aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/MC/MCExpr.cpp
blob: dbb2fd16eb2e5474a10fb58addfbc22338313e07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/MC/MCExpr.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>

using namespace llvm;

#define DEBUG_TYPE "mcexpr"

namespace {
namespace stats {

STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");

} // end namespace stats
} // end anonymous namespace

static int getPrecedence(MCBinaryExpr::Opcode Op) {
  switch (Op) {
  case MCBinaryExpr::Add:
  case MCBinaryExpr::Sub:
    return 1;
  default:
    return 0;
  }
}

// VariantKind printing and formatting utilize MAI. operator<< (dump and some
// target code) specifies MAI as nullptr and should be avoided when MAI is
// needed.
void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI,
                   int SurroundingPrec) const {
  constexpr int MaxPrec = 9;
  switch (getKind()) {
  case MCExpr::Target:
    return cast<MCTargetExpr>(this)->printImpl(OS, MAI);
  case MCExpr::Constant: {
    auto Value = cast<MCConstantExpr>(*this).getValue();
    auto PrintInHex = cast<MCConstantExpr>(*this).useHexFormat();
    auto SizeInBytes = cast<MCConstantExpr>(*this).getSizeInBytes();
    if (Value < 0 && MAI && !MAI->supportsSignedData())
      PrintInHex = true;
    if (PrintInHex)
      switch (SizeInBytes) {
      default:
        OS << "0x" << Twine::utohexstr(Value);
        break;
      case 1:
        OS << format("0x%02" PRIx64, Value);
        break;
      case 2:
        OS << format("0x%04" PRIx64, Value);
        break;
      case 4:
        OS << format("0x%08" PRIx64, Value);
        break;
      case 8:
        OS << format("0x%016" PRIx64, Value);
        break;
      }
    else
      OS << Value;
    return;
  }
  case MCExpr::SymbolRef: {
    const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
    const MCSymbol &Sym = SRE.getSymbol();
    Sym.print(OS, MAI);

    const MCSymbolRefExpr::VariantKind Kind = SRE.getKind();
    if (Kind) {
      if (!MAI) // should only be used by dump()
        OS << "@<variant " << Kind << '>';
      else if (MAI->useParensForSpecifier()) // ARM
        OS << '(' << MAI->getSpecifierName(Kind) << ')';
      else
        OS << '@' << MAI->getSpecifierName(Kind);
    }

    return;
  }

  case MCExpr::Unary: {
    const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
    switch (UE.getOpcode()) {
    case MCUnaryExpr::LNot:  OS << '!'; break;
    case MCUnaryExpr::Minus: OS << '-'; break;
    case MCUnaryExpr::Not:   OS << '~'; break;
    case MCUnaryExpr::Plus:  OS << '+'; break;
    }
    UE.getSubExpr()->print(OS, MAI, MaxPrec);
    return;
  }

  case MCExpr::Binary: {
    const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
    // We want to avoid redundant parentheses for relocatable expressions like
    // a-b+c.
    //
    // Print '(' if the current operator has lower precedence than the
    // surrounding operator, or if the surrounding operator's precedence is
    // unknown (set to HighPrecedence).
    int Prec = getPrecedence(BE.getOpcode());
    bool Paren = Prec < SurroundingPrec;
    if (Paren)
      OS << '(';
    // Many operators' precedence is different from C. Set the precedence to
    // HighPrecedence for unknown operators.
    int SubPrec = Prec ? Prec : MaxPrec;
    BE.getLHS()->print(OS, MAI, SubPrec);

    switch (BE.getOpcode()) {
    case MCBinaryExpr::Add:
      // Print "X-42" instead of "X+-42".
      if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
        if (RHSC->getValue() < 0) {
          OS << RHSC->getValue();
          if (Paren)
            OS << ')';
          return;
        }
      }

