1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
//===- IndexedMemProfData.h - MemProf format support ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// MemProf data is serialized in writeMemProf provided in this file.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/DataAccessProf.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/ProfileData/MemProf.h"
#include "llvm/ProfileData/MemProfRadixTree.h"
#include "llvm/ProfileData/MemProfSummary.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/OnDiskHashTable.h"
namespace llvm {
// Serialize Schema.
static void writeMemProfSchema(ProfOStream &OS,
const memprof::MemProfSchema &Schema) {
OS.write(static_cast<uint64_t>(Schema.size()));
for (const auto Id : Schema)
OS.write(static_cast<uint64_t>(Id));
}
// Serialize MemProfRecordData. Return RecordTableOffset.
static uint64_t writeMemProfRecords(
ProfOStream &OS,
llvm::MapVector<GlobalValue::GUID, memprof::IndexedMemProfRecord>
&MemProfRecordData,
memprof::MemProfSchema *Schema, memprof::IndexedVersion Version,
llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
*MemProfCallStackIndexes = nullptr) {
memprof::RecordWriterTrait RecordWriter(Schema, Version,
MemProfCallStackIndexes);
OnDiskChainedHashTableGenerator<memprof::RecordWriterTrait>
RecordTableGenerator;
for (auto &[GUID, Record] : MemProfRecordData) {
// Insert the key (func hash) and value (memprof record).
RecordTableGenerator.insert(GUID, Record, RecordWriter);
}
// Release the memory of this MapVector as it is no longer needed.
MemProfRecordData.clear();
// The call to Emit invokes RecordWriterTrait::EmitData which destructs
// the memprof record copies owned by the RecordTableGenerator. This works
// because the RecordTableGenerator is not used after this point.
return RecordTableGenerator.Emit(OS.OS, RecordWriter);
}
// Serialize MemProfFrameData. Return FrameTableOffset.
static uint64_t writeMemProfFrames(
ProfOStream &OS,
llvm::MapVector<memprof::FrameId, memprof::Frame> &MemProfFrameData) {
OnDiskChainedHashTableGenerator<memprof::FrameWriterTrait>
FrameTableGenerator;
for (auto &[FrameId, Frame] : MemProfFrameData) {
// Insert the key (frame id) and value (frame contents).
FrameTableGenerator.insert(FrameId, Frame);
}
// Release the memory of this MapVector as it is no longer needed.
MemProfFrameData.clear();
return FrameTableGenerator.Emit(OS.OS);
}
// Serialize MemProfFrameData. Return the mapping from FrameIds to their
// indexes within the frame array.
static llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId>
writeMemProfFrameArray(
ProfOStream &OS,
llvm::MapVector<memprof::FrameId, memprof::Frame> &MemProfFrameData,
llvm::DenseMap<memprof::FrameId, memprof::FrameStat> &FrameHistogram) {
// Mappings from FrameIds to array indexes.
llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId> MemProfFrameIndexes;
// Compute the order in which we serialize Frames. The order does not matter
// in terms of correctness, but we still compute it for deserialization
// performance. Specifically, if we serialize frequently used Frames one
// after another, we have better cache utilization. For two Frames that
// appear equally frequently, we break a tie by serializing the one that tends
// to appear earlier in call stacks. We implement the tie-breaking mechanism
// by computing the sum of indexes within call stacks for each Frame. If we
// still have a tie, then we just resort to compare two FrameIds, which is
// just for stability of output.
std::vector<std::pair<memprof::FrameId, const memprof::Frame *>> FrameIdOrder;
FrameIdOrder.reserve(MemProfFrameData.size());
for (const auto &[Id, Frame] : MemProfFrameData)
FrameIdOrder.emplace_back(Id, &Frame);
assert(MemProfFrameData.size() == FrameIdOrder.size());
llvm::sort(FrameIdOrder,
[&](const std::pair<memprof::FrameId, const memprof::Frame *> &L,
const std::pair<memprof::FrameId, const memprof::Frame *> &R) {
const auto &SL = FrameHistogram[L.first];
const auto &SR = FrameHistogram[R.first];
// Popular FrameIds should come first.
if (SL.Count != SR.Count)
return SL.Count > SR.Count;
// If they are equally popular, then the one that tends to appear
// earlier in call stacks should come first.
if (SL.PositionSum != SR.PositionSum)
return SL.PositionSum < SR.PositionSum;
// Compare their FrameIds for sort stability.
return L.first < R.first;
});
// Serialize all frames while creating mappings from linear IDs to FrameIds.
uint64_t Index = 0;
MemProfFrameIndexes.reserve(FrameIdOrder.size());
for (const auto &[Id, F] : FrameIdOrder) {
F->serialize(OS.OS);
MemProfFrameIndexes.insert({Id, Index});
++Index;
}
assert(MemProfFrameData.size() == Index);
assert(MemProfFrameData.size() == MemProfFrameIndexes.size());
// Release the memory of this MapVector as it is no longer needed.
