aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/IR/ConstantRange.cpp
blob: e09c139db39c8248bae07b2161790c552373f9ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
//===- ConstantRange.cpp - ConstantRange implementation -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value.  This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range.  To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators.  When used with boolean values, the following are important
// ranges (other integral ranges use min/max values for special range values):
//
//  [F, F) = {}     = Empty set
//  [T, F) = {T}
//  [F, T) = {F}
//  [T, T) = {F, T} = Full set
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/ConstantRange.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <optional>

using namespace llvm;

ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
    : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
      Upper(Lower) {}

ConstantRange::ConstantRange(APInt V)
    : Lower(std::move(V)), Upper(Lower + 1) {}

ConstantRange::ConstantRange(APInt L, APInt U)
    : Lower(std::move(L)), Upper(std::move(U)) {
  assert(Lower.getBitWidth() == Upper.getBitWidth() &&
         "ConstantRange with unequal bit widths");
  assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
         "Lower == Upper, but they aren't min or max value!");
}

ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
                                           bool IsSigned) {
  if (Known.hasConflict())
    return getEmpty(Known.getBitWidth());
  if (Known.isUnknown())
    return getFull(Known.getBitWidth());

  // For unsigned ranges, or signed ranges with known sign bit, create a simple
  // range between the smallest and largest possible value.
  if (!IsSigned || Known.isNegative() || Known.isNonNegative())
    return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);

  // If we don't know the sign bit, pick the lower bound as a negative number
  // and the upper bound as a non-negative one.
  APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
  Lower.setSignBit();
  Upper.clearSignBit();
  return ConstantRange(Lower, Upper + 1);
}

KnownBits ConstantRange::toKnownBits() const {
  // TODO: We could return conflicting known bits here, but consumers are
  // likely not prepared for that.
  if (isEmptySet())
    return KnownBits(getBitWidth());

  // We can only retain the top bits that are the same between min and max.
  APInt Min = getUnsignedMin();
  APInt Max = getUnsignedMax();
  KnownBits Known = KnownBits::makeConstant(Min);
  if (std::optional<unsigned> DifferentBit =
          APIntOps::GetMostSignificantDifferentBit(Min, Max)) {
    Known.Zero.clearLowBits(*DifferentBit + 1);
    Known.One.clearLowBits(*DifferentBit + 1);
  }
  return Known;
}

std::pair<ConstantRange, ConstantRange> ConstantRange::splitPosNeg() const {
  uint32_t BW = getBitWidth();
  APInt Zero = APInt::getZero(BW), One = APInt(BW, 1);
  APInt SignedMin = APInt::getSignedMinValue(BW);
  // There are no positive 1-bit values. The 1 would get interpreted as -1.
  ConstantRange PosFilter =
      BW == 1 ? getEmpty() : ConstantRange(One, SignedMin);
  ConstantRange NegFilter(SignedMin, Zero);
  return {intersectWith(PosFilter), intersectWith(NegFilter)};
}

ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
                                                   const ConstantRange &CR) {
  if (CR.isEmptySet())
    return CR;

  uint32_t W = CR.getBitWidth();
  switch (Pred) {
  default:
    llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
  case CmpInst::ICMP_EQ:
    return CR;
  case CmpInst::ICMP_NE:
    if (CR.isSingleElement())
      return ConstantRange(CR.getUpper(), CR.getLower());
    return getFull(W);
  case CmpInst::ICMP_ULT: {
    APInt UMax(CR.getUnsignedMax());
    if (UMax.isMinValue())
      return getEmpty(W);
    return ConstantRange(APInt::getMinValue(W), std::move(UMax));
  }
  case CmpInst::ICMP_SLT: {
    APInt SMax(CR.getSignedMax());
    if (SMax.isMinSignedValue())
      return getEmpty(W);
    return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
  }
  case CmpInst::ICMP_ULE:
    return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
  case CmpInst::ICMP_SLE:
    return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
  case CmpInst::ICMP_UGT: {
    APInt UMin(CR.getUnsignedMin());
    if (UMin.isMaxValue())
      return getEmpty(W);
    return ConstantRange(std::move(UMin) + 1, APInt::getZero(W));
  }
  case CmpInst::ICMP_SGT: {
    APInt SMin(CR.getSignedMin());
    if (SMin.isMaxSignedValue())
      return getEmpty(W);
    return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
  }
  case CmpInst::ICMP_UGE:
    return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W));
  case CmpInst::ICMP_SGE:
    return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
  }
}

ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
                                                      const ConstantRange &CR) {
  // Follows from De-Morgan's laws:
  //
  // ~(~A union ~B) == A intersect B.
  //
  return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
      .inverse();
}

ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
                                                 const APInt &C) {
  // Computes the exact range that is equal to both the constant ranges returned
  // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
  // when RHS is a singleton such as an APInt. However for non-singleton RHS,
  // for example ult [2,5) makeAllowedICmpRegion returns [0,4) but
  // makeSatisfyICmpRegion returns [0,2).
  //
  return makeAllowedICmpRegion(Pred, C);
}

bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate(
    const ConstantRange &CR1, const ConstantRange &CR2) {
  if (CR1.isEmptySet() || CR2.isEmptySet())
    return true;

  return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) ||
         (CR1.isAllNegative() && CR2.isAllNegative());
}

bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate(
    const ConstantRange &CR1, const ConstantRange &CR2) {
  if (CR1.isEmptySet() || CR2.isEmptySet())
    return true;

  return (CR1.isAllNonNegative() && CR2.isAllNegative()) ||
         (CR1.isAllNegative() && CR2.isAllNonNegative());
}

CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness(
    CmpInst::Predicate Pred, const ConstantRange &CR1,
    const ConstantRange &CR2) {
  assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) &&
         "Only for relational integer predicates!");

  CmpInst::Predicate FlippedSignednessPred =
      ICmpInst::getFlippedSignednessPredicate(Pred);

  if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2))
    return FlippedSignednessPred;

  if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2))
    return CmpInst::getInversePredicate(FlippedSignednessPred);

  return CmpInst::Predicate::BAD_ICMP_PREDICATE;
}

void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
                                      APInt &RHS, APInt &Offset) const {
  Offset = APInt(getBitWidth(), 0);
  if (isFullSet() || isEmptySet()) {
    Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
    RHS = APInt(getBitWidth(), 0);
  } else if (auto *OnlyElt = getSingleElement()) {
    Pred = CmpInst::ICMP_EQ;
    RHS = *OnlyElt;
  } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
    Pred = CmpInst::ICMP_NE;
    RHS = *OnlyMissingElt;
  } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
    Pred =
        getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
    RHS = getUpper();
  } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
    Pred =
        getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
    RHS = getLower();
  } else {
    Pred = CmpInst::ICMP_ULT;
    RHS = getUpper() - getLower();
    Offset = -getLower();
  }

  assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) &&
         "Bad result!");
}

bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
                                      APInt &RHS) const {
  APInt Offset;
  getEquivalentICmp(Pred, RHS, Offset);
  return Offset.isZero();
}

bool ConstantRange::icmp(CmpInst::Predicate Pred,
                         const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return true;

  switch (Pred) {
  case CmpInst::ICMP_EQ:
    if (const APInt *L = getSingleElement())
      if (const APInt *R = Other.getSingleElement())
        return *L == *R;
    return false;
  case CmpInst::ICMP_NE:
    return inverse().contains(Other);
  case CmpInst::ICMP_ULT:
    return getUnsignedMax().ult(Other.getUnsignedMin());
  case CmpInst::ICMP_ULE:
    return getUnsignedMax().ule(Other.getUnsignedMin());
  case CmpInst::ICMP_UGT:
    return getUnsignedMin().ugt(Other.getUnsignedMax());
  case CmpInst::ICMP_UGE:
    return getUnsignedMin().uge(Other.getUnsignedMax());
  case CmpInst::ICMP_SLT:
    return getSignedMax().slt(Other.getSignedMin());
  case CmpInst::ICMP_SLE:
    return getSignedMax().sle(Other.getSignedMin());
  case CmpInst::ICMP_SGT:
    return getSignedMin().sgt(Other.getSignedMax());
  case CmpInst::ICMP_SGE:
    return getSignedMin().sge(Other.getSignedMax());
  default:
    llvm_unreachable("Invalid ICmp predicate");
  }
}

/// Exact mul nuw region for single element RHS.
static ConstantRange makeExactMulNUWRegion(const APInt &V) {
  unsigned BitWidth = V.getBitWidth();
  if (V == 0)
    return ConstantRange::getFull(V.getBitWidth());

  return ConstantRange::getNonEmpty(
      APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
                             APInt::Rounding::UP),
      APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
                             APInt::Rounding::DOWN) + 1);
}

/// Exact mul nsw region for single element RHS.
static ConstantRange makeExactMulNSWRegion(const APInt &V) {
  // Handle 0 and -1 separately to avoid division by zero or overflow.
  unsigned BitWidth = V.getBitWidth();
  if (V == 0)
    return ConstantRange::getFull(BitWidth);

  APInt MinValue = APInt::getSignedMinValue(BitWidth);
  APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
  // e.g. Returning [-127, 127], represented as [-127, -128).
  if (V.isAllOnes())
    return ConstantRange(-MaxValue, MinValue);

  APInt Lower, Upper;
  if (V.isNegative()) {
    Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
    Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
  } else {
    Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
    Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
  }
  return ConstantRange::getNonEmpty(Lower, Upper + 1);
}

ConstantRange
ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
                                          const ConstantRange &Other,
                                          unsigned NoWrapKind) {
  using OBO = OverflowingBinaryOperator;

  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");

  assert((NoWrapKind == OBO::NoSignedWrap ||
          NoWrapKind == OBO::NoUnsignedWrap) &&
         "NoWrapKind invalid!");

  bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
  unsigned BitWidth = Other.getBitWidth();

  switch (BinOp) {
  default:
    llvm_unreachable("Unsupported binary op");

  case Instruction::Add: {
    if (Unsigned)
      return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax());

    APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
    APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
    return getNonEmpty(
        SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
        SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
  }

  case Instruction::Sub: {
    if (Unsigned)
      return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));

    APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
    APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
    return getNonEmpty(
        SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
        SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
  }

  case Instruction::Mul:
    if (Unsigned)
      return makeExactMulNUWRegion(Other.getUnsignedMax());

    // Avoid one makeExactMulNSWRegion() call for the common case of constants.
    if (const APInt *C = Other.getSingleElement())
      return makeExactMulNSWRegion(*C);

    return makeExactMulNSWRegion(Other.getSignedMin())
        .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));

  case Instruction::Shl: {
    // For given range of shift amounts, if we ignore all illegal shift amounts
    // (that always produce poison), what shift amount range is left?
    ConstantRange ShAmt = Other.intersectWith(
        ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
    if (ShAmt.isEmptySet()) {
      // If the entire range of shift amounts is already poison-producing,
      // then we can freely add more poison-producing flags ontop of that.
      return getFull(BitWidth);
    }
    // There are some legal shift amounts, we can compute conservatively-correct
    // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
    // to be at most bitwidth-1, which results in most conservative range.
    APInt ShAmtUMax = ShAmt.getUnsignedMax();
    if (Unsigned)
      return getNonEmpty(APInt::getZero(BitWidth),
                         APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
    return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
                       APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
  }
  }
}

ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
                                                   const APInt &Other,
                                                   unsigned NoWrapKind) {
  // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
  // "for all" and "for any" coincide in this case.
  return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
}

ConstantRange ConstantRange::makeMaskNotEqualRange(const APInt &Mask,
                                                   const APInt &C) {
  unsigned BitWidth = Mask.getBitWidth();

  if ((Mask & C) != C)
    return getFull(BitWidth);

  if (Mask.isZero())
    return getEmpty(BitWidth);

  // If (Val & Mask) != C, constrained to the non-equality being
  // satisfiable, then the value must be larger than the lowest set bit of
  // Mask, offset by constant C.
  return ConstantRange::getNonEmpty(
      APInt::getOneBitSet(BitWidth, Mask.countr_zero()) + C, C);
}

bool ConstantRange::isFullSet() const {
  return Lower == Upper && Lower.isMaxValue();
}

bool ConstantRange::isEmptySet() const {
  return Lower == Upper && Lower.isMinValue();
}

bool ConstantRange::isWrappedSet() const {
  return Lower.ugt(Upper) && !Upper.isZero();
}

bool ConstantRange::isUpperWrapped() const {
  return Lower.ugt(Upper);
}

bool ConstantRange::isSignWrappedSet() const {
  return Lower.sgt(Upper) && !Upper.isMinSignedValue();
}

bool ConstantRange::isUpperSignWrapped() const {
  return Lower.sgt(Upper);
}

bool
ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
  assert(getBitWidth() == Other.getBitWidth());
  if (isFullSet())
    return false;
  if (Other.isFullSet())
    return true;
  return (Upper - Lower).ult(Other.Upper - Other.Lower);
}

bool
ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
  // If this a full set, we need special handling to avoid needing an extra bit
  // to represent the size.
  if (isFullSet())
    return MaxSize == 0 || APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);

  return (Upper - Lower).ugt(MaxSize);
}

bool ConstantRange::isAllNegative() const {
  // Empty set is all negative, full set is not.
  if (isEmptySet())
    return true;
  if (isFullSet())
    return false;

  return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
}

bool ConstantRange::isAllNonNegative() const {
  // Empty and full set are automatically treated correctly.
  return !isSignWrappedSet() && Lower.isNonNegative();
}

bool ConstantRange::isAllPositive() const {
  // Empty set is all positive, full set is not.
  if (isEmptySet())
    return true;
  if (isFullSet())
    return false;

  return !isSignWrappedSet() && Lower.isStrictlyPositive();
}

APInt ConstantRange::getUnsignedMax() const {
  if (isFullSet() || isUpperWrapped())
    return APInt::getMaxValue(getBitWidth());
  return getUpper() - 1;
}

APInt ConstantRange::getUnsignedMin() const {
  if (isFullSet() || isWrappedSet())
    return APInt::getMinValue(getBitWidth());
  return getLower();
}

APInt ConstantRange::getSignedMax() const {
  if (isFullSet() || isUpperSignWrapped())
    return APInt::getSignedMaxValue(getBitWidth());
  return getUpper() - 1;
}

APInt ConstantRange::getSignedMin() const {
  if (isFullSet() || isSignWrappedSet())
    return APInt::getSignedMinValue(getBitWidth());
  return getLower();
}

bool ConstantRange::contains(const APInt &V) const {
  if (Lower == Upper)
    return isFullSet();

  if (!isUpperWrapped())
    return Lower.ule(V) && V.ult(Upper);
  return Lower.ule(V) || V.ult(Upper);
}

bool ConstantRange::contains(const ConstantRange &Other) const {
  if (isFullSet() || Other.isEmptySet()) return true;
  if (isEmptySet() || Other.isFullSet()) return false;

  if (!isUpperWrapped()) {
    if (Other.isUpperWrapped())
      return false;

    return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
  }

  if (!Other.isUpperWrapped())
    return Other.getUpper().ule(Upper) ||
           Lower.ule(Other.getLower());

  return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
}

unsigned ConstantRange::getActiveBits() const {
  if (isEmptySet())
    return 0;

  return getUnsignedMax().getActiveBits();
}

unsigned ConstantRange::getMinSignedBits() const {
  if (isEmptySet())
    return 0;

  return std::max(getSignedMin().getSignificantBits(),
                  getSignedMax().getSignificantBits());
}

