aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Object/DXContainer.cpp
blob: 935749afe33852ccfdc1a3b49224d10575c42927 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
//===- DXContainer.cpp - DXContainer object file implementation -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Object/DXContainer.h"
#include "llvm/BinaryFormat/DXContainer.h"
#include "llvm/Object/Error.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/FormatVariadic.h"

using namespace llvm;
using namespace llvm::object;

static Error parseFailed(const Twine &Msg) {
  return make_error<GenericBinaryError>(Msg.str(), object_error::parse_failed);
}

template <typename T>
static Error readStruct(StringRef Buffer, const char *Src, T &Struct) {
  // Don't read before the beginning or past the end of the file
  if (Src < Buffer.begin() || Src + sizeof(T) > Buffer.end())
    return parseFailed("Reading structure out of file bounds");

  memcpy(&Struct, Src, sizeof(T));
  // DXContainer is always little endian
  if (sys::IsBigEndianHost)
    Struct.swapBytes();
  return Error::success();
}

template <typename T>
static Error readInteger(StringRef Buffer, const char *Src, T &Val,
                         Twine Str = "structure") {
  static_assert(std::is_integral_v<T>,
                "Cannot call readInteger on non-integral type.");
  // Don't read before the beginning or past the end of the file
  if (Src < Buffer.begin() || Src + sizeof(T) > Buffer.end())
    return parseFailed(Twine("Reading ") + Str + " out of file bounds");

  // The DXContainer offset table is comprised of uint32_t values but not padded
  // to a 64-bit boundary. So Parts may start unaligned if there is an odd
  // number of parts and part data itself is not required to be padded.
  if (reinterpret_cast<uintptr_t>(Src) % alignof(T) != 0)
    memcpy(reinterpret_cast<char *>(&Val), Src, sizeof(T));
  else
    Val = *reinterpret_cast<const T *>(Src);
  // DXContainer is always little endian
  if (sys::IsBigEndianHost)
    sys::swapByteOrder(Val);
  return Error::success();
}

DXContainer::DXContainer(MemoryBufferRef O) : Data(O) {}

Error DXContainer::parseHeader() {
  return readStruct(Data.getBuffer(), Data.getBuffer().data(), Header);
}

Error DXContainer::parseDXILHeader(StringRef Part) {
  if (DXIL)
    return parseFailed("More than one DXIL part is present in the file");
  const char *Current = Part.begin();
  dxbc::ProgramHeader Header;
  if (Error Err = readStruct(Part, Current, Header))
    return Err;
  Current += offsetof(dxbc::ProgramHeader, Bitcode) + Header.Bitcode.Offset;
  DXIL.emplace(std::make_pair(Header, Current));
  return Error::success();
}

Error DXContainer::parseShaderFeatureFlags(StringRef Part) {
  if (ShaderFeatureFlags)
    return parseFailed("More than one SFI0 part is present in the file");
  uint64_t FlagValue = 0;
  if (Error Err = readInteger(Part, Part.begin(), FlagValue))
    return Err;
  ShaderFeatureFlags = FlagValue;
  return Error::success();
}

Error DXContainer::parseHash(StringRef Part) {
  if (Hash)
    return parseFailed("More than one HASH part is present in the file");
  dxbc::ShaderHash ReadHash;
  if (Error Err = readStruct(Part, Part.begin(), ReadHash))
    return Err;
  Hash = ReadHash;
  return Error::success();
}

Error DXContainer::parsePSVInfo(StringRef Part) {
  if (PSVInfo)
    return parseFailed("More than one PSV0 part is present in the file");
  PSVInfo = DirectX::PSVRuntimeInfo(Part);
  // Parsing the PSVRuntime info occurs late because we need to read data from
  // other parts first.
  return Error::success();
}

Error DirectX::Signature::initialize(StringRef Part) {
  dxbc::ProgramSignatureHeader SigHeader;
  if (Error Err = readStruct(Part, Part.begin(), SigHeader))
    return Err;
  size_t Size = sizeof(dxbc::ProgramSignatureElement) * SigHeader.ParamCount;

  if (Part.size() < Size + SigHeader.FirstParamOffset)
    return parseFailed("Signature parameters extend beyond the part boundary");

  Parameters.Data = Part.substr(SigHeader.FirstParamOffset, Size);