      OS <<  '+';
      break;
    case MCBinaryExpr::AShr: OS << ">>"; break;
    case MCBinaryExpr::And:  OS <<  '&'; break;
    case MCBinaryExpr::Div:  OS <<  '/'; break;
    case MCBinaryExpr::EQ:   OS << "=="; break;
    case MCBinaryExpr::GT:   OS <<  '>'; break;
    case MCBinaryExpr::GTE:  OS << ">="; break;
    case MCBinaryExpr::LAnd: OS << "&&"; break;
    case MCBinaryExpr::LOr:  OS << "||"; break;
    case MCBinaryExpr::LShr: OS << ">>"; break;
    case MCBinaryExpr::LT:   OS <<  '<'; break;
    case MCBinaryExpr::LTE:  OS << "<="; break;
    case MCBinaryExpr::Mod:  OS <<  '%'; break;
    case MCBinaryExpr::Mul:  OS <<  '*'; break;
    case MCBinaryExpr::NE:   OS << "!="; break;
    case MCBinaryExpr::Or:   OS <<  '|'; break;
    case MCBinaryExpr::OrNot: OS << '!'; break;
    case MCBinaryExpr::Shl:  OS << "<<"; break;
    case MCBinaryExpr::Sub:  OS <<  '-'; break;
    case MCBinaryExpr::Xor:  OS <<  '^'; break;
    }

    BE.getRHS()->print(OS, MAI, SubPrec + 1);
    if (Paren)
      OS << ')';
    return;
  }

  case MCExpr::Specifier: {
    auto &SE = cast<MCSpecifierExpr>(*this);
    if (MAI)
      return MAI->printSpecifierExpr(OS, SE);
    // Used by dump features like -show-inst. Regular MCAsmStreamer output must
    // set MAI.
    OS << "specifier(" << SE.getSpecifier() << ',';
    SE.getSubExpr()->print(OS, nullptr);
    OS << ')';
    return;
  }
  }

  llvm_unreachable("Invalid expression kind!");
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MCExpr::dump() const {
  print(dbgs(), nullptr);
  dbgs() << '\n';
}
#endif

/* *** */

const MCBinaryExpr *MCBinaryExpr::create(Opcode Opc, const MCExpr *LHS,
                                         const MCExpr *RHS, MCContext &Ctx,
                                         SMLoc Loc) {
  return new (Ctx) MCBinaryExpr(Opc, LHS, RHS, Loc);
}

const MCUnaryExpr *MCUnaryExpr::create(Opcode Opc, const MCExpr *Expr,
                                       MCContext &Ctx, SMLoc Loc) {
  return new (Ctx) MCUnaryExpr(Opc, Expr, Loc);
}

const MCConstantExpr *MCConstantExpr::create(int64_t Value, MCContext &Ctx,
                                             bool PrintInHex,
                                             unsigned SizeInBytes) {
  return new (Ctx) MCConstantExpr(Value, PrintInHex, SizeInBytes);
}

/* *** */

MCSymbolRefExpr::MCSymbolRefExpr(const MCSymbol *Symbol, Spec specifier,
                                 const MCAsmInfo *MAI, SMLoc Loc)
    : MCExpr(MCExpr::SymbolRef, Loc, specifier), Symbol(Symbol) {
  assert(Symbol);
}

const MCSymbolRefExpr *MCSymbolRefExpr::create(const MCSymbol *Sym,
                                               uint16_t specifier,
                                               MCContext &Ctx, SMLoc Loc) {
  return new (Ctx) MCSymbolRefExpr(Sym, specifier, Ctx.getAsmInfo(), Loc);
}

/* *** */

void MCTargetExpr::anchor() {}

/* *** */

bool MCExpr::evaluateAsAbsolute(int64_t &Res) const {
  return evaluateAsAbsolute(Res, nullptr, false);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
  return evaluateAsAbsolute(Res, &Asm, false);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm) const {
  return evaluateAsAbsolute(Res, Asm, false);
}

bool MCExpr::evaluateKnownAbsolute(int64_t &Res, const MCAssembler &Asm) const {
  return evaluateAsAbsolute(Res, &Asm, true);
}

bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
                                bool InSet) const {
  MCValue Value;

  // Fast path constants.
  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
    Res = CE->getValue();
    return true;
  }

  bool IsRelocatable = evaluateAsRelocatableImpl(Value, Asm, InSet);
  Res = Value.getConstant();
  // Value with RefKind (e.g. %hi(0xdeadbeef) in MIPS) is not considered
  // absolute (the value is unknown at parse time), even if it might be resolved
  // by evaluateFixup.
  return IsRelocatable && Value.isAbsolute() && Value.getSpecifier() == 0;
}

/// Helper method for \see EvaluateSymbolAdd().
static void attemptToFoldSymbolOffsetDifference(const MCAssembler *Asm,
                                                bool InSet, const MCSymbol *&A,
                                                const MCSymbol *&B,
                                                int64_t &Addend) {
  if (!A || !B)
    return;

  const MCSymbol &SA = *A, &SB = *B;
  if (SA.isUndefined() || SB.isUndefined())
    return;
  if (!Asm->getWriter().isSymbolRefDifferenceFullyResolved(SA, SB, InSet))
    return;

  auto FinalizeFolding = [&]() {
    // Pointers to Thumb symbols need to have their low-bit set to allow
    // for interworking.
    if (Asm->isThumbFunc(&SA))
      Addend |= 1;