ConstantRange ConstantRange::subtract(const APInt &Val) const {
  assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
  // If the set is empty or full, don't modify the endpoints.
  if (Lower == Upper)
    return *this;
  return ConstantRange(Lower - Val, Upper - Val);
}

ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
  return intersectWith(CR.inverse());
}

static ConstantRange getPreferredRange(
    const ConstantRange &CR1, const ConstantRange &CR2,
    ConstantRange::PreferredRangeType Type) {
  if (Type == ConstantRange::Unsigned) {
    if (!CR1.isWrappedSet() && CR2.isWrappedSet())
      return CR1;
    if (CR1.isWrappedSet() && !CR2.isWrappedSet())
      return CR2;
  } else if (Type == ConstantRange::Signed) {
    if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
      return CR1;
    if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
      return CR2;
  }

  if (CR1.isSizeStrictlySmallerThan(CR2))
    return CR1;
  return CR2;
}

ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
                                           PreferredRangeType Type) const {
  assert(getBitWidth() == CR.getBitWidth() &&
         "ConstantRange types don't agree!");

  // Handle common cases.
  if (   isEmptySet() || CR.isFullSet()) return *this;
  if (CR.isEmptySet() ||    isFullSet()) return CR;

  if (!isUpperWrapped() && CR.isUpperWrapped())
    return CR.intersectWith(*this, Type);

  if (!isUpperWrapped() && !CR.isUpperWrapped()) {
    if (Lower.ult(CR.Lower)) {
      // L---U       : this
      //       L---U : CR
      if (Upper.ule(CR.Lower))
        return getEmpty();

      // L---U       : this
      //   L---U     : CR
      if (Upper.ult(CR.Upper))
        return ConstantRange(CR.Lower, Upper);

      // L-------U   : this
      //   L---U     : CR
      return CR;
    }
    //   L---U     : this
    // L-------U   : CR
    if (Upper.ult(CR.Upper))
      return *this;

    //   L-----U   : this
    // L-----U     : CR
    if (Lower.ult(CR.Upper))
      return ConstantRange(Lower, CR.Upper);

    //       L---U : this
    // L---U       : CR
    return getEmpty();
  }

  if (isUpperWrapped() && !CR.isUpperWrapped()) {
    if (CR.Lower.ult(Upper)) {
      // ------U   L--- : this
      //  L--U          : CR
      if (CR.Upper.ult(Upper))
        return CR;

      // ------U   L--- : this
      //  L------U      : CR
      if (CR.Upper.ule(Lower))
        return ConstantRange(CR.Lower, Upper);

      // ------U   L--- : this
      //  L----------U  : CR
      return getPreferredRange(*this, CR, Type);
    }
    if (CR.Lower.ult(Lower)) {
      // --U      L---- : this
      //     L--U       : CR
      if (CR.Upper.ule(Lower))
        return getEmpty();

      // --U      L---- : this
      //     L------U   : CR
      return ConstantRange(Lower, CR.Upper);
    }

    // --U  L------ : this
    //        L--U  : CR
    return CR;
  }

  if (CR.Upper.ult(Upper)) {
    // ------U L-- : this
    // --U L------ : CR
    if (CR.Lower.ult(Upper))
      return getPreferredRange(*this, CR, Type);

    // ----U   L-- : this
    // --U   L---- : CR
    if (CR.Lower.ult(Lower))
      return ConstantRange(Lower, CR.Upper);

    // ----U L---- : this
    // --U     L-- : CR
    return CR;
  }
  if (CR.Upper.ule(Lower)) {
    // --U     L-- : this
    // ----U L---- : CR
    if (CR.Lower.ult(Lower))
      return *this;

    // --U   L---- : this
    // ----U   L-- : CR
    return ConstantRange(CR.Lower, Upper);
  }

  // --U L------ : this
  // ------U L-- : CR
  return getPreferredRange(*this, CR, Type);
}

ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
                                       PreferredRangeType Type) const {
  assert(getBitWidth() == CR.getBitWidth() &&
         "ConstantRange types don't agree!");

  if (   isFullSet() || CR.isEmptySet()) return *this;
  if (CR.isFullSet() ||    isEmptySet()) return CR;

  if (!isUpperWrapped() && CR.isUpperWrapped())
    return CR.unionWith(*this, Type);

  if (!isUpperWrapped() && !CR.isUpperWrapped()) {
    //        L---U  and  L---U        : this
    //  L---U                   L---U  : CR
    // result in one of
    //  L---------U
    // -----U L-----
    if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
      return getPreferredRange(
          ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);

    APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
    APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;

    if (L.isZero() && U.isZero())
      return getFull();

    return ConstantRange(std::move(L), std::move(U));
  }

  if (!CR.isUpperWrapped()) {
    // ------U   L-----  and  ------U   L----- : this
    //   L--U                            L--U  : CR
    if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
      return *this;

