aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/IR/VFABIDemangler.cpp
blob: 2de05a5432636416c5b2ca842cad06d7cc15337f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
//===- VFABIDemangler.cpp - Vector Function ABI demangler -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/VFABIDemangler.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/VectorTypeUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <limits>

using namespace llvm;

#define DEBUG_TYPE "vfabi-demangler"

namespace {
/// Utilities for the Vector Function ABI name parser.

/// Return types for the parser functions.
enum class ParseRet {
  OK,   // Found.
  None, // Not found.
  Error // Syntax error.
};

/// Extracts the `<isa>` information from the mangled string, and
/// sets the `ISA` accordingly. If successful, the <isa> token is removed
/// from the input string `MangledName`.
static ParseRet tryParseISA(StringRef &MangledName, VFISAKind &ISA) {
  if (MangledName.empty())
    return ParseRet::Error;

  if (MangledName.consume_front(VFABI::_LLVM_)) {
    ISA = VFISAKind::LLVM;
  } else {
    ISA = StringSwitch<VFISAKind>(MangledName.take_front(1))
              .Case("n", VFISAKind::AdvancedSIMD)
              .Case("s", VFISAKind::SVE)
              .Case("r", VFISAKind::RVV)
              .Case("b", VFISAKind::SSE)
              .Case("c", VFISAKind::AVX)
              .Case("d", VFISAKind::AVX2)
              .Case("e", VFISAKind::AVX512)
              .Default(VFISAKind::Unknown);
    MangledName = MangledName.drop_front(1);
  }

  return ParseRet::OK;
}

/// Extracts the `<mask>` information from the mangled string, and
/// sets `IsMasked` accordingly. If successful, the <mask> token is removed
/// from the input string `MangledName`.
static ParseRet tryParseMask(StringRef &MangledName, bool &IsMasked) {
  if (MangledName.consume_front("M")) {
    IsMasked = true;
    return ParseRet::OK;
  }

  if (MangledName.consume_front("N")) {
    IsMasked = false;
    return ParseRet::OK;
  }

  return ParseRet::Error;
}

/// Extract the `<vlen>` information from the mangled string, and
/// sets `ParsedVF` accordingly. A `<vlen> == "x"` token is interpreted as a
/// scalable vector length and the boolean is set to true, otherwise a nonzero
/// unsigned integer will be directly used as a VF. On success, the `<vlen>`
/// token is removed from the input string `ParseString`.
static ParseRet tryParseVLEN(StringRef &ParseString, VFISAKind ISA,
                             std::pair<unsigned, bool> &ParsedVF) {
  if (ParseString.consume_front("x")) {
    // SVE is the only scalable ISA currently supported.
    if (ISA != VFISAKind::SVE && ISA != VFISAKind::RVV) {
      LLVM_DEBUG(dbgs() << "Vector function variant declared with scalable VF "
                        << "but ISA supported for SVE and RVV only\n");
      return ParseRet::Error;
    }
    // We can't determine the VF of a scalable vector by looking at the vlen
    // string (just 'x'), so say we successfully parsed it but return a 'true'
    // for the scalable field with an invalid VF field so that we know to look
    // up the actual VF based on element types from the parameters or return.
    ParsedVF = {0, true};
    return ParseRet::OK;
  }

  unsigned VF = 0;
  if (ParseString.consumeInteger(10, VF))
    return ParseRet::Error;

  // The token `0` is invalid for VLEN.
  if (VF == 0)
    return ParseRet::Error;

  ParsedVF = {VF, false};
  return ParseRet::OK;
}

/// The function looks for the following strings at the beginning of
/// the input string `ParseString`:
///
///  <token> <number>
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `Pos` to
/// <number>, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
///
/// The function expects <token> to be one of "ls", "Rs", "Us" or
/// "Ls".
static ParseRet tryParseLinearTokenWithRuntimeStep(StringRef &ParseString,
                                                   VFParamKind &PKind, int &Pos,
                                                   const StringRef Token) {
  if (ParseString.consume_front(Token)) {
    PKind = VFABI::getVFParamKindFromString(Token);
    if (ParseString.consumeInteger(10, Pos))
      return ParseRet::Error;
    return ParseRet::OK;
  }

  return ParseRet::None;
}

/// The function looks for the following string at the beginning of
/// the input string `ParseString`:
///
///  <token> <number>
///
/// <token> is one of "ls", "Rs", "Us" or "Ls".
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `StepOrPos` to
/// <number>, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
static ParseRet tryParseLinearWithRuntimeStep(StringRef &ParseString,
                                              VFParamKind &PKind,
                                              int &StepOrPos) {
  ParseRet Ret;