    // Clear the symbol expr pointers to indicate we have folded these
    // operands.
    A = B = nullptr;
  };

  const MCFragment *FA = SA.getFragment();
  const MCFragment *FB = SB.getFragment();
  const MCSection &SecA = *FA->getParent();
  const MCSection &SecB = *FB->getParent();
  if (&SecA != &SecB)
    return;

  // When layout is available, we can generally compute the difference using the
  // getSymbolOffset path, which also avoids the possible slow fragment walk.
  // However, linker relaxation may cause incorrect fold of A-B if A and B are
  // separated by a linker-relaxable fragment. If the section contains
  // linker-relaxable instruction and InSet is false (not expressions in
  // directive like .size/.fill), disable the fast path.
  bool Layout = Asm->hasLayout();
  if (Layout && (InSet || !SecA.isLinkerRelaxable())) {
    // If both symbols are in the same fragment, return the difference of their
    // offsets. canGetFragmentOffset(FA) may be false.
    if (FA == FB && !SA.isVariable() && !SB.isVariable()) {
      Addend += SA.getOffset() - SB.getOffset();
      return FinalizeFolding();
    }

    // Eagerly evaluate when layout is finalized.
    Addend += Asm->getSymbolOffset(SA) - Asm->getSymbolOffset(SB);
    FinalizeFolding();
  } else {
    // When layout is not finalized, our ability to resolve differences between
    // symbols is limited to specific cases where the fragments between two
    // symbols (including the fragments the symbols are defined in) are
    // fixed-size fragments so the difference can be calculated. For example,
    // this is important when the Subtarget is changed and a new MCFragment
    // is created in the case of foo: instr; .arch_extension ext; instr .if . -
    // foo.
    if (SA.isVariable() || SB.isVariable())
      return;

    // Try to find a constant displacement from FA to FB, add the displacement
    // between the offset in FA of SA and the offset in FB of SB.
    bool Reverse = false;
    if (FA == FB)
      Reverse = SA.getOffset() < SB.getOffset();
    else
      Reverse = FA->getLayoutOrder() < FB->getLayoutOrder();

    uint64_t SAOffset = SA.getOffset(), SBOffset = SB.getOffset();
    int64_t Displacement = SA.getOffset() - SB.getOffset();
    if (Reverse) {
      std::swap(FA, FB);
      std::swap(SAOffset, SBOffset);
      Displacement *= -1;
    }

    // Track whether B is before a relaxable instruction and whether A is after
    // a relaxable instruction. If SA and SB are separated by a linker-relaxable
    // instruction, the difference cannot be resolved as it may be changed by
    // the linker.
    bool BBeforeRelax = false, AAfterRelax = false;
    for (auto F = FB; F; F = F->getNext()) {
      auto DF = F->getKind() == MCFragment::FT_Data ? F : nullptr;
      if (DF && DF->isLinkerRelaxable()) {
        if (&*F != FB || SBOffset != DF->getContents().size())
          BBeforeRelax = true;
        if (&*F != FA || SAOffset == DF->getContents().size())
          AAfterRelax = true;
        if (BBeforeRelax && AAfterRelax)
          return;
      }
      if (&*F == FA) {
        // If FA and FB belong to the same subsection, the loop will find FA and
        // we can resolve the difference.
        Addend += Reverse ? -Displacement : Displacement;
        FinalizeFolding();
        return;
      }

      int64_t Num;
      if (DF) {
        Displacement += DF->getContents().size();
      } else if (F->getKind() == MCFragment::FT_Relaxable &&
                 Asm->hasFinalLayout()) {
        // Before finishLayout, a relaxable fragment's size is indeterminate.
        // After layout, during relocation generation, it can be treated as a
        // data fragment.
        Displacement += F->getSize();
      } else if (F->getKind() == MCFragment::FT_Align && Layout &&
                 F->isLinkerRelaxable()) {
        Displacement += Asm->computeFragmentSize(*F);
      } else if (auto *FF = dyn_cast<MCFillFragment>(F);
                 FF && FF->getNumValues().evaluateAsAbsolute(Num)) {
        Displacement += Num * FF->getValueSize();
      } else {
        return;
      }
    }
  }
}

// Evaluate the sum of two relocatable expressions.
//
//   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
//
// This routine attempts to aggressively fold the operands such that the result
// is representable in an MCValue, but may not always succeed.
//
// LHS_A and RHS_A might have relocation specifiers while LHS_B and RHS_B
// cannot have specifiers.
//
// \returns True on success, false if the result is not representable in an
// MCValue.

