1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
|
/*
* xxHash - Extremely Fast Hash algorithm
* Copyright (C) 2012-2023, Yann Collet
*
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at :
* - xxHash homepage: http://www.xxhash.com
* - xxHash source repository : https://github.com/Cyan4973/xxHash
*/
// xxhash64 is based on commit d2df04efcbef7d7f6886d345861e5dfda4edacc1. Removed
// everything but a simple interface for computing xxh64.
// xxh3_64bits is based on commit d5891596637d21366b9b1dcf2c0007a3edb26a9e (July
// 2023).
// xxh3_128bits is based on commit b0adcc54188c3130b1793e7b19c62eb1e669f7df
// (June 2024).
#include "llvm/Support/xxhash.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Endian.h"
#include <stdlib.h>
#if !defined(LLVM_XXH_USE_NEON)
#if (defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) && \
!defined(__ARM_BIG_ENDIAN)
#define LLVM_XXH_USE_NEON 1
#else
#define LLVM_XXH_USE_NEON 0
#endif
#endif
#if LLVM_XXH_USE_NEON
#include <arm_neon.h>
#endif
using namespace llvm;
using namespace support;
static uint64_t rotl64(uint64_t X, size_t R) {
return (X << R) | (X >> (64 - R));
}
constexpr uint32_t PRIME32_1 = 0x9E3779B1;
constexpr uint32_t PRIME32_2 = 0x85EBCA77;
constexpr uint32_t PRIME32_3 = 0xC2B2AE3D;
static const uint64_t PRIME64_1 = 11400714785074694791ULL;
static const uint64_t PRIME64_2 = 14029467366897019727ULL;
static const uint64_t PRIME64_3 = 1609587929392839161ULL;
static const uint64_t PRIME64_4 = 9650029242287828579ULL;
static const uint64_t PRIME64_5 = 2870177450012600261ULL;
static uint64_t round(uint64_t Acc, uint64_t Input) {
Acc += Input * PRIME64_2;
Acc = rotl64(Acc, 31);
Acc *= PRIME64_1;
return Acc;
}
static uint64_t mergeRound(uint64_t Acc, uint64_t Val) {
Val = round(0, Val);
Acc ^= Val;
Acc = Acc * PRIME64_1 + PRIME64_4;
return Acc;
}
static uint64_t XXH64_avalanche(uint64_t hash) {
hash ^= hash >> 33;
hash *= PRIME64_2;
hash ^= hash >> 29;
hash *= PRIME64_3;
hash ^= hash >> 32;
return hash;
}
uint64_t llvm::xxHash64(StringRef Data) {
size_t Len = Data.size();
uint64_t Seed = 0;
const unsigned char *P = Data.bytes_begin();
const unsigned char *const BEnd = Data.bytes_end();
uint64_t H64;
if (Len >= 32) {
const unsigned char *const Limit = BEnd - 32;
uint64_t V1 = Seed + PRIME64_1 + PRIME64_2;
uint64_t V2 = Seed + PRIME64_2;
uint64_t V3 = Seed + 0;
uint64_t V4 = Seed - PRIME64_1;
do {
V1 = round(V1, endian::read64le(P));
P += 8;
V2 = round(V2, endian::read64le(P));
P += 8;
V3 = round(V3, endian::read64le(P));
P += 8;
V4 = round(V4, endian::read64le(P));
P += 8;
} while (P <= Limit);
H64 = rotl64(V1, 1) + rotl64(V2, 7) + rotl64(V3, 12) + rotl64(V4, 18);
H64 = mergeRound(H64, V1);
H64 = mergeRound(H64, V2);
H64 = mergeRound(H64, V3);
H64 = mergeRound(H64, V4);
} else {
H64 = Seed + PRIME64_5;
}
H64 += (uint64_t)Len;
while (reinterpret_cast<uintptr_t>(P) + 8 <=
reinterpret_cast<uintptr_t>(BEnd)) {
uint64_t const K1 = round(0, endian::read64le(P));
H64 ^= K1;
H64 = rotl64(H64, 27) * PRIME64_1 + PRIME64_4;
P += 8;
}
if (reinterpret_cast<uintptr_t>(P) + 4 <= reinterpret_cast<uintptr_t>(BEnd)) {
H64 ^= (uint64_t)(endian::read32le(P)) * PRIME64_1;
H64 = rotl64(H64, 23) * PRIME64_2 + PRIME64_3;
P += 4;
}
while (P < BEnd) {
H64 ^= (*P) * PRIME64_5;
H64 = rotl64(H64, 11) * PRIME64_1;
P++;
}
return XXH64_avalanche(H64);
}
uint64_t llvm::xxHash64(ArrayRef<uint8_t> Data) {
return xxHash64({(const char *)Data.data(), Data.size()});
}
constexpr size_t XXH3_SECRETSIZE_MIN = 136;
constexpr size_t XXH_SECRET_DEFAULT_SIZE = 192;
/* Pseudorandom data taken directly from FARSH */
// clang-format off
constexpr uint8_t kSecret[XXH_SECRET_DEFAULT_SIZE] = {
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};
// clang-format on
constexpr uint64_t PRIME_MX1 = 0x165667919E3779F9;
constexpr uint64_t PRIME_MX2 = 0x9FB21C651E98DF25;
// Calculates a 64-bit to 128-bit multiply, then XOR folds it.