  // "ls" <RuntimeStepPos>
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "ls");
  if (Ret != ParseRet::None)
    return Ret;

  // "Rs" <RuntimeStepPos>
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Rs");
  if (Ret != ParseRet::None)
    return Ret;

  // "Ls" <RuntimeStepPos>
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Ls");
  if (Ret != ParseRet::None)
    return Ret;

  // "Us" <RuntimeStepPos>
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Us");
  if (Ret != ParseRet::None)
    return Ret;

  return ParseRet::None;
}

/// The function looks for the following strings at the beginning of
/// the input string `ParseString`:
///
///  <token> {"n"} <number>
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `LinearStep` to
/// <number>, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
///
/// The function expects <token> to be one of "l", "R", "U" or
/// "L".
static ParseRet tryParseCompileTimeLinearToken(StringRef &ParseString,
                                               VFParamKind &PKind,
                                               int &LinearStep,
                                               const StringRef Token) {
  if (ParseString.consume_front(Token)) {
    PKind = VFABI::getVFParamKindFromString(Token);
    const bool Negate = ParseString.consume_front("n");
    if (ParseString.consumeInteger(10, LinearStep))
      LinearStep = 1;
    if (Negate)
      LinearStep *= -1;
    return ParseRet::OK;
  }

  return ParseRet::None;
}

/// The function looks for the following strings at the beginning of
/// the input string `ParseString`:
///
/// ["l" | "R" | "U" | "L"] {"n"} <number>
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `LinearStep` to
/// <number>, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
static ParseRet tryParseLinearWithCompileTimeStep(StringRef &ParseString,
                                                  VFParamKind &PKind,
                                                  int &StepOrPos) {
  // "l" {"n"} <CompileTimeStep>
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "l") ==
      ParseRet::OK)
    return ParseRet::OK;

  // "R" {"n"} <CompileTimeStep>
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "R") ==
      ParseRet::OK)
    return ParseRet::OK;

  // "L" {"n"} <CompileTimeStep>
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "L") ==
      ParseRet::OK)
    return ParseRet::OK;

  // "U" {"n"} <CompileTimeStep>
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "U") ==
      ParseRet::OK)
    return ParseRet::OK;

  return ParseRet::None;
}

/// Looks into the <parameters> part of the mangled name in search
/// for valid paramaters at the beginning of the string
/// `ParseString`.
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `StepOrPos`
/// accordingly, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
static ParseRet tryParseParameter(StringRef &ParseString, VFParamKind &PKind,
                                  int &StepOrPos) {
  if (ParseString.consume_front("v")) {
    PKind = VFParamKind::Vector;
    StepOrPos = 0;
    return ParseRet::OK;
  }

  if (ParseString.consume_front("u")) {
    PKind = VFParamKind::OMP_Uniform;
    StepOrPos = 0;
    return ParseRet::OK;
  }

  const ParseRet HasLinearRuntime =
      tryParseLinearWithRuntimeStep(ParseString, PKind, StepOrPos);
  if (HasLinearRuntime != ParseRet::None)
    return HasLinearRuntime;

  const ParseRet HasLinearCompileTime =
      tryParseLinearWithCompileTimeStep(ParseString, PKind, StepOrPos);
  if (HasLinearCompileTime != ParseRet::None)
    return HasLinearCompileTime;

  return ParseRet::None;
}

/// Looks into the <parameters> part of the mangled name in search
/// of a valid 'aligned' clause. The function should be invoked
/// after parsing a parameter via `tryParseParameter`.
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `StepOrPos`
/// accordingly, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
static ParseRet tryParseAlign(StringRef &ParseString, Align &Alignment) {
  uint64_t Val;
  //    "a" <number>
  if (ParseString.consume_front("a")) {
    if (ParseString.consumeInteger(10, Val))
      return ParseRet::Error;

    if (!isPowerOf2_64(Val))
      return ParseRet::Error;