// NOTE: This function can be used before layout is done (see the object
// streamer for example) and having the Asm argument lets us avoid relaxations
// early.
bool MCExpr::evaluateSymbolicAdd(const MCAssembler *Asm, bool InSet,
                                 const MCValue &LHS, const MCValue &RHS,
                                 MCValue &Res) {
  const MCSymbol *LHS_A = LHS.getAddSym();
  const MCSymbol *LHS_B = LHS.getSubSym();
  int64_t LHS_Cst = LHS.getConstant();

  const MCSymbol *RHS_A = RHS.getAddSym();
  const MCSymbol *RHS_B = RHS.getSubSym();
  int64_t RHS_Cst = RHS.getConstant();

  // Fold the result constant immediately.
  int64_t Result_Cst = LHS_Cst + RHS_Cst;

  // If we have a layout, we can fold resolved differences.
  if (Asm && !LHS.getSpecifier() && !RHS.getSpecifier()) {
    // While LHS_A-LHS_B and RHS_A-RHS_B from recursive calls have already been
    // folded, reassociating terms in
    //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
    // might bring more opportunities.
    if (LHS_A && RHS_B) {
      attemptToFoldSymbolOffsetDifference(Asm, InSet, LHS_A, RHS_B, Result_Cst);
    }
    if (RHS_A && LHS_B) {
      attemptToFoldSymbolOffsetDifference(Asm, InSet, RHS_A, LHS_B, Result_Cst);
    }
  }

  // We can't represent the addition or subtraction of two symbols.
  if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
    return false;

  // At this point, we have at most one additive symbol and one subtractive
  // symbol -- find them.
  auto *A = LHS_A ? LHS_A : RHS_A;
  auto *B = LHS_B ? LHS_B : RHS_B;
  auto Spec = LHS.getSpecifier();
  if (!Spec)
    Spec = RHS.getSpecifier();
  Res = MCValue::get(A, B, Result_Cst, Spec);
  return true;
}

bool MCExpr::evaluateAsRelocatable(MCValue &Res, const MCAssembler *Asm) const {
  return evaluateAsRelocatableImpl(Res, Asm, false);
}
bool MCExpr::evaluateAsValue(MCValue &Res, const MCAssembler &Asm) const {
  return evaluateAsRelocatableImpl(Res, &Asm, true);
}

bool MCExpr::evaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
                                       bool InSet) const {
  ++stats::MCExprEvaluate;
  switch (getKind()) {
  case Target:
    return cast<MCTargetExpr>(this)->evaluateAsRelocatableImpl(Res, Asm);
  case Constant:
    Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
    return true;

  case SymbolRef: {
    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
    MCSymbol &Sym = const_cast<MCSymbol &>(SRE->getSymbol());
    const auto Kind = SRE->getKind();
    bool Layout = Asm && Asm->hasLayout();

    // If the symbol is equated, resolve the inner expression.
    // However, when two IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY symbols reference
    // each other, we retain the equated symbol to avoid a cyclic definition
    // error.
    if (Sym.isResolving()) {
      if (Asm && Asm->hasFinalLayout()) {
        Asm->getContext().reportError(
            Sym.getVariableValue()->getLoc(),
            "cyclic dependency detected for symbol '" + Sym.getName() + "'");
        Sym.setVariableValue(MCConstantExpr::create(0, Asm->getContext()));
      }
      return false;
    }
    if (Sym.isVariable() && (Kind == 0 || Layout) && !Sym.isWeakExternal()) {
      Sym.setIsResolving(true);
      auto _ = make_scope_exit([&] { Sym.setIsResolving(false); });
      bool IsMachO =
          Asm && Asm->getContext().getAsmInfo()->hasSubsectionsViaSymbols();
      if (!Sym.getVariableValue()->evaluateAsRelocatableImpl(Res, Asm,
                                                             InSet || IsMachO))
        return false;
      // When generating relocations, if Sym resolves to a symbol relative to a
      // section, relocations are generated against Sym. Treat label differences
      // as constants.
      auto *A = Res.getAddSym();
      auto *B = Res.getSubSym();
      if (InSet || !(A && !B && A->isInSection())) {
        if (Kind) {
          if (Res.isAbsolute()) {
            Res = MCValue::get(&Sym, nullptr, 0, Kind);
            return true;
          }
          // If the reference has a variant kind, we can only handle expressions
          // which evaluate exactly to a single unadorned symbol. Attach the
          // original VariantKind to SymA of the result.
          if (Res.getSpecifier() || !Res.getAddSym() || Res.getSubSym() ||
              Res.getConstant())
            return false;
          Res.Specifier = Kind;
        }
        if (!IsMachO)
          return true;