static uint64_t XXH3_mul128_fold64(uint64_t lhs, uint64_t rhs) {
#if defined(__SIZEOF_INT128__) || \
(defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
__uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
return uint64_t(product) ^ uint64_t(product >> 64);
#else
/* First calculate all of the cross products. */
const uint64_t lo_lo = (lhs & 0xFFFFFFFF) * (rhs & 0xFFFFFFFF);
const uint64_t hi_lo = (lhs >> 32) * (rhs & 0xFFFFFFFF);
const uint64_t lo_hi = (lhs & 0xFFFFFFFF) * (rhs >> 32);
const uint64_t hi_hi = (lhs >> 32) * (rhs >> 32);
/* Now add the products together. These will never overflow. */
const uint64_t cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
const uint64_t upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
const uint64_t lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
return upper ^ lower;
#endif
}
constexpr size_t XXH_STRIPE_LEN = 64;
constexpr size_t XXH_SECRET_CONSUME_RATE = 8;
constexpr size_t XXH_ACC_NB = XXH_STRIPE_LEN / sizeof(uint64_t);
static uint64_t XXH3_avalanche(uint64_t hash) {
hash ^= hash >> 37;
hash *= PRIME_MX1;
hash ^= hash >> 32;
return hash;
}
static uint64_t XXH3_len_1to3_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t seed) {
const uint8_t c1 = input[0];
const uint8_t c2 = input[len >> 1];
const uint8_t c3 = input[len - 1];
uint32_t combined = ((uint32_t)c1 << 16) | ((uint32_t)c2 << 24) |
((uint32_t)c3 << 0) | ((uint32_t)len << 8);
uint64_t bitflip =
(uint64_t)(endian::read32le(secret) ^ endian::read32le(secret + 4)) +
seed;
return XXH64_avalanche(uint64_t(combined) ^ bitflip);
}
static uint64_t XXH3_len_4to8_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t seed) {
seed ^= (uint64_t)byteswap(uint32_t(seed)) << 32;
const uint32_t input1 = endian::read32le(input);
const uint32_t input2 = endian::read32le(input + len - 4);
uint64_t acc =
(endian::read64le(secret + 8) ^ endian::read64le(secret + 16)) - seed;
const uint64_t input64 = (uint64_t)input2 | ((uint64_t)input1 << 32);
acc ^= input64;
// XXH3_rrmxmx(acc, len)
acc ^= rotl64(acc, 49) ^ rotl64(acc, 24);
acc *= PRIME_MX2;
acc ^= (acc >> 35) + (uint64_t)len;
acc *= PRIME_MX2;
return acc ^ (acc >> 28);
}
static uint64_t XXH3_len_9to16_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t const seed) {
uint64_t input_lo =
(endian::read64le(secret + 24) ^ endian::read64le(secret + 32)) + seed;
uint64_t input_hi =
(endian::read64le(secret + 40) ^ endian::read64le(secret + 48)) - seed;
input_lo ^= endian::read64le(input);
input_hi ^= endian::read64le(input + len - 8);
uint64_t acc = uint64_t(len) + byteswap(input_lo) + input_hi +
XXH3_mul128_fold64(input_lo, input_hi);
return XXH3_avalanche(acc);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t XXH3_len_0to16_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t const seed) {
if (LLVM_LIKELY(len > 8))
return XXH3_len_9to16_64b(input, len, secret, seed);
if (LLVM_LIKELY(len >= 4))
return XXH3_len_4to8_64b(input, len, secret, seed);
if (len != 0)
return XXH3_len_1to3_64b(input, len, secret, seed);
return XXH64_avalanche(seed ^ endian::read64le(secret + 56) ^
endian::read64le(secret + 64));
}
static uint64_t XXH3_mix16B(const uint8_t *input, uint8_t const *secret,
uint64_t seed) {
uint64_t lhs = seed;
uint64_t rhs = 0U - seed;
lhs += endian::read64le(secret);
rhs += endian::read64le(secret + 8);
lhs ^= endian::read64le(input);
rhs ^= endian::read64le(input + 8);
return XXH3_mul128_fold64(lhs, rhs);
}
/* For mid range keys, XXH3 uses a Mum-hash variant. */
LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t XXH3_len_17to128_64b(const uint8_t *input, size_t len,
const uint8_t *secret,
uint64_t const seed) {
uint64_t acc = len * PRIME64_1, acc_end;
acc += XXH3_mix16B(input + 0, secret + 0, seed);
acc_end = XXH3_mix16B(input + len - 16, secret + 16, seed);
if (len > 32) {
acc += XXH3_mix16B(input + 16, secret + 32, seed);
acc_end += XXH3_mix16B(input + len - 32, secret + 48, seed);
if (len > 64) {
acc += XXH3_mix16B(input + 32, secret + 64, seed);
acc_end += XXH3_mix16B(input + len - 48, secret + 80, seed);
if (len > 96) {
acc += XXH3_mix16B(input + 48, secret + 96, seed);
acc_end += XXH3_mix16B(input + len - 64, secret + 112, seed);
}
}
}
return XXH3_avalanche(acc + acc_end);
}
constexpr size_t XXH3_MIDSIZE_MAX = 240;
constexpr size_t XXH3_MIDSIZE_STARTOFFSET = 3;
constexpr size_t XXH3_MIDSIZE_LASTOFFSET = 17;
LLVM_ATTRIBUTE_NOINLINE
static uint64_t XXH3_len_129to240_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t seed) {
uint64_t acc = (uint64_t)len * PRIME64_1;
const unsigned nbRounds = len / 16;
for (unsigned i = 0; i < 8; ++i)
acc += XXH3_mix16B(input + 16 * i, secret + 16 * i, seed);
acc = XXH3_avalanche(acc);
for (unsigned i = 8; i < nbRounds; ++i) {
acc += XXH3_mix16B(input + 16 * i,
secret + 16 * (i - 8) + XXH3_MIDSIZE_STARTOFFSET, seed);
}
/* last bytes */
acc +=
XXH3_mix16B(input + len - 16,
secret + XXH3_SECRETSIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
return XXH3_avalanche(acc);
}
#if LLVM_XXH_USE_NEON
#define XXH3_accumulate_512 XXH3_accumulate_512_neon
#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
// NEON implementation based on commit a57f6cce2698049863af8c25787084ae0489d849
// (July 2024), with the following removed:
// - workaround for suboptimal codegen on older GCC
// - compiler barriers against instruction reordering
// - WebAssembly SIMD support
// - configurable split between NEON and scalar lanes (benchmarking shows no
// penalty when fully doing SIMD on the Apple M1)
#if defined(__GNUC__) || defined(__clang__)
#define XXH_ALIASING __attribute__((__may_alias__))
#else
#define XXH_ALIASING /* nothing */
#endif
typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64x2_t XXH_vld1q_u64(void const *ptr) {
return vreinterpretq_u64_u8(vld1q_u8((uint8_t const *)ptr));
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_accumulate_512_neon(uint64_t *acc, const uint8_t *input,
const uint8_t *secret) {
xxh_aliasing_uint64x2_t *const xacc = (xxh_aliasing_uint64x2_t *)acc;
#ifdef __clang__
#pragma clang loop unroll(full)
#endif
for (size_t i = 0; i < XXH_ACC_NB / 2; i += 2) {
/* data_vec = input[i]; */
uint64x2_t data_vec_1 = XXH_vld1q_u64(input + (i * 16));
uint64x2_t data_vec_2 = XXH_vld1q_u64(input + ((i + 1) * 16));
/* key_vec = secret[i]; */
uint64x2_t key_vec_1 = XXH_vld1q_u64(secret + (i * 16));
uint64x2_t key_vec_2 = XXH_vld1q_u64(secret + ((i + 1) * 16));
/* data_swap = swap(data_vec) */
uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
/* data_key = data_vec ^ key_vec; */
uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
/*
* If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
* de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
* get one vector with the low 32 bits of each lane, and one vector
* with the high 32 bits of each lane.
*
* The intrinsic returns a double vector because the original ARMv7-a
* instruction modified both arguments in place. AArch64 and SIMD128 emit
* two instructions from this intrinsic.