    Alignment = Align(Val);

    return ParseRet::OK;
  }

  return ParseRet::None;
}

// Returns the 'natural' VF for a given scalar element type, based on the
// current architecture.
//
// For SVE (currently the only scalable architecture with a defined name
// mangling), we assume a minimum vector size of 128b and return a VF based on
// the number of elements of the given type which would fit in such a vector.
static std::optional<ElementCount> getElementCountForTy(const VFISAKind ISA,
                                                        const Type *Ty) {
  assert((ISA == VFISAKind::SVE || ISA == VFISAKind::RVV) &&
         "Scalable VF decoding only implemented for SVE and RVV\n");

  if (Ty->isIntegerTy(64) || Ty->isDoubleTy() || Ty->isPointerTy())
    return ElementCount::getScalable(2);
  if (Ty->isIntegerTy(32) || Ty->isFloatTy())
    return ElementCount::getScalable(4);
  if (Ty->isIntegerTy(16) || Ty->is16bitFPTy())
    return ElementCount::getScalable(8);
  if (Ty->isIntegerTy(8))
    return ElementCount::getScalable(16);

  return std::nullopt;
}

// Extract the VectorizationFactor from a given function signature, based
// on the widest scalar element types that will become vector parameters.
static std::optional<ElementCount>
getScalableECFromSignature(const FunctionType *Signature, const VFISAKind ISA,
                           const SmallVectorImpl<VFParameter> &Params) {
  // Start with a very wide EC and drop when we find smaller ECs based on type.
  ElementCount MinEC =
      ElementCount::getScalable(std::numeric_limits<unsigned int>::max());
  for (auto &Param : Params) {
    // Only vector parameters are used when determining the VF; uniform or
    // linear are left as scalars, so do not affect VF.
    if (Param.ParamKind == VFParamKind::Vector) {
      Type *PTy = Signature->getParamType(Param.ParamPos);

      std::optional<ElementCount> EC = getElementCountForTy(ISA, PTy);
      // If we have an unknown scalar element type we can't find a reasonable
      // VF.
      if (!EC)
        return std::nullopt;

      // Find the smallest VF, based on the widest scalar type.
      if (ElementCount::isKnownLT(*EC, MinEC))
        MinEC = *EC;
    }
  }

  // Also check the return type if not void.
  Type *RetTy = Signature->getReturnType();
  if (!RetTy->isVoidTy()) {
    // If the return type is a struct, only allow unpacked struct literals.
    StructType *StructTy = dyn_cast<StructType>(RetTy);
    if (StructTy && !isUnpackedStructLiteral(StructTy))
      return std::nullopt;

    for (Type *RetTy : getContainedTypes(RetTy)) {
      std::optional<ElementCount> ReturnEC = getElementCountForTy(ISA, RetTy);
      // If we have an unknown scalar element type we can't find a reasonable
      // VF.
      if (!ReturnEC)
        return std::nullopt;
      if (ElementCount::isKnownLT(*ReturnEC, MinEC))
        MinEC = *ReturnEC;
    }
  }

  // The SVE Vector function call ABI bases the VF on the widest element types
  // present, and vector arguments containing types of that width are always
  // considered to be packed. Arguments with narrower elements are considered
  // to be unpacked.
  if (MinEC.getKnownMinValue() < std::numeric_limits<unsigned int>::max())
    return MinEC;

  return std::nullopt;
}
} // namespace

// Format of the ABI name:
// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)]
std::optional<VFInfo> VFABI::tryDemangleForVFABI(StringRef MangledName,
                                                 const FunctionType *FTy) {
  const StringRef OriginalName = MangledName;
  // Assume there is no custom name <redirection>, and therefore the
  // vector name consists of
  // _ZGV<isa><mask><vlen><parameters>_<scalarname>.
  StringRef VectorName = MangledName;

  // Parse the fixed size part of the mangled name
  if (!MangledName.consume_front("_ZGV"))
    return std::nullopt;

  // Extract ISA. An unknow ISA is also supported, so we accept all
  // values.
  VFISAKind ISA;
  if (tryParseISA(MangledName, ISA) != ParseRet::OK)
    return std::nullopt;

  // Extract <mask>.
  bool IsMasked;
  if (tryParseMask(MangledName, IsMasked) != ParseRet::OK)
    return std::nullopt;

  // Parse the variable size, starting from <vlen>.
  std::pair<unsigned, bool> ParsedVF;
  if (tryParseVLEN(MangledName, ISA, ParsedVF) != ParseRet::OK)
    return std::nullopt;

  // Parse the <parameters>.
  ParseRet ParamFound;
  SmallVector<VFParameter, 8> Parameters;
  do {
    const unsigned ParameterPos = Parameters.size();
    VFParamKind PKind;
    int StepOrPos;
    ParamFound = tryParseParameter(MangledName, PKind, StepOrPos);