        // FIXME: This is small hack. Given
        // a = b + 4
        // .long a
        // the OS X assembler will completely drop the 4. We should probably
        // include it in the relocation or produce an error if that is not
        // possible.
        // Allow constant expressions.
        if (!A && !B)
          return true;
        // Allows aliases with zero offset.
        if (Res.getConstant() == 0 && (!A || !B))
          return true;
      }
    }

    Res = MCValue::get(&Sym, nullptr, 0, Kind);
    return true;
  }

  case Unary: {
    const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
    MCValue Value;

    if (!AUE->getSubExpr()->evaluateAsRelocatableImpl(Value, Asm, InSet))
      return false;
    switch (AUE->getOpcode()) {
    case MCUnaryExpr::LNot:
      if (!Value.isAbsolute())
        return false;
      Res = MCValue::get(!Value.getConstant());
      break;
    case MCUnaryExpr::Minus:
      /// -(a - b + const) ==> (b - a - const)
      if (Value.getAddSym() && !Value.getSubSym())
        return false;

      // The cast avoids undefined behavior if the constant is INT64_MIN.
      Res = MCValue::get(Value.getSubSym(), Value.getAddSym(),
                         -(uint64_t)Value.getConstant());
      break;
    case MCUnaryExpr::Not:
      if (!Value.isAbsolute())
        return false;
      Res = MCValue::get(~Value.getConstant());
      break;
    case MCUnaryExpr::Plus:
      Res = Value;
      break;
    }

    return true;
  }

  case Binary: {
    const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
    MCValue LHSValue, RHSValue;

    if (!ABE->getLHS()->evaluateAsRelocatableImpl(LHSValue, Asm, InSet) ||
        !ABE->getRHS()->evaluateAsRelocatableImpl(RHSValue, Asm, InSet)) {
      // Check if both are Target Expressions, see if we can compare them.
      if (const MCTargetExpr *L = dyn_cast<MCTargetExpr>(ABE->getLHS())) {
        if (const MCTargetExpr *R = dyn_cast<MCTargetExpr>(ABE->getRHS())) {
          switch (ABE->getOpcode()) {
          case MCBinaryExpr::EQ:
            Res = MCValue::get(L->isEqualTo(R) ? -1 : 0);
            return true;
          case MCBinaryExpr::NE:
            Res = MCValue::get(L->isEqualTo(R) ? 0 : -1);
            return true;
          default:
            break;
          }
        }
      }
      return false;
    }

    // We only support a few operations on non-constant expressions, handle
    // those first.
    auto Op = ABE->getOpcode();
    int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
    if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
      switch (Op) {
      default:
        return false;
      case MCBinaryExpr::Add:
      case MCBinaryExpr::Sub:
        if (Op == MCBinaryExpr::Sub) {
          std::swap(RHSValue.SymA, RHSValue.SymB);
          RHSValue.Cst = -(uint64_t)RHSValue.Cst;
        }
        if (RHSValue.isAbsolute()) {
          LHSValue.Cst += RHSValue.Cst;
          Res = LHSValue;
          return true;
        }
        if (LHSValue.isAbsolute()) {
          RHSValue.Cst += LHSValue.Cst;
          Res = RHSValue;
          return true;
        }
        if (LHSValue.SymB && LHSValue.Specifier)
          return false;
        if (RHSValue.SymB && RHSValue.Specifier)
          return false;
        return evaluateSymbolicAdd(Asm, InSet, LHSValue, RHSValue, Res);
      }
    }