*
* [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
* [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
*/
uint32x4x2_t unzipped = vuzpq_u32(vreinterpretq_u32_u64(data_key_1),
vreinterpretq_u32_u64(data_key_2));
/* data_key_lo = data_key & 0xFFFFFFFF */
uint32x4_t data_key_lo = unzipped.val[0];
/* data_key_hi = data_key >> 32 */
uint32x4_t data_key_hi = unzipped.val[1];
/*
* Then, we can split the vectors horizontally and multiply which, as for
* most widening intrinsics, have a variant that works on both high half
* vectors for free on AArch64. A similar instruction is available on
* SIMD128.
*
* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
*/
uint64x2_t sum_1 = vmlal_u32(data_swap_1, vget_low_u32(data_key_lo),
vget_low_u32(data_key_hi));
uint64x2_t sum_2 = vmlal_u32(data_swap_2, vget_high_u32(data_key_lo),
vget_high_u32(data_key_hi));
/* xacc[i] = acc_vec + sum; */
xacc[i] = vaddq_u64(xacc[i], sum_1);
xacc[i + 1] = vaddq_u64(xacc[i + 1], sum_2);
}
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_scrambleAcc_neon(uint64_t *acc, const uint8_t *secret) {
xxh_aliasing_uint64x2_t *const xacc = (xxh_aliasing_uint64x2_t *)acc;
/* { prime32_1, prime32_1 } */
uint32x2_t const kPrimeLo = vdup_n_u32(PRIME32_1);
/* { 0, prime32_1, 0, prime32_1 } */
uint32x4_t const kPrimeHi =
vreinterpretq_u32_u64(vdupq_n_u64((uint64_t)PRIME32_1 << 32));
for (size_t i = 0; i < XXH_ACC_NB / 2; ++i) {
/* xacc[i] ^= (xacc[i] >> 47); */
uint64x2_t acc_vec = XXH_vld1q_u64(acc + (2 * i));
uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
/* xacc[i] ^= secret[i]; */
uint64x2_t key_vec = XXH_vld1q_u64(secret + (i * 16));
uint64x2_t data_key = veorq_u64(data_vec, key_vec);
/*
* xacc[i] *= XXH_PRIME32_1
*
* Expanded version with portable NEON intrinsics
*
* lo(x) * lo(y) + (hi(x) * lo(y) << 32)
*
* prod_hi = hi(data_key) * lo(prime) << 32
*
* Since we only need 32 bits of this multiply a trick can be used,
* reinterpreting the vector as a uint32x4_t and multiplying by
* { 0, prime, 0, prime } to cancel out the unwanted bits and avoid the
* shift.
*/
uint32x4_t prod_hi = vmulq_u32(vreinterpretq_u32_u64(data_key), kPrimeHi);
/* Extract low bits for vmlal_u32 */
uint32x2_t data_key_lo = vmovn_u64(data_key);
/* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
}
}
#else
#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_accumulate_512_scalar(uint64_t *acc, const uint8_t *input,
const uint8_t *secret) {
for (size_t i = 0; i < XXH_ACC_NB; ++i) {
uint64_t data_val = endian::read64le(input + 8 * i);
uint64_t data_key = data_val ^ endian::read64le(secret + 8 * i);
acc[i ^ 1] += data_val;
acc[i] += uint32_t(data_key) * (data_key >> 32);
}
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_scrambleAcc_scalar(uint64_t *acc, const uint8_t *secret) {
for (size_t i = 0; i < XXH_ACC_NB; ++i) {
acc[i] ^= acc[i] >> 47;
acc[i] ^= endian::read64le(secret + 8 * i);
acc[i] *= PRIME32_1;
}
}
#endif
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_accumulate(uint64_t *acc, const uint8_t *input,
const uint8_t *secret, size_t nbStripes) {
for (size_t n = 0; n < nbStripes; ++n) {
XXH3_accumulate_512(acc, input + n * XXH_STRIPE_LEN,
secret + n * XXH_SECRET_CONSUME_RATE);
}
}
static uint64_t XXH3_mix2Accs(const uint64_t *acc, const uint8_t *secret) {
return XXH3_mul128_fold64(acc[0] ^ endian::read64le(secret),
acc[1] ^ endian::read64le(secret + 8));
}
static uint64_t XXH3_mergeAccs(const uint64_t *acc, const uint8_t *key,
uint64_t start) {
uint64_t result64 = start;
for (size_t i = 0; i < 4; ++i)
result64 += XXH3_mix2Accs(acc + 2 * i, key + 16 * i);
return XXH3_avalanche(result64);
}
LLVM_ATTRIBUTE_NOINLINE
static uint64_t XXH3_hashLong_64b(const uint8_t *input, size_t len,
const uint8_t *secret, size_t secretSize) {
const size_t nbStripesPerBlock =
(secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
const size_t block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
const size_t nb_blocks = (len - 1) / block_len;
alignas(16) uint64_t acc[XXH_ACC_NB] = {
PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3,
