF);
    }
  }
  return Changed;
}

bool AMDGPULowerBufferFatPointers::runOnModule(Module &M) {
  TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
  const TargetMachine &TM = TPC.getTM<TargetMachine>();
  return run(M, TM);
}

char AMDGPULowerBufferFatPointers::ID = 0;

char &llvm::AMDGPULowerBufferFatPointersID = AMDGPULowerBufferFatPointers::ID;

void AMDGPULowerBufferFatPointers::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<TargetPassConfig>();
}

#define PASS_DESC "Lower buffer fat pointer operations to buffer resources"
INITIALIZE_PASS_BEGIN(AMDGPULowerBufferFatPointers, DEBUG_TYPE, PASS_DESC,
                      false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(AMDGPULowerBufferFatPointers, DEBUG_TYPE, PASS_DESC, false,
                    false)
#undef PASS_DESC

ModulePass *llvm::createAMDGPULowerBufferFatPointersPass() {
  return new AMDGPULowerBufferFatPointers();
}

PreservedAnalyses
AMDGPULowerBufferFatPointersPass::run(Module &M, ModuleAnalysisManager &MA) {
  return AMDGPULowerBufferFatPointers().run(M, TM) ? PreservedAnalyses::none()
                                                   : PreservedAnalyses::all();
}