    // ------U   L----- : this
    //    L---------U   : CR
    if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
      return getFull();

    // ----U       L---- : this
    //       L---U       : CR
    // results in one of
    // ----------U L----
    // ----U L----------
    if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
      return getPreferredRange(
          ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);

    // ----U     L----- : this
    //        L----U    : CR
    if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
      return ConstantRange(CR.Lower, Upper);

    // ------U    L---- : this
    //    L-----U       : CR
    assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
           "ConstantRange::unionWith missed a case with one range wrapped");
    return ConstantRange(Lower, CR.Upper);
  }

  // ------U    L----  and  ------U    L---- : this
  // -U  L-----------  and  ------------U  L : CR
  if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
    return getFull();

  APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
  APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;

  return ConstantRange(std::move(L), std::move(U));
}

std::optional<ConstantRange>
ConstantRange::exactIntersectWith(const ConstantRange &CR) const {
  // TODO: This can be implemented more efficiently.
  ConstantRange Result = intersectWith(CR);
  if (Result == inverse().unionWith(CR.inverse()).inverse())
    return Result;
  return std::nullopt;
}

std::optional<ConstantRange>
ConstantRange::exactUnionWith(const ConstantRange &CR) const {
  // TODO: This can be implemented more efficiently.
  ConstantRange Result = unionWith(CR);
  if (Result == inverse().intersectWith(CR.inverse()).inverse())
    return Result;
  return std::nullopt;
}

ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
                                    uint32_t ResultBitWidth) const {
  switch (CastOp) {
  default:
    llvm_unreachable("unsupported cast type");
  case Instruction::Trunc:
    return truncate(ResultBitWidth);
  case Instruction::SExt:
    return signExtend(ResultBitWidth);
  case Instruction::ZExt:
    return zeroExtend(ResultBitWidth);
  case Instruction::BitCast:
    return *this;
  case Instruction::FPToUI:
  case Instruction::FPToSI:
    if (getBitWidth() == ResultBitWidth)
      return *this;
    else
      return getFull(ResultBitWidth);
  case Instruction::UIToFP: {
    // TODO: use input range if available
    auto BW = getBitWidth();
    APInt Min = APInt::getMinValue(BW);
    APInt Max = APInt::getMaxValue(BW);
    if (ResultBitWidth > BW) {
      Min = Min.zext(ResultBitWidth);
      Max = Max.zext(ResultBitWidth);
    }
    return getNonEmpty(std::move(Min), std::move(Max) + 1);
  }
  case Instruction::SIToFP: {
    // TODO: use input range if available
    auto BW = getBitWidth();
    APInt SMin = APInt::getSignedMinValue(BW);
    APInt SMax = APInt::getSignedMaxValue(BW);
    if (ResultBitWidth > BW) {
      SMin = SMin.sext(ResultBitWidth);
      SMax = SMax.sext(ResultBitWidth);
    }
    return getNonEmpty(std::move(SMin), std::move(SMax) + 1);
  }
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::AddrSpaceCast:
    // Conservatively return getFull set.
    return getFull(ResultBitWidth);
  };
}

ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
  if (isEmptySet()) return getEmpty(DstTySize);

  unsigned SrcTySize = getBitWidth();
  assert(SrcTySize < DstTySize && "Not a value extension");
  if (isFullSet() || isUpperWrapped()) {
    // Change into [0, 1 << src bit width)
    APInt LowerExt(DstTySize, 0);
    if (!Upper) // special case: [X, 0) -- not really wrapping around
      LowerExt = Lower.zext(DstTySize);
    return ConstantRange(std::move(LowerExt),
                         APInt::getOneBitSet(DstTySize, SrcTySize));
  }

  return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
}

ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
  if (isEmptySet()) return getEmpty(DstTySize);

  unsigned SrcTySize = getBitWidth();
  assert(SrcTySize < DstTySize && "Not a value extension");

  // special case: [X, INT_MIN) -- not really wrapping around
  if (Upper.isMinSignedValue())
    return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));

  if (isFullSet() || isSignWrappedSet()) {
    return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
                         APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
  }

  return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
}

ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
  assert(getBitWidth() > DstTySize && "Not a value truncation");
  if (isEmptySet())
    return getEmpty(DstTySize);
  if (isFullSet())
    return getFull(DstTySize);

  APInt LowerDiv(Lower), UpperDiv(Upper);
  ConstantRange Union(DstTySize, /*isFullSet=*/false);

  // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
  // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
  // then we do the union with [MaxValue, Upper)
  if (isUpperWrapped()) {
    // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
    // truncated range.
    if (Upper.getActiveBits() > DstTySize || Upper.countr_one() == DstTySize)
      return getFull(DstTySize);

    Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
    UpperDiv.setAllBits();

    // Union covers the MaxValue case, so return if the remaining range is just
    // MaxValue(DstTy).
    if (LowerDiv == UpperDiv)
      return Union;
  }