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1,
};
for (size_t n = 0; n < nb_blocks; ++n) {
XXH3_accumulate(acc, input + n * block_len, secret, nbStripesPerBlock);
XXH3_scrambleAcc(acc, secret + secretSize - XXH_STRIPE_LEN);
}
/* last partial block */
const size_t nbStripes = (len - 1 - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
assert(nbStripes <= secretSize / XXH_SECRET_CONSUME_RATE);
XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes);
/* last stripe */
constexpr size_t XXH_SECRET_LASTACC_START = 7;
XXH3_accumulate_512(acc, input + len - XXH_STRIPE_LEN,
secret + secretSize - XXH_STRIPE_LEN -
XXH_SECRET_LASTACC_START);
/* converge into final hash */
constexpr size_t XXH_SECRET_MERGEACCS_START = 11;
return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
(uint64_t)len * PRIME64_1);
}
uint64_t llvm::xxh3_64bits(ArrayRef<uint8_t> data) {
auto *in = data.data();
size_t len = data.size();
if (len <= 16)
return XXH3_len_0to16_64b(in, len, kSecret, 0);
if (len <= 128)
return XXH3_len_17to128_64b(in, len, kSecret, 0);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_64b(in, len, kSecret, 0);
return XXH3_hashLong_64b(in, len, kSecret, sizeof(kSecret));
}
/* ==========================================
* XXH3 128 bits (a.k.a XXH128)
* ==========================================
* XXH3's 128-bit variant has better mixing and strength than the 64-bit
* variant, even without counting the significantly larger output size.
*
* For example, extra steps are taken to avoid the seed-dependent collisions
* in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
*
* This strength naturally comes at the cost of some speed, especially on short
* lengths. Note that longer hashes are about as fast as the 64-bit version
* due to it using only a slight modification of the 64-bit loop.
*
* XXH128 is also more oriented towards 64-bit machines. It is still extremely
* fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
*/
/*!
* @internal
* @def XXH_rotl32(x,r)
* @brief 32-bit rotate left.
*
* @param x The 32-bit integer to be rotated.
* @param r The number of bits to rotate.
* @pre
* @p r > 0 && @p r < 32
* @note
* @p x and @p r may be evaluated multiple times.
* @return The rotated result.
*/
#if __has_builtin(__builtin_rotateleft32) && \
__has_builtin(__builtin_rotateleft64)
#define XXH_rotl32 __builtin_rotateleft32
#define XXH_rotl64 __builtin_rotateleft64
/* Note: although _rotl exists for minGW (GCC under windows), performance seems
* poor */
#elif defined(_MSC_VER)
#define XXH_rotl32(x, r) _rotl(x, r)
#define XXH_rotl64(x, r) _rotl64(x, r)
#else
#define XXH_rotl32(x, r) (((x) << (r)) | ((x) >> (32 - (r))))
#define XXH_rotl64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
#endif
#define XXH_mult32to64(x, y) ((uint64_t)(uint32_t)(x) * (uint64_t)(uint32_t)(y))
/*!
* @brief Calculates a 64->128-bit long multiply.
*
* Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
* version.
*
* @param lhs , rhs The 64-bit integers to be multiplied
* @return The 128-bit result represented in an @ref XXH128_hash_t.
*/
static XXH128_hash_t XXH_mult64to128(uint64_t lhs, uint64_t rhs) {
/*
* GCC/Clang __uint128_t method.
*
* On most 64-bit targets, GCC and Clang define a __uint128_t type.
* This is usually the best way as it usually uses a native long 64-bit
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
*
* Usually.
*
* Despite being a 32-bit platform, Clang (and emscripten) define this type
* despite not having the arithmetic for it. This results in a laggy
* compiler builtin call which calculates a full 128-bit multiply.
* In that case it is best to use the portable one.
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
*/
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) && \
defined(__SIZEOF_INT128__) || \
(defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
__uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
XXH128_hash_t r128;
r128.low64 = (uint64_t)(product);
r128.high64 = (uint64_t)(product >> 64);
return r128;
/*
* MSVC for x64's _umul128 method.