    // FIXME: We need target hooks for the evaluation. It may be limited in
    // width, and gas defines the result of comparisons differently from
    // Apple as.
    int64_t Result = 0;
    switch (Op) {
    case MCBinaryExpr::AShr: Result = LHS >> RHS; break;
    case MCBinaryExpr::Add:  Result = LHS + RHS; break;
    case MCBinaryExpr::And:  Result = LHS & RHS; break;
    case MCBinaryExpr::Div:
    case MCBinaryExpr::Mod:
      // Handle division by zero. gas just emits a warning and keeps going,
      // we try to be stricter.
      // FIXME: Currently the caller of this function has no way to understand
      // we're bailing out because of 'division by zero'. Therefore, it will
      // emit a 'expected relocatable expression' error. It would be nice to
      // change this code to emit a better diagnostic.
      if (RHS == 0)
        return false;
      if (ABE->getOpcode() == MCBinaryExpr::Div)
        Result = LHS / RHS;
      else
        Result = LHS % RHS;
      break;
    case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
    case MCBinaryExpr::GT:   Result = LHS > RHS; break;
    case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
    case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
    case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
    case MCBinaryExpr::LShr: Result = uint64_t(LHS) >> uint64_t(RHS); break;
    case MCBinaryExpr::LT:   Result = LHS < RHS; break;
    case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
    case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
    case MCBinaryExpr::NE:   Result = LHS != RHS; break;
    case MCBinaryExpr::Or:   Result = LHS | RHS; break;
    case MCBinaryExpr::OrNot: Result = LHS | ~RHS; break;
    case MCBinaryExpr::Shl:  Result = uint64_t(LHS) << uint64_t(RHS); break;
    case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
    case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
    }

    switch (Op) {
    default:
      Res = MCValue::get(Result);
      break;
    case MCBinaryExpr::EQ:
    case MCBinaryExpr::GT:
    case MCBinaryExpr::GTE:
    case MCBinaryExpr::LT:
    case MCBinaryExpr::LTE:
    case MCBinaryExpr::NE:
      // A comparison operator returns a -1 if true and 0 if false.
      Res = MCValue::get(Result ? -1 : 0);
      break;
    }

    return true;
  }
  case Specifier:
    // Fold the expression during relocation generation. As parse time Asm might
    // be null, and targets should not rely on the folding.
    return Asm && Asm->getContext().getAsmInfo()->evaluateAsRelocatableImpl(
                      cast<MCSpecifierExpr>(*this), Res, Asm);
  }

  llvm_unreachable("Invalid assembly expression kind!");
}

MCFragment *MCExpr::findAssociatedFragment() const {
  switch (getKind()) {
  case Target:
    // We never look through target specific expressions.
    return cast<MCTargetExpr>(this)->findAssociatedFragment();

  case Constant:
    return MCSymbol::AbsolutePseudoFragment;

  case SymbolRef: {
    auto &Sym =
        const_cast<MCSymbol &>(cast<MCSymbolRefExpr>(this)->getSymbol());
    if (Sym.Fragment)
      return Sym.Fragment;
    if (Sym.isResolving())
      return MCSymbol::AbsolutePseudoFragment;
    Sym.setIsResolving(true);
    auto *F = Sym.getFragment();
    Sym.setIsResolving(false);
    return F;
  }

  case Unary:
    return cast<MCUnaryExpr>(this)->getSubExpr()->findAssociatedFragment();

  case Binary: {
    const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
    MCFragment *LHS_F = BE->getLHS()->findAssociatedFragment();
    MCFragment *RHS_F = BE->getRHS()->findAssociatedFragment();

    // If either is absolute, return the other.
    if (LHS_F == MCSymbol::AbsolutePseudoFragment)
      return RHS_F;
    if (RHS_F == MCSymbol::AbsolutePseudoFragment)
      return LHS_F;

    // Not always correct, but probably the best we can do without more context.
    if (BE->getOpcode() == MCBinaryExpr::Sub)
      return MCSymbol::AbsolutePseudoFragment;

    // Otherwise, return the first non-null fragment.
    return LHS_F ? LHS_F : RHS_F;
  }

  case Specifier:
    return cast<MCSpecifierExpr>(this)->getSubExpr()->findAssociatedFragment();
  }

  llvm_unreachable("Invalid assembly expression kind!");
}

const MCSpecifierExpr *MCSpecifierExpr::create(const MCExpr *Expr, Spec S,
                                               MCContext &Ctx, SMLoc Loc) {
  return new (Ctx) MCSpecifierExpr(Expr, S, Loc);
}

const MCSpecifierExpr *MCSpecifierExpr::create(const MCSymbol *Sym, Spec S,
                                               MCContext &Ctx, SMLoc Loc) {
  return new (Ctx) MCSpecifierExpr(MCSymbolRefExpr::create(Sym, Ctx), S, Loc);
}