  // Chop off the most significant bits that are past the destination bitwidth.
  if (LowerDiv.getActiveBits() > DstTySize) {
    // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
    APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
    LowerDiv -= Adjust;
    UpperDiv -= Adjust;
  }

  unsigned UpperDivWidth = UpperDiv.getActiveBits();
  if (UpperDivWidth <= DstTySize)
    return ConstantRange(LowerDiv.trunc(DstTySize),
                         UpperDiv.trunc(DstTySize)).unionWith(Union);

  // The truncated value wraps around. Check if we can do better than fullset.
  if (UpperDivWidth == DstTySize + 1) {
    // Clear the MSB so that UpperDiv wraps around.
    UpperDiv.clearBit(DstTySize);
    if (UpperDiv.ult(LowerDiv))
      return ConstantRange(LowerDiv.trunc(DstTySize),
                           UpperDiv.trunc(DstTySize)).unionWith(Union);
  }

  return getFull(DstTySize);
}

ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
  unsigned SrcTySize = getBitWidth();
  if (SrcTySize > DstTySize)
    return truncate(DstTySize);
  if (SrcTySize < DstTySize)
    return zeroExtend(DstTySize);
  return *this;
}

ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
  unsigned SrcTySize = getBitWidth();
  if (SrcTySize > DstTySize)
    return truncate(DstTySize);
  if (SrcTySize < DstTySize)
    return signExtend(DstTySize);
  return *this;
}

ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
                                      const ConstantRange &Other) const {
  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");

  switch (BinOp) {
  case Instruction::Add:
    return add(Other);
  case Instruction::Sub:
    return sub(Other);
  case Instruction::Mul:
    return multiply(Other);
  case Instruction::UDiv:
    return udiv(Other);
  case Instruction::SDiv:
    return sdiv(Other);
  case Instruction::URem:
    return urem(Other);
  case Instruction::SRem:
    return srem(Other);
  case Instruction::Shl:
    return shl(Other);
  case Instruction::LShr:
    return lshr(Other);
  case Instruction::AShr:
    return ashr(Other);
  case Instruction::And:
    return binaryAnd(Other);
  case Instruction::Or:
    return binaryOr(Other);
  case Instruction::Xor:
    return binaryXor(Other);
  // Note: floating point operations applied to abstract ranges are just
  // ideal integer operations with a lossy representation
  case Instruction::FAdd:
    return add(Other);
  case Instruction::FSub:
    return sub(Other);
  case Instruction::FMul:
    return multiply(Other);
  default:
    // Conservatively return getFull set.
    return getFull();
  }
}

ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
                                                 const ConstantRange &Other,
                                                 unsigned NoWrapKind) const {
  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");

  switch (BinOp) {
  case Instruction::Add:
    return addWithNoWrap(Other, NoWrapKind);
  case Instruction::Sub:
    return subWithNoWrap(Other, NoWrapKind);
  case Instruction::Mul:
    return multiplyWithNoWrap(Other, NoWrapKind);
  case Instruction::Shl:
    return shlWithNoWrap(Other, NoWrapKind);
  default:
    // Don't know about this Overflowing Binary Operation.
    // Conservatively fallback to plain binop handling.
    return binaryOp(BinOp, Other);
  }
}

bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
  switch (IntrinsicID) {
  case Intrinsic::uadd_sat:
  case Intrinsic::usub_sat:
  case Intrinsic::sadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::umin:
  case Intrinsic::umax:
  case Intrinsic::smin:
  case Intrinsic::smax:
  case Intrinsic::abs:
  case Intrinsic::ctlz:
  case Intrinsic::cttz:
  case Intrinsic::ctpop:
    return true;
  default:
    return false;
  }
}

ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
                                       ArrayRef<ConstantRange> Ops) {
  switch (IntrinsicID) {
  case Intrinsic::uadd_sat:
    return Ops[0].uadd_sat(Ops[1]);
  case Intrinsic::usub_sat:
    return Ops[0].usub_sat(Ops[1]);
  case Intrinsic::sadd_sat:
    return Ops[0].sadd_sat(Ops[1]);
  case Intrinsic::ssub_sat:
    return Ops[0].ssub_sat(Ops[1]);
  case Intrinsic::umin:
    return Ops[0].umin(Ops[1]);
  case Intrinsic::umax:
    return Ops[0].umax(Ops[1]);
  case Intrinsic::smin:
    return Ops[0].smin(Ops[1]);
  case Intrinsic::smax:
    return Ops[0].smax(Ops[1]);
  case Intrinsic::abs: {
    const APInt *IntMinIsPoison = Ops[1].getSingleElement();
    assert(IntMinIsPoison && "Must be known (immarg)");
    assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
    return Ops[0].abs(IntMinIsPoison->getBoolValue());
  }
  case Intrinsic::ctlz: {
    const APInt *ZeroIsPoison = Ops[1].getSingleElement();
    assert(ZeroIsPoison && "Must be known (immarg)");
    assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean");
    return Ops[0].ctlz(ZeroIsPoison->getBoolValue());
  }
  case Intrinsic::cttz: {
    const APInt *ZeroIsPoison = Ops[1].getSingleElement();
    assert(ZeroIsPoison && "Must be known (immarg)");
    assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean");
    return Ops[0].cttz(ZeroIsPoison->getBoolValue());
  }
  case Intrinsic::ctpop:
    return Ops[0].ctpop();
  default:
    assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
    llvm_unreachable("Unsupported intrinsic");
  }
}