MemProfFrameData.clear();
return MemProfFrameIndexes;
}
static uint64_t writeMemProfCallStacks(
ProfOStream &OS,
llvm::MapVector<memprof::CallStackId, llvm::SmallVector<memprof::FrameId>>
&MemProfCallStackData) {
OnDiskChainedHashTableGenerator<memprof::CallStackWriterTrait>
CallStackTableGenerator;
for (auto &[CSId, CallStack] : MemProfCallStackData)
CallStackTableGenerator.insert(CSId, CallStack);
// Release the memory of this vector as it is no longer needed.
MemProfCallStackData.clear();
return CallStackTableGenerator.Emit(OS.OS);
}
static llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
writeMemProfCallStackArray(
ProfOStream &OS,
llvm::MapVector<memprof::CallStackId, llvm::SmallVector<memprof::FrameId>>
&MemProfCallStackData,
llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId>
&MemProfFrameIndexes,
llvm::DenseMap<memprof::FrameId, memprof::FrameStat> &FrameHistogram,
unsigned &NumElements) {
llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
MemProfCallStackIndexes;
memprof::CallStackRadixTreeBuilder<memprof::FrameId> Builder;
Builder.build(std::move(MemProfCallStackData), &MemProfFrameIndexes,
FrameHistogram);
for (auto I : Builder.getRadixArray())
OS.write32(I);
NumElements = Builder.getRadixArray().size();
MemProfCallStackIndexes = Builder.takeCallStackPos();
// Release the memory of this vector as it is no longer needed.
MemProfCallStackData.clear();
return MemProfCallStackIndexes;
}
// Write out MemProf Version2 as follows:
// uint64_t Version
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
// uint64_t FramePayloadOffset = Offset for the frame payload
// uint64_t FrameTableOffset = FrameTableGenerator.Emit
// uint64_t CallStackPayloadOffset = Offset for the call stack payload (NEW V2)
// uint64_t CallStackTableOffset = CallStackTableGenerator.Emit (NEW in V2)
// uint64_t Num schema entries
// uint64_t Schema entry 0
// uint64_t Schema entry 1
// ....
// uint64_t Schema entry N - 1
// OnDiskChainedHashTable MemProfRecordData
// OnDiskChainedHashTable MemProfFrameData
// OnDiskChainedHashTable MemProfCallStackData (NEW in V2)
static Error writeMemProfV2(ProfOStream &OS,
memprof::IndexedMemProfData &MemProfData,
bool MemProfFullSchema) {
OS.write(memprof::Version2);
uint64_t HeaderUpdatePos = OS.tell();
OS.write(0ULL); // Reserve space for the memprof record table offset.
OS.write(0ULL); // Reserve space for the memprof frame payload offset.
OS.write(0ULL); // Reserve space for the memprof frame table offset.
OS.write(0ULL); // Reserve space for the memprof call stack payload offset.
OS.write(0ULL); // Reserve space for the memprof call stack table offset.
auto Schema = memprof::getHotColdSchema();
if (MemProfFullSchema)
Schema = memprof::getFullSchema();
writeMemProfSchema(OS, Schema);
uint64_t RecordTableOffset =
writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version2);
uint64_t FramePayloadOffset = OS.tell();
uint64_t FrameTableOffset = writeMemProfFrames(OS, MemProfData.Frames);
uint64_t CallStackPayloadOffset = OS.tell();
uint64_t CallStackTableOffset =
writeMemProfCallStacks(OS, MemProfData.CallStacks);
uint64_t Header[] = {
RecordTableOffset, FramePayloadOffset, FrameTableOffset,
CallStackPayloadOffset, CallStackTableOffset,
};
OS.patch({{HeaderUpdatePos, Header}});
return Error::success();
}
static Error writeMemProfRadixTreeBased(
ProfOStream &OS, memprof::IndexedMemProfData &MemProfData,
memprof::IndexedVersion Version, bool MemProfFullSchema,
std::unique_ptr<memprof::DataAccessProfData> DataAccessProfileData =
nullptr,
std::unique_ptr<memprof::MemProfSummary> MemProfSum = nullptr) {
assert((Version == memprof::Version3 || Version == memprof::Version4) &&
"Unsupported version for radix tree format");
OS.write(Version); // Write the specific version (V3 or V4)
uint64_t HeaderUpdatePos = OS.tell();
OS.write(0ULL); // Reserve space for the memprof call stack payload offset.