*
* uint64_t _umul128(uint64_t Multiplier, uint64_t Multiplicand, uint64_t
* *HighProduct);
*
* This compiles to single operand MUL on x64.
*/
#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
#ifndef _MSC_VER
#pragma intrinsic(_umul128)
#endif
uint64_t product_high;
uint64_t const product_low = _umul128(lhs, rhs, &product_high);
XXH128_hash_t r128;
r128.low64 = product_low;
r128.high64 = product_high;
return r128;
/*
* MSVC for ARM64's __umulh method.
*
* This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
*/
#elif defined(_M_ARM64) || defined(_M_ARM64EC)
#ifndef _MSC_VER
#pragma intrinsic(__umulh)
#endif
XXH128_hash_t r128;
r128.low64 = lhs * rhs;
r128.high64 = __umulh(lhs, rhs);
return r128;
#else
/*
* Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
*
* This is a fast and simple grade school multiply, which is shown below
* with base 10 arithmetic instead of base 0x100000000.
*
* 9 3 // D2 lhs = 93
* x 7 5 // D2 rhs = 75
* ----------
* 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
* 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
* 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
* + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
* ---------
* 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
* + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
* ---------
* 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
*
* The reasons for adding the products like this are:
* 1. It avoids manual carry tracking. Just like how
* (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
* This avoids a lot of complexity.
*
* 2. It hints for, and on Clang, compiles to, the powerful UMAAL
* instruction available in ARM's Digital Signal Processing extension
* in 32-bit ARMv6 and later, which is shown below:
*
* void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
* {
* uint64_t product = (uint64_t)*RdLo * (uint64_t)*RdHi + Rn + Rm;
* *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
* *RdHi = (xxh_u32)(product >> 32);
* }
*
* This instruction was designed for efficient long multiplication, and
* allows this to be calculated in only 4 instructions at speeds
* comparable to some 64-bit ALUs.
*
* 3. It isn't terrible on other platforms. Usually this will be a couple
* of 32-bit ADD/ADCs.
*/
/* First calculate all of the cross products. */
uint64_t const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
uint64_t const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
uint64_t const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
uint64_t const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
/* Now add the products together. These will never overflow. */
uint64_t const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
uint64_t const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
uint64_t const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
XXH128_hash_t r128;
r128.low64 = lower;
r128.high64 = upper;
return r128;
#endif
}
/*! Seems to produce slightly better code on GCC for some reason. */
LLVM_ATTRIBUTE_ALWAYS_INLINE constexpr uint64_t XXH_xorshift64(uint64_t v64,
int shift) {
return v64 ^ (v64 >> shift);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH3_len_1to3_128b(const uint8_t *input, size_t len, const uint8_t *secret,
uint64_t seed) {
/* A doubled version of 1to3_64b with different constants. */
/*
* len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
* len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
* len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
*/
uint8_t const c1 = input[0];
uint8_t const c2 = input[len >> 1];
uint8_t const c3 = input[len - 1];
uint32_t const combinedl = ((uint32_t)c1 << 16) | ((uint32_t)c2 << 24) |
((uint32_t)c3 << 0) | ((uint32_t)len << 8);
uint32_t const combinedh = XXH_rotl32(byteswap(combinedl), 13);
uint64_t const bitflipl =
(endian::read32le(secret) ^ endian::read32le(secret + 4)) + seed;
uint64_t const bitfliph =
(endian::read32le(secret + 8) ^ endian::read32le(secret + 12)) - seed;
uint64_t const keyed_lo = (uint64_t)combinedl ^ bitflipl;
uint64_t const keyed_hi = (uint64_t)combinedh ^ bitfliph;
XXH128_hash_t h128;
h128.low64 = XXH64_avalanche(keyed_lo);
h128.high64 = XXH64_avalanche(keyed_hi);
return h128;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH3_len_4to8_128b(const uint8_t *input, size_t len, const uint8_t *secret,
uint64_t seed) {
seed ^= (uint64_t)byteswap((uint32_t)seed) << 32;
uint32_t const input_lo = endian::read32le(input);
uint32_t const input_hi = endian::read32le(input + len - 4);
uint64_t const input_64 = input_lo + ((uint64_t)input_hi << 32);
uint64_t const bitflip =
(endian::read64le(secret + 16) ^ endian::read64le(secret + 24)) + seed;
uint64_t const keyed = input_64 ^ bitflip;
/* Shift len to the left to ensure it is even, this avoids even multiplies.