ConstantRange
ConstantRange::add(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() || Other.isFullSet())
    return getFull();

  APInt NewLower = getLower() + Other.getLower();
  APInt NewUpper = getUpper() + Other.getUpper() - 1;
  if (NewLower == NewUpper)
    return getFull();

  ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
  if (X.isSizeStrictlySmallerThan(*this) ||
      X.isSizeStrictlySmallerThan(Other))
    // We've wrapped, therefore, full set.
    return getFull();
  return X;
}

ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
                                           unsigned NoWrapKind,
                                           PreferredRangeType RangeType) const {
  // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
  // (X is from this, and Y is from Other)
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() && Other.isFullSet())
    return getFull();

  using OBO = OverflowingBinaryOperator;
  ConstantRange Result = add(Other);

  // If an overflow happens for every value pair in these two constant ranges,
  // we must return Empty set. In this case, we get that for free, because we
  // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
  // in an empty set.

  if (NoWrapKind & OBO::NoSignedWrap)
    Result = Result.intersectWith(sadd_sat(Other), RangeType);

  if (NoWrapKind & OBO::NoUnsignedWrap)
    Result = Result.intersectWith(uadd_sat(Other), RangeType);

  return Result;
}

ConstantRange
ConstantRange::sub(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() || Other.isFullSet())
    return getFull();

  APInt NewLower = getLower() - Other.getUpper() + 1;
  APInt NewUpper = getUpper() - Other.getLower();
  if (NewLower == NewUpper)
    return getFull();

  ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
  if (X.isSizeStrictlySmallerThan(*this) ||
      X.isSizeStrictlySmallerThan(Other))
    // We've wrapped, therefore, full set.
    return getFull();
  return X;
}

ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
                                           unsigned NoWrapKind,
                                           PreferredRangeType RangeType) const {
  // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
  // (X is from this, and Y is from Other)
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() && Other.isFullSet())
    return getFull();

  using OBO = OverflowingBinaryOperator;
  ConstantRange Result = sub(Other);

  // If an overflow happens for every value pair in these two constant ranges,
  // we must return Empty set. In signed case, we get that for free, because we
  // get lucky that intersection of sub() with ssub_sat() results in an
  // empty set. But for unsigned we must perform the overflow check manually.

  if (NoWrapKind & OBO::NoSignedWrap)
    Result = Result.intersectWith(ssub_sat(Other), RangeType);

  if (NoWrapKind & OBO::NoUnsignedWrap) {
    if (getUnsignedMax().ult(Other.getUnsignedMin()))
      return getEmpty(); // Always overflows.
    Result = Result.intersectWith(usub_sat(Other), RangeType);
  }

  return Result;
}

ConstantRange
ConstantRange::multiply(const ConstantRange &Other) const {
  // TODO: If either operand is a single element and the multiply is known to
  // be non-wrapping, round the result min and max value to the appropriate
  // multiple of that element. If wrapping is possible, at least adjust the
  // range according to the greatest power-of-two factor of the single element.

  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  if (const APInt *C = getSingleElement()) {
    if (C->isOne())
      return Other;
    if (C->isAllOnes())
      return ConstantRange(APInt::getZero(getBitWidth())).sub(Other);
  }

  if (const APInt *C = Other.getSingleElement()) {
    if (C->isOne())
      return *this;
    if (C->isAllOnes())
      return ConstantRange(APInt::getZero(getBitWidth())).sub(*this);
  }

  // Multiplication is signedness-independent. However different ranges can be
  // obtained depending on how the input ranges are treated. These different
  // ranges are all conservatively correct, but one might be better than the
  // other. We calculate two ranges; one treating the inputs as unsigned
  // and the other signed, then return the smallest of these ranges.

  // Unsigned range first.
  APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
  APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
  APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
  APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);

  ConstantRange Result_zext = ConstantRange(this_min * Other_min,
                                            this_max * Other_max + 1);
  ConstantRange UR = Result_zext.truncate(getBitWidth());

  // If the unsigned range doesn't wrap, and isn't negative then it's a range
  // from one positive number to another which is as good as we can generate.
  // In this case, skip the extra work of generating signed ranges which aren't
  // going to be better than this range.
  if (!UR.isUpperWrapped() &&
      (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
    return UR;

  // Now the signed range. Because we could be dealing with negative numbers
  // here, the lower bound is the smallest of the cartesian product of the
  // lower and upper ranges; for example:
  //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
  // Similarly for the upper bound, swapping min for max.

  this_min = getSignedMin().sext(getBitWidth() * 2);
  this_max = getSignedMax().sext(getBitWidth() * 2);
  Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
  Other_max = Other.getSignedMax().sext(getBitWidth() * 2);

  auto L = {this_min * Other_min, this_min * Other_max,
            this_max * Other_min, this_max * Other_max};
  auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
  ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
  ConstantRange SR = Result_sext.truncate(getBitWidth());

  return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
}

ConstantRange
ConstantRange::multiplyWithNoWrap(const ConstantRange &Other,
                                  unsigned NoWrapKind,
                                  PreferredRangeType RangeType) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() && Other.isFullSet())
    return getFull();