    // Bail off if there is a parsing error in the parsing of the parameter.
    if (ParamFound == ParseRet::Error)
      return std::nullopt;

    if (ParamFound == ParseRet::OK) {
      Align Alignment;
      // Look for the alignment token "a <number>".
      const ParseRet AlignFound = tryParseAlign(MangledName, Alignment);
      // Bail off if there is a syntax error in the align token.
      if (AlignFound == ParseRet::Error)
        return std::nullopt;

      // Add the parameter.
      Parameters.push_back({ParameterPos, PKind, StepOrPos, Alignment});
    }
  } while (ParamFound == ParseRet::OK);

  // A valid MangledName must have at least one valid entry in the
  // <parameters>.
  if (Parameters.empty())
    return std::nullopt;

  // If the number of arguments of the scalar function does not match the
  // vector variant we have just demangled then reject the mapping.
  if (Parameters.size() != FTy->getNumParams())
    return std::nullopt;

  // Figure out the number of lanes in vectors for this function variant. This
  // is easy for fixed length, as the vlen encoding just gives us the value
  // directly. However, if the vlen mangling indicated that this function
  // variant expects scalable vectors we need to work it out based on the
  // demangled parameter types and the scalar function signature.
  std::optional<ElementCount> EC;
  if (ParsedVF.second) {
    EC = getScalableECFromSignature(FTy, ISA, Parameters);
    if (!EC)
      return std::nullopt;
  } else
    EC = ElementCount::getFixed(ParsedVF.first);

  // Check for the <scalarname> and the optional <redirection>, which
  // are separated from the prefix with "_"
  if (!MangledName.consume_front("_"))
    return std::nullopt;

  // The rest of the string must be in the format:
  // <scalarname>[(<redirection>)]
  const StringRef ScalarName =
      MangledName.take_while([](char In) { return In != '('; });

  if (ScalarName.empty())
    return std::nullopt;

  // Reduce MangledName to [(<redirection>)].
  MangledName = MangledName.ltrim(ScalarName);
  // Find the optional custom name redirection.
  if (MangledName.consume_front("(")) {
    if (!MangledName.consume_back(")"))
      return std::nullopt;
    // Update the vector variant with the one specified by the user.
    VectorName = MangledName;
    // If the vector name is missing, bail out.
    if (VectorName.empty())
      return std::nullopt;
  }

  // LLVM internal mapping via the TargetLibraryInfo (TLI) must be
  // redirected to an existing name.
  if (ISA == VFISAKind::LLVM && VectorName == OriginalName)
    return std::nullopt;

  // When <mask> is "M", we need to add a parameter that is used as
  // global predicate for the function.
  if (IsMasked) {
    const unsigned Pos = Parameters.size();
    Parameters.push_back({Pos, VFParamKind::GlobalPredicate});
  }

  // Asserts for parameters of type `VFParamKind::GlobalPredicate`, as
  // prescribed by the Vector Function ABI specifications supported by
  // this parser:
  // 1. Uniqueness.
  // 2. Must be the last in the parameter list.
  const auto NGlobalPreds =
      llvm::count_if(Parameters, [](const VFParameter &PK) {
        return PK.ParamKind == VFParamKind::GlobalPredicate;
      });
  assert(NGlobalPreds < 2 && "Cannot have more than one global predicate.");
  if (NGlobalPreds)
    assert(Parameters.back().ParamKind == VFParamKind::GlobalPredicate &&
           "The global predicate must be the last parameter");

  const VFShape Shape({*EC, Parameters});
  return VFInfo({Shape, std::string(ScalarName), std::string(VectorName), ISA});
}

VFParamKind VFABI::getVFParamKindFromString(const StringRef Token) {
  const VFParamKind ParamKind = StringSwitch<VFParamKind>(Token)
                                    .Case("v", VFParamKind::Vector)
                                    .Case("l", VFParamKind::OMP_Linear)
                                    .Case("R", VFParamKind::OMP_LinearRef)
                                    .Case("L", VFParamKind::OMP_LinearVal)
                                    .Case("U", VFParamKind::OMP_LinearUVal)
                                    .Case("ls", VFParamKind::OMP_LinearPos)
                                    .Case("Ls", VFParamKind::OMP_LinearValPos)
                                    .Case("Rs", VFParamKind::OMP_LinearRefPos)
                                    .Case("Us", VFParamKind::OMP_LinearUValPos)
                                    .Case("u", VFParamKind::OMP_Uniform)
                                    .Default(VFParamKind::Unknown);

  if (ParamKind != VFParamKind::Unknown)
    return ParamKind;