*/
XXH128_hash_t m128 = XXH_mult64to128(keyed, PRIME64_1 + (len << 2));
m128.high64 += (m128.low64 << 1);
m128.low64 ^= (m128.high64 >> 3);
m128.low64 = XXH_xorshift64(m128.low64, 35);
m128.low64 *= PRIME_MX2;
m128.low64 = XXH_xorshift64(m128.low64, 28);
m128.high64 = XXH3_avalanche(m128.high64);
return m128;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH3_len_9to16_128b(const uint8_t *input, size_t len, const uint8_t *secret,
uint64_t seed) {
uint64_t const bitflipl =
(endian::read64le(secret + 32) ^ endian::read64le(secret + 40)) - seed;
uint64_t const bitfliph =
(endian::read64le(secret + 48) ^ endian::read64le(secret + 56)) + seed;
uint64_t const input_lo = endian::read64le(input);
uint64_t input_hi = endian::read64le(input + len - 8);
XXH128_hash_t m128 =
XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, PRIME64_1);
/*
* Put len in the middle of m128 to ensure that the length gets mixed to
* both the low and high bits in the 128x64 multiply below.
*/
m128.low64 += (uint64_t)(len - 1) << 54;
input_hi ^= bitfliph;
/*
* Add the high 32 bits of input_hi to the high 32 bits of m128, then
* add the long product of the low 32 bits of input_hi and PRIME32_2 to
* the high 64 bits of m128.
*
* The best approach to this operation is different on 32-bit and 64-bit.
*/
if (sizeof(void *) < sizeof(uint64_t)) { /* 32-bit */
/*
* 32-bit optimized version, which is more readable.
*
* On 32-bit, it removes an ADC and delays a dependency between the two
* halves of m128.high64, but it generates an extra mask on 64-bit.
*/
m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) +
XXH_mult32to64((uint32_t)input_hi, PRIME32_2);
} else {
/*
* 64-bit optimized (albeit more confusing) version.
*
* Uses some properties of addition and multiplication to remove the mask:
*
* Let:
* a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
* b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
* c = PRIME32_2
*
* a + (b * c)
* Inverse Property: x + y - x == y
* a + (b * (1 + c - 1))
* Distributive Property: x * (y + z) == (x * y) + (x * z)
* a + (b * 1) + (b * (c - 1))
* Identity Property: x * 1 == x
* a + b + (b * (c - 1))
*
* Substitute a, b, and c:
* input_hi.hi + input_hi.lo + ((uint64_t)input_hi.lo * (PRIME32_2
* - 1))
*
* Since input_hi.hi + input_hi.lo == input_hi, we get this:
* input_hi + ((uint64_t)input_hi.lo * (PRIME32_2 - 1))
*/
m128.high64 += input_hi + XXH_mult32to64((uint32_t)input_hi, PRIME32_2 - 1);
}
/* m128 ^= XXH_swap64(m128 >> 64); */
m128.low64 ^= byteswap(m128.high64);
/* 128x64 multiply: h128 = m128 * PRIME64_2; */
XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2);
h128.high64 += m128.high64 * PRIME64_2;
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = XXH3_avalanche(h128.high64);
return h128;
}
/*
* Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
*/
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH3_len_0to16_128b(const uint8_t *input, size_t len, const uint8_t *secret,
uint64_t seed) {
if (len > 8)
return XXH3_len_9to16_128b(input, len, secret, seed);
if (len >= 4)
return XXH3_len_4to8_128b(input, len, secret, seed);
if (len)
return XXH3_len_1to3_128b(input, len, secret, seed);
XXH128_hash_t h128;
uint64_t const bitflipl =
endian::read64le(secret + 64) ^ endian::read64le(secret + 72);
uint64_t const bitfliph =
endian::read64le(secret + 80) ^ endian::read64le(secret + 88);
h128.low64 = XXH64_avalanche(seed ^ bitflipl);
h128.high64 = XXH64_avalanche(seed ^ bitfliph);
return h128;
}
/*
* A bit slower than XXH3_mix16B, but handles multiply by zero better.