  StringTableOffset = SigHeader.FirstParamOffset + static_cast<uint32_t>(Size);
  StringTable = Part.substr(SigHeader.FirstParamOffset + Size);

  for (const auto &Param : Parameters) {
    if (Param.NameOffset < StringTableOffset)
      return parseFailed("Invalid parameter name offset: name starts before "
                         "the first name offset");
    if (Param.NameOffset - StringTableOffset > StringTable.size())
      return parseFailed("Invalid parameter name offset: name starts after the "
                         "end of the part data");
  }
  return Error::success();
}

Error DXContainer::parsePartOffsets() {
  uint32_t LastOffset =
      sizeof(dxbc::Header) + (Header.PartCount * sizeof(uint32_t));
  const char *Current = Data.getBuffer().data() + sizeof(dxbc::Header);
  for (uint32_t Part = 0; Part < Header.PartCount; ++Part) {
    uint32_t PartOffset;
    if (Error Err = readInteger(Data.getBuffer(), Current, PartOffset))
      return Err;
    if (PartOffset < LastOffset)
      return parseFailed(
          formatv(
              "Part offset for part {0} begins before the previous part ends",
              Part)
              .str());
    Current += sizeof(uint32_t);
    if (PartOffset >= Data.getBufferSize())
      return parseFailed("Part offset points beyond boundary of the file");
    // To prevent overflow when reading the part name, we subtract the part name
    // size from the buffer size, rather than adding to the offset. Since the
    // file header is larger than the part header we can't reach this code
    // unless the buffer is at least as large as a part header, so this
    // subtraction can't underflow.
    if (PartOffset >= Data.getBufferSize() - sizeof(dxbc::PartHeader::Name))
      return parseFailed("File not large enough to read part name");
    PartOffsets.push_back(PartOffset);

    dxbc::PartType PT =
        dxbc::parsePartType(Data.getBuffer().substr(PartOffset, 4));
    uint32_t PartDataStart = PartOffset + sizeof(dxbc::PartHeader);
    uint32_t PartSize;
    if (Error Err = readInteger(Data.getBuffer(),
                                Data.getBufferStart() + PartOffset + 4,
                                PartSize, "part size"))
      return Err;
    StringRef PartData = Data.getBuffer().substr(PartDataStart, PartSize);
    LastOffset = PartOffset + PartSize;
    switch (PT) {
    case dxbc::PartType::DXIL:
      if (Error Err = parseDXILHeader(PartData))
        return Err;
      break;
    case dxbc::PartType::SFI0:
      if (Error Err = parseShaderFeatureFlags(PartData))
        return Err;
      break;
    case dxbc::PartType::HASH:
      if (Error Err = parseHash(PartData))
        return Err;
      break;
    case dxbc::PartType::PSV0:
      if (Error Err = parsePSVInfo(PartData))
        return Err;
      break;
    case dxbc::PartType::ISG1:
      if (Error Err = InputSignature.initialize(PartData))
        return Err;
      break;
    case dxbc::PartType::OSG1:
      if (Error Err = OutputSignature.initialize(PartData))
        return Err;
      break;
    case dxbc::PartType::PSG1:
      if (Error Err = PatchConstantSignature.initialize(PartData))
        return Err;
      break;
    case dxbc::PartType::Unknown:
      break;
    }
  }

  // Fully parsing the PSVInfo requires knowing the shader kind which we read
  // out of the program header in the DXIL part.
  if (PSVInfo) {
    if (!DXIL)
      return parseFailed("Cannot fully parse pipeline state validation "
                         "information without DXIL part.");
    if (Error Err = PSVInfo->parse(DXIL->first.ShaderKind))
      return Err;
  }
  return Error::success();
}

Expected<DXContainer> DXContainer::create(MemoryBufferRef Object) {
  DXContainer Container(Object);
  if (Error Err = Container.parseHeader())
    return std::move(Err);
  if (Error Err = Container.parsePartOffsets())
    return std::move(Err);
  return Container;
}

void DXContainer::PartIterator::updateIteratorImpl(const uint32_t Offset) {
  StringRef Buffer = Container.Data.getBuffer();
  const char *Current = Buffer.data() + Offset;
  // Offsets are validated during parsing, so all offsets in the container are
  // valid and contain enough readable data to read a header.
  cantFail(readStruct(Buffer, Current, IteratorState.Part));
  IteratorState.Data =
      StringRef(Current + sizeof(dxbc::PartHeader), IteratorState.Part.Size);
  IteratorState.Offset = Offset;
}

Error DirectX::PSVRuntimeInfo::parse(uint16_t ShaderKind) {
  Triple::EnvironmentType ShaderStage = dxbc::getShaderStage(ShaderKind);

  const char *Current = Data.begin();
  if (Error Err = readInteger(Data, Current, Size))
    return Err;
  Current += sizeof(uint32_t);