OS.write(0ULL); // Reserve space for the memprof record payload offset.
OS.write(0ULL); // Reserve space for the memprof record table offset.
if (Version >= memprof::Version4) {
OS.write(0ULL); // Reserve space for the data access profile offset.
MemProfSum->write(OS);
}
auto Schema = memprof::getHotColdSchema();
if (MemProfFullSchema)
Schema = memprof::getFullSchema();
writeMemProfSchema(OS, Schema);
llvm::DenseMap<memprof::FrameId, memprof::FrameStat> FrameHistogram =
memprof::computeFrameHistogram(MemProfData.CallStacks);
assert(MemProfData.Frames.size() == FrameHistogram.size());
llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId> MemProfFrameIndexes =
writeMemProfFrameArray(OS, MemProfData.Frames, FrameHistogram);
uint64_t CallStackPayloadOffset = OS.tell();
// The number of elements in the call stack array.
unsigned NumElements = 0;
llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
MemProfCallStackIndexes =
writeMemProfCallStackArray(OS, MemProfData.CallStacks,
MemProfFrameIndexes, FrameHistogram,
NumElements);
uint64_t RecordPayloadOffset = OS.tell();
uint64_t RecordTableOffset = writeMemProfRecords(
OS, MemProfData.Records, &Schema, Version, &MemProfCallStackIndexes);
uint64_t DataAccessProfOffset = 0;
if (DataAccessProfileData != nullptr) {
assert(Version >= memprof::Version4 &&
"Data access profiles are added starting from v4");
DataAccessProfOffset = OS.tell();
if (Error E = DataAccessProfileData->serialize(OS))
return E;
}
// Verify that the computation for the number of elements in the call stack
// array works.
assert(CallStackPayloadOffset +
NumElements * sizeof(memprof::LinearFrameId) ==
RecordPayloadOffset);
SmallVector<uint64_t, 4> Header = {
CallStackPayloadOffset,
RecordPayloadOffset,
RecordTableOffset,
};
if (Version >= memprof::Version4)
Header.push_back(DataAccessProfOffset);
OS.patch({{HeaderUpdatePos, Header}});
return Error::success();
}
// Write out MemProf Version3
static Error writeMemProfV3(ProfOStream &OS,
memprof::IndexedMemProfData &MemProfData,
bool MemProfFullSchema) {
return writeMemProfRadixTreeBased(OS, MemProfData, memprof::Version3,
MemProfFullSchema);
}
// Write out MemProf Version4
static Error writeMemProfV4(
ProfOStream &OS, memprof::IndexedMemProfData &MemProfData,
bool MemProfFullSchema,
std::unique_ptr<memprof::DataAccessProfData> DataAccessProfileData,
std::unique_ptr<memprof::MemProfSummary> MemProfSum) {
return writeMemProfRadixTreeBased(
OS, MemProfData, memprof::Version4, MemProfFullSchema,
std::move(DataAccessProfileData), std::move(MemProfSum));
}
// Write out the MemProf data in a requested version.
Error writeMemProf(
ProfOStream &OS, memprof::IndexedMemProfData &MemProfData,
memprof::IndexedVersion MemProfVersionRequested, bool MemProfFullSchema,
std::unique_ptr<memprof::DataAccessProfData> DataAccessProfileData,
std::unique_ptr<memprof::MemProfSummary> MemProfSum) {
switch (MemProfVersionRequested) {
case memprof::Version2:
return writeMemProfV2(OS, MemProfData, MemProfFullSchema);
case memprof::Version3:
return writeMemProfV3(OS, MemProfData, MemProfFullSchema);
case memprof::Version4:
return writeMemProfV4(OS, MemProfData, MemProfFullSchema,
std::move(DataAccessProfileData),
std::move(MemProfSum));
}
return make_error<InstrProfError>(
instrprof_error::unsupported_version,
formatv("MemProf version {} not supported; "
"requires version between {} and {}, inclusive",
MemProfVersionRequested, memprof::MinimumSupportedVersion,
memprof::MaximumSupportedVersion));
}
Error IndexedMemProfReader::deserializeV2(const unsigned char *Start,
const unsigned char *Ptr) {
// The value returned from RecordTableGenerator.Emit.
const uint64_t RecordTableOffset =
support::endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
// The offset in the stream right before invoking
// FrameTableGenerator.Emit.
const uint64_t FramePayloadOffset =
support::endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
// The value returned from FrameTableGenerator.Emit.
const uint64_t FrameTableOffset =
support::endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
// The offset in the stream right before invoking
// CallStackTableGenerator.Emit.
uint64_t CallStackPayloadOffset = 0;
// The value returned from CallStackTableGenerator.Emit.
uint64_t CallStackTableOffset = 0;
if (Version >= memprof::Version2) {
CallStackPayloadOffset =
support::endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
CallStackTableOffset =
support::endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
}
// Read the schema.
auto SchemaOr = memprof::readMemProfSchema(Ptr);
if (!SchemaOr)
return SchemaOr.takeError();
Schema = SchemaOr.get();
// Now initialize the table reader with a pointer into data buffer.