  // This function should never be invoked with an invalid input.
  llvm_unreachable("This fuction should be invoken only on parameters"
                   " that have a textual representation in the mangled name"
                   " of the Vector Function ABI");
}

void VFABI::getVectorVariantNames(
    const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
  const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
  if (S.empty())
    return;

  SmallVector<StringRef, 8> ListAttr;
  S.split(ListAttr, ",");

  for (const auto &S : SetVector<StringRef>(llvm::from_range, ListAttr)) {
    std::optional<VFInfo> Info =
        VFABI::tryDemangleForVFABI(S, CI.getFunctionType());
    if (Info && CI.getModule()->getFunction(Info->VectorName)) {
      LLVM_DEBUG(dbgs() << "VFABI: Adding mapping '" << S << "' for " << CI
                        << "\n");
      VariantMappings.push_back(std::string(S));
    } else
      LLVM_DEBUG(dbgs() << "VFABI: Invalid mapping '" << S << "'\n");
  }
}

FunctionType *VFABI::createFunctionType(const VFInfo &Info,
                                        const FunctionType *ScalarFTy) {
  // Create vector parameter types
  SmallVector<Type *, 8> VecTypes;
  ElementCount VF = Info.Shape.VF;
  int ScalarParamIndex = 0;
  for (auto VFParam : Info.Shape.Parameters) {
    if (VFParam.ParamKind == VFParamKind::GlobalPredicate) {
      VectorType *MaskTy =
          VectorType::get(Type::getInt1Ty(ScalarFTy->getContext()), VF);
      VecTypes.push_back(MaskTy);
      continue;
    }

    Type *OperandTy = ScalarFTy->getParamType(ScalarParamIndex++);
    if (VFParam.ParamKind == VFParamKind::Vector)
      OperandTy = VectorType::get(OperandTy, VF);
    VecTypes.push_back(OperandTy);
  }

  auto *RetTy = ScalarFTy->getReturnType();
  if (!RetTy->isVoidTy())
    RetTy = toVectorizedTy(RetTy, VF);
  return FunctionType::get(RetTy, VecTypes, false);
}

void VFABI::setVectorVariantNames(CallInst *CI,
                                  ArrayRef<std::string> VariantMappings) {
  if (VariantMappings.empty())
    return;

  SmallString<256> Buffer;
  llvm::raw_svector_ostream Out(Buffer);
  for (const std::string &VariantMapping : VariantMappings)
    Out << VariantMapping << ",";
  // Get rid of the trailing ','.
  assert(!Buffer.str().empty() && "Must have at least one char.");
  Buffer.pop_back();

  Module *M = CI->getModule();
#ifndef NDEBUG
  for (const std::string &VariantMapping : VariantMappings) {
    LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << VariantMapping << "'\n");
    std::optional<VFInfo> VI =
        VFABI::tryDemangleForVFABI(VariantMapping, CI->getFunctionType());
    assert(VI && "Cannot add an invalid VFABI name.");
    assert(M->getNamedValue(VI->VectorName) &&
           "Cannot add variant to attribute: "
           "vector function declaration is missing.");
  }
#endif
  CI->addFnAttr(
      Attribute::get(M->getContext(), MappingsAttrName, Buffer.str()));
}

bool VFShape::hasValidParameterList() const {
  for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
       ++Pos) {
    assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");

    switch (Parameters[Pos].ParamKind) {
    default: // Nothing to check.
      break;
    case VFParamKind::OMP_Linear:
    case VFParamKind::OMP_LinearRef:
    case VFParamKind::OMP_LinearVal:
    case VFParamKind::OMP_LinearUVal:
      // Compile time linear steps must be non-zero.
      if (Parameters[Pos].LinearStepOrPos == 0)
        return false;
      break;
    case VFParamKind::OMP_LinearPos:
    case VFParamKind::OMP_LinearRefPos:
    case VFParamKind::OMP_LinearValPos:
    case VFParamKind::OMP_LinearUValPos:
      // The runtime linear step must be referring to some other
      // parameters in the signature.
      if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
        return false;
      // The linear step parameter must be marked as uniform.
      if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
          VFParamKind::OMP_Uniform)
        return false;
      // The linear step parameter can't point at itself.
      if (Parameters[Pos].LinearStepOrPos == int(Pos))
        return false;
      break;
    case VFParamKind::GlobalPredicate:
      // The global predicate must be the unique. Can be placed anywhere in the
      // signature.
      for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
        if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
          return false;
      break;
    }
  }
  return true;
}