  StringRef PSVInfoData = Data.substr(sizeof(uint32_t), Size);

  if (PSVInfoData.size() < Size)
    return parseFailed(
        "Pipeline state data extends beyond the bounds of the part");

  using namespace dxbc::PSV;

  const uint32_t PSVVersion = getVersion();

  // Detect the PSVVersion by looking at the size field.
  if (PSVVersion == 2) {
    v2::RuntimeInfo Info;
    if (Error Err = readStruct(PSVInfoData, Current, Info))
      return Err;
    if (sys::IsBigEndianHost)
      Info.swapBytes(ShaderStage);
    BasicInfo = Info;
  } else if (PSVVersion == 1) {
    v1::RuntimeInfo Info;
    if (Error Err = readStruct(PSVInfoData, Current, Info))
      return Err;
    if (sys::IsBigEndianHost)
      Info.swapBytes(ShaderStage);
    BasicInfo = Info;
  } else if (PSVVersion == 0) {
    v0::RuntimeInfo Info;
    if (Error Err = readStruct(PSVInfoData, Current, Info))
      return Err;
    if (sys::IsBigEndianHost)
      Info.swapBytes(ShaderStage);
    BasicInfo = Info;
  } else
    return parseFailed(
        "Cannot read PSV Runtime Info, unsupported PSV version.");

  Current += Size;

  uint32_t ResourceCount = 0;
  if (Error Err = readInteger(Data, Current, ResourceCount))
    return Err;
  Current += sizeof(uint32_t);

  if (ResourceCount > 0) {
    if (Error Err = readInteger(Data, Current, Resources.Stride))
      return Err;
    Current += sizeof(uint32_t);

    size_t BindingDataSize = Resources.Stride * ResourceCount;
    Resources.Data = Data.substr(Current - Data.begin(), BindingDataSize);

    if (Resources.Data.size() < BindingDataSize)
      return parseFailed(
          "Resource binding data extends beyond the bounds of the part");

    Current += BindingDataSize;
  } else
    Resources.Stride = sizeof(v2::ResourceBindInfo);

  // PSV version 0 ends after the resource bindings.
  if (PSVVersion == 0)
    return Error::success();

  // String table starts at a 4-byte offset.
  Current = reinterpret_cast<const char *>(
      alignTo<4>(reinterpret_cast<uintptr_t>(Current)));

  uint32_t StringTableSize = 0;
  if (Error Err = readInteger(Data, Current, StringTableSize))
    return Err;
  if (StringTableSize % 4 != 0)
    return parseFailed("String table misaligned");
  Current += sizeof(uint32_t);
  StringTable = StringRef(Current, StringTableSize);

  Current += StringTableSize;

  uint32_t SemanticIndexTableSize = 0;
  if (Error Err = readInteger(Data, Current, SemanticIndexTableSize))
    return Err;
  Current += sizeof(uint32_t);

  SemanticIndexTable.reserve(SemanticIndexTableSize);
  for (uint32_t I = 0; I < SemanticIndexTableSize; ++I) {
    uint32_t Index = 0;
    if (Error Err = readInteger(Data, Current, Index))
      return Err;
    Current += sizeof(uint32_t);
    SemanticIndexTable.push_back(Index);
  }

  uint8_t InputCount = getSigInputCount();
  uint8_t OutputCount = getSigOutputCount();
  uint8_t PatchOrPrimCount = getSigPatchOrPrimCount();

  uint32_t ElementCount = InputCount + OutputCount + PatchOrPrimCount;

  if (ElementCount > 0) {
    if (Error Err = readInteger(Data, Current, SigInputElements.Stride))
      return Err;
    Current += sizeof(uint32_t);
    // Assign the stride to all the arrays.
    SigOutputElements.Stride = SigPatchOrPrimElements.Stride =
        SigInputElements.Stride;

    if (Data.end() - Current <
        (ptrdiff_t)(ElementCount * SigInputElements.Stride))
      return parseFailed(
          "Signature elements extend beyond the size of the part");

    size_t InputSize = SigInputElements.Stride * InputCount;
    SigInputElements.Data = Data.substr(Current - Data.begin(), InputSize);
    Current += InputSize;

    size_t OutputSize = SigOutputElements.Stride * OutputCount;
    SigOutputElements.Data = Data.substr(Current - Data.begin(), OutputSize);
    Current += OutputSize;

    size_t PSize = SigPatchOrPrimElements.Stride * PatchOrPrimCount;
    SigPatchOrPrimElements.Data = Data.substr(Current - Data.begin(), PSize);
    Current += PSize;
  }