*/
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH128_mix32B(XXH128_hash_t acc, const uint8_t *input_1, const uint8_t *input_2,
const uint8_t *secret, uint64_t seed) {
acc.low64 += XXH3_mix16B(input_1, secret + 0, seed);
acc.low64 ^= endian::read64le(input_2) + endian::read64le(input_2 + 8);
acc.high64 += XXH3_mix16B(input_2, secret + 16, seed);
acc.high64 ^= endian::read64le(input_1) + endian::read64le(input_1 + 8);
return acc;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH3_len_17to128_128b(const uint8_t *input, size_t len, const uint8_t *secret,
size_t secretSize, uint64_t seed) {
(void)secretSize;
XXH128_hash_t acc;
acc.low64 = len * PRIME64_1;
acc.high64 = 0;
if (len > 32) {
if (len > 64) {
if (len > 96) {
acc =
XXH128_mix32B(acc, input + 48, input + len - 64, secret + 96, seed);
}
acc = XXH128_mix32B(acc, input + 32, input + len - 48, secret + 64, seed);
}
acc = XXH128_mix32B(acc, input + 16, input + len - 32, secret + 32, seed);
}
acc = XXH128_mix32B(acc, input, input + len - 16, secret, seed);
XXH128_hash_t h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) +
((len - seed) * PRIME64_2);
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = (uint64_t)0 - XXH3_avalanche(h128.high64);
return h128;
}
LLVM_ATTRIBUTE_NOINLINE static XXH128_hash_t
XXH3_len_129to240_128b(const uint8_t *input, size_t len, const uint8_t *secret,
size_t secretSize, uint64_t seed) {
(void)secretSize;
XXH128_hash_t acc;
unsigned i;
acc.low64 = len * PRIME64_1;
acc.high64 = 0;
/*
* We set as `i` as offset + 32. We do this so that unchanged
* `len` can be used as upper bound. This reaches a sweet spot
* where both x86 and aarch64 get simple agen and good codegen
* for the loop.
*/
for (i = 32; i < 160; i += 32) {
acc = XXH128_mix32B(acc, input + i - 32, input + i - 16, secret + i - 32,
seed);
}
acc.low64 = XXH3_avalanche(acc.low64);
acc.high64 = XXH3_avalanche(acc.high64);
/*
* NB: `i <= len` will duplicate the last 32-bytes if
* len % 32 was zero. This is an unfortunate necessity to keep
* the hash result stable.
*/
for (i = 160; i <= len; i += 32) {
acc = XXH128_mix32B(acc, input + i - 32, input + i - 16,
secret + XXH3_MIDSIZE_STARTOFFSET + i - 160, seed);
}
/* last bytes */
acc =
XXH128_mix32B(acc, input + len - 16, input + len - 32,
secret + XXH3_SECRETSIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
(uint64_t)0 - seed);
XXH128_hash_t h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) +
((len - seed) * PRIME64_2);
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = (uint64_t)0 - XXH3_avalanche(h128.high64);
return h128;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE XXH128_hash_t
XXH3_hashLong_128b(const uint8_t *input, size_t len, const uint8_t *secret,
size_t secretSize) {
const size_t nbStripesPerBlock =
(secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
const size_t block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
const size_t nb_blocks = (len - 1) / block_len;
alignas(16) uint64_t acc[XXH_ACC_NB] = {
PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3,
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1,
};
for (size_t n = 0; n < nb_blocks; ++n) {
XXH3_accumulate(acc, input + n * block_len, secret, nbStripesPerBlock);
XXH3_scrambleAcc(acc, secret + secretSize - XXH_STRIPE_LEN);
}
/* last partial block */
const size_t nbStripes = (len - 1 - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
assert(nbStripes <= secretSize / XXH_SECRET_CONSUME_RATE);
XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes);
/* last stripe */
constexpr size_t XXH_SECRET_LASTACC_START = 7;
XXH3_accumulate_512(acc, input + len - XXH_STRIPE_LEN,
secret + secretSize - XXH_STRIPE_LEN -
XXH_SECRET_LASTACC_START);
/* converge into final hash */
static_assert(sizeof(acc) == 64);
XXH128_hash_t h128;
constexpr size_t XXH_SECRET_MERGEACCS_START = 11;
h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
(uint64_t)len * PRIME64_1);
h128.high64 = XXH3_mergeAccs(
acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
~((uint64_t)len * PRIME64_2));
return h128;
}
llvm::XXH128_hash_t llvm::xxh3_128bits(ArrayRef<uint8_t> data) {
size_t len = data.size();
const uint8_t *input = data.data();
/*
* If an action is to be taken if `secret` conditions are not respected,
* it should be done here.
* For now, it's a contract pre-condition.
* Adding a check and a branch here would cost performance at every hash.
*/
if (len <= 16)
return XXH3_len_0to16_128b(input, len, kSecret, /*seed64=*/0);
if (len <= 128)
return XXH3_len_17to128_128b(input, len, kSecret, sizeof(kSecret),
/*seed64=*/0);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_128b(input, len, kSecret, sizeof(kSecret),
/*seed64=*/0);
return XXH3_hashLong_128b(input, len, kSecret, sizeof(kSecret));
}
|