MemProfRecordTable.reset(MemProfRecordHashTable::Create(
/*Buckets=*/Start + RecordTableOffset,
/*Payload=*/Ptr,
/*Base=*/Start, memprof::RecordLookupTrait(Version, Schema)));
// Initialize the frame table reader with the payload and bucket offsets.
MemProfFrameTable.reset(MemProfFrameHashTable::Create(
/*Buckets=*/Start + FrameTableOffset,
/*Payload=*/Start + FramePayloadOffset,
/*Base=*/Start));
if (Version >= memprof::Version2)
MemProfCallStackTable.reset(MemProfCallStackHashTable::Create(
/*Buckets=*/Start + CallStackTableOffset,
/*Payload=*/Start + CallStackPayloadOffset,
/*Base=*/Start));
return Error::success();
}
Error IndexedMemProfReader::deserializeRadixTreeBased(
const unsigned char *Start, const unsigned char *Ptr,
memprof::IndexedVersion Version) {
assert((Version == memprof::Version3 || Version == memprof::Version4) &&
"Unsupported version for radix tree format");
// The offset in the stream right before invoking
// CallStackTableGenerator.Emit.
const uint64_t CallStackPayloadOffset =
support::endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
// The offset in the stream right before invoking RecordTableGenerator.Emit.
const uint64_t RecordPayloadOffset =
support::endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
// The value returned from RecordTableGenerator.Emit.
const uint64_t RecordTableOffset =
support::endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
uint64_t DataAccessProfOffset = 0;
if (Version >= memprof::Version4) {
DataAccessProfOffset =
support::endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
MemProfSum = memprof::MemProfSummary::deserialize(Ptr);
}
// Read the schema.
auto SchemaOr = memprof::readMemProfSchema(Ptr);
if (!SchemaOr)
return SchemaOr.takeError();
Schema = SchemaOr.get();
FrameBase = Ptr;
CallStackBase = Start + CallStackPayloadOffset;
// Compute the number of elements in the radix tree array. Since we use this
// to reserve enough bits in a BitVector, it's totally OK if we overestimate
// this number a little bit because of padding just before the next section.
RadixTreeSize = (RecordPayloadOffset - CallStackPayloadOffset) /
sizeof(memprof::LinearFrameId);
// Now initialize the table reader with a pointer into data buffer.
MemProfRecordTable.reset(MemProfRecordHashTable::Create(
/*Buckets=*/Start + RecordTableOffset,
/*Payload=*/Start + RecordPayloadOffset,
/*Base=*/Start, memprof::RecordLookupTrait(Version, Schema)));
assert((!DataAccessProfOffset || DataAccessProfOffset > RecordTableOffset) &&
"Data access profile is either empty or after the record table");
if (DataAccessProfOffset > RecordTableOffset) {
DataAccessProfileData = std::make_unique<memprof::DataAccessProfData>();
const unsigned char *DAPPtr = Start + DataAccessProfOffset;
if (Error E = DataAccessProfileData->deserialize(DAPPtr))
return E;
}
return Error::success();
}
Error IndexedMemProfReader::deserialize(const unsigned char *Start,
uint64_t MemProfOffset) {
const unsigned char *Ptr = Start + MemProfOffset;
// Read the MemProf version number.
const uint64_t FirstWord =
support::endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
// Check if the version is supported
if (FirstWord >= memprof::MinimumSupportedVersion &&
FirstWord <= memprof::MaximumSupportedVersion) {
// Everything is good. We can proceed to deserialize the rest.
Version = static_cast<memprof::IndexedVersion>(FirstWord);
} else {
return make_error<InstrProfError>(
instrprof_error::unsupported_version,
formatv("MemProf version {} not supported; "
"requires version between {} and {}, inclusive",
FirstWord, memprof::MinimumSupportedVersion,
memprof::MaximumSupportedVersion));
}
switch (Version) {
case memprof::Version2:
if (Error E = deserializeV2(Start, Ptr))
return E;
break;
case memprof::Version3:
case memprof::Version4:
// V3 and V4 share the same high-level structure (radix tree, linear IDs).
if (Error E = deserializeRadixTreeBased(Start, Ptr, Version))
return E;
break;
}
return Error::success();
}
} // namespace llvm
|