  ArrayRef<uint8_t> OutputVectorCounts = getOutputVectorCounts();
  uint8_t PatchConstOrPrimVectorCount = getPatchConstOrPrimVectorCount();
  uint8_t InputVectorCount = getInputVectorCount();

  auto maskDwordSize = [](uint8_t Vector) {
    return (static_cast<uint32_t>(Vector) + 7) >> 3;
  };

  auto mapTableSize = [maskDwordSize](uint8_t X, uint8_t Y) {
    return maskDwordSize(Y) * X * 4;
  };

  if (usesViewID()) {
    for (uint32_t I = 0; I < OutputVectorCounts.size(); ++I) {
      // The vector mask is one bit per component and 4 components per vector.
      // We can compute the number of dwords required by rounding up to the next
      // multiple of 8.
      uint32_t NumDwords =
          maskDwordSize(static_cast<uint32_t>(OutputVectorCounts[I]));
      size_t NumBytes = NumDwords * sizeof(uint32_t);
      OutputVectorMasks[I].Data = Data.substr(Current - Data.begin(), NumBytes);
      Current += NumBytes;
    }

    if (ShaderStage == Triple::Hull && PatchConstOrPrimVectorCount > 0) {
      uint32_t NumDwords = maskDwordSize(PatchConstOrPrimVectorCount);
      size_t NumBytes = NumDwords * sizeof(uint32_t);
      PatchOrPrimMasks.Data = Data.substr(Current - Data.begin(), NumBytes);
      Current += NumBytes;
    }
  }

  // Input/Output mapping table
  for (uint32_t I = 0; I < OutputVectorCounts.size(); ++I) {
    if (InputVectorCount == 0 || OutputVectorCounts[I] == 0)
      continue;
    uint32_t NumDwords = mapTableSize(InputVectorCount, OutputVectorCounts[I]);
    size_t NumBytes = NumDwords * sizeof(uint32_t);
    InputOutputMap[I].Data = Data.substr(Current - Data.begin(), NumBytes);
    Current += NumBytes;
  }

  // Hull shader: Input/Patch mapping table
  if (ShaderStage == Triple::Hull && PatchConstOrPrimVectorCount > 0 &&
      InputVectorCount > 0) {
    uint32_t NumDwords =
        mapTableSize(InputVectorCount, PatchConstOrPrimVectorCount);
    size_t NumBytes = NumDwords * sizeof(uint32_t);
    InputPatchMap.Data = Data.substr(Current - Data.begin(), NumBytes);
    Current += NumBytes;
  }

  // Domain Shader: Patch/Output mapping table
  if (ShaderStage == Triple::Domain && PatchConstOrPrimVectorCount > 0 &&
      OutputVectorCounts[0] > 0) {
    uint32_t NumDwords =
        mapTableSize(PatchConstOrPrimVectorCount, OutputVectorCounts[0]);
    size_t NumBytes = NumDwords * sizeof(uint32_t);
    PatchOutputMap.Data = Data.substr(Current - Data.begin(), NumBytes);
    Current += NumBytes;
  }

  return Error::success();
}

uint8_t DirectX::PSVRuntimeInfo::getSigInputCount() const {
  if (const auto *P = std::get_if<dxbc::PSV::v2::RuntimeInfo>(&BasicInfo))
    return P->SigInputElements;
  if (const auto *P = std::get_if<dxbc::PSV::v1::RuntimeInfo>(&BasicInfo))
    return P->SigInputElements;
  return 0;
}

uint8_t DirectX::PSVRuntimeInfo::getSigOutputCount() const {
  if (const auto *P = std::get_if<dxbc::PSV::v2::RuntimeInfo>(&BasicInfo))
    return P->SigOutputElements;
  if (const auto *P = std::get_if<dxbc::PSV::v1::RuntimeInfo>(&BasicInfo))
    return P->SigOutputElements;
  return 0;
}

uint8_t DirectX::PSVRuntimeInfo::getSigPatchOrPrimCount() const {
  if (const auto *P = std::get_if<dxbc::PSV::v2::RuntimeInfo>(&BasicInfo))
    return P->SigPatchOrPrimElements;
  if (const auto *P = std::get_if<dxbc::PSV::v1::RuntimeInfo>(&BasicInfo))
    return P->SigPatchOrPrimElements;
  return 0;
}