  ConstantRange Result = multiply(Other);

  if (NoWrapKind & OverflowingBinaryOperator::NoSignedWrap)
    Result = Result.intersectWith(smul_sat(Other), RangeType);

  if (NoWrapKind & OverflowingBinaryOperator::NoUnsignedWrap)
    Result = Result.intersectWith(umul_sat(Other), RangeType);

  // mul nsw nuw X, Y s>= 0 if X s> 1 or Y s> 1
  if ((NoWrapKind == (OverflowingBinaryOperator::NoSignedWrap |
                      OverflowingBinaryOperator::NoUnsignedWrap)) &&
      !Result.isAllNonNegative()) {
    if (getSignedMin().sgt(1) || Other.getSignedMin().sgt(1))
      Result = Result.intersectWith(
          getNonEmpty(APInt::getZero(getBitWidth()),
                      APInt::getSignedMinValue(getBitWidth())),
          RangeType);
  }

  return Result;
}

ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt Min = getSignedMin();
  APInt Max = getSignedMax();
  APInt OtherMin = Other.getSignedMin();
  APInt OtherMax = Other.getSignedMax();

  bool O1, O2, O3, O4;
  auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2),
               Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)};
  if (O1 || O2 || O3 || O4)
    return getFull();

  auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
  return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1);
}

ConstantRange
ConstantRange::smax(const ConstantRange &Other) const {
  // X smax Y is: range(smax(X_smin, Y_smin),
  //                    smax(X_smax, Y_smax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
  APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
  ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
  if (isSignWrappedSet() || Other.isSignWrappedSet())
    return Res.intersectWith(unionWith(Other, Signed), Signed);
  return Res;
}

ConstantRange
ConstantRange::umax(const ConstantRange &Other) const {
  // X umax Y is: range(umax(X_umin, Y_umin),
  //                    umax(X_umax, Y_umax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
  APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
  ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
  if (isWrappedSet() || Other.isWrappedSet())
    return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
  return Res;
}

ConstantRange
ConstantRange::smin(const ConstantRange &Other) const {
  // X smin Y is: range(smin(X_smin, Y_smin),
  //                    smin(X_smax, Y_smax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
  APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
  ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
  if (isSignWrappedSet() || Other.isSignWrappedSet())
    return Res.intersectWith(unionWith(Other, Signed), Signed);
  return Res;
}

ConstantRange
ConstantRange::umin(const ConstantRange &Other) const {
  // X umin Y is: range(umin(X_umin, Y_umin),
  //                    umin(X_umax, Y_umax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
  APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
  ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
  if (isWrappedSet() || Other.isWrappedSet())
    return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
  return Res;
}

ConstantRange
ConstantRange::udiv(const ConstantRange &RHS) const {
  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
    return getEmpty();

  APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());

  APInt RHS_umin = RHS.getUnsignedMin();
  if (RHS_umin.isZero()) {
    // We want the lowest value in RHS excluding zero. Usually that would be 1
    // except for a range in the form of [X, 1) in which case it would be X.
    if (RHS.getUpper() == 1)
      RHS_umin = RHS.getLower();
    else
      RHS_umin = 1;
  }

  APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
  return getNonEmpty(std::move(Lower), std::move(Upper));
}

ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
  APInt Zero = APInt::getZero(getBitWidth());
  APInt SignedMin = APInt::getSignedMinValue(getBitWidth());

  // We split up the LHS and RHS into positive and negative components
  // and then also compute the positive and negative components of the result
  // separately by combining division results with the appropriate signs.
  auto [PosL, NegL] = splitPosNeg();
  auto [PosR, NegR] = RHS.splitPosNeg();

  ConstantRange PosRes = getEmpty();
  if (!PosL.isEmptySet() && !PosR.isEmptySet())
    // pos / pos = pos.
    PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
                           (PosL.Upper - 1).sdiv(PosR.Lower) + 1);

  if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
    // neg / neg = pos.
    //
    // We need to deal with one tricky case here: SignedMin / -1 is UB on the
    // IR level, so we'll want to exclude this case when calculating bounds.
    // (For APInts the operation is well-defined and yields SignedMin.) We
    // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
    APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
    if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) {
      // Remove -1 from the LHS. Skip if it's the only element, as this would
      // leave us with an empty set.
      if (!NegR.Lower.isAllOnes()) {
        APInt AdjNegRUpper;
        if (RHS.Lower.isAllOnes())
          // Negative part of [-1, X] without -1 is [SignedMin, X].
          AdjNegRUpper = RHS.Upper;
        else
          // [X, -1] without -1 is [X, -2].
          AdjNegRUpper = NegR.Upper - 1;

        PosRes = PosRes.unionWith(
            ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
      }

      // Remove SignedMin from the RHS. Skip if it's the only element, as this
      // would leave us with an empty set.
      if (NegL.Upper != SignedMin + 1) {
        APInt AdjNegLLower;
        if (Upper == SignedMin + 1)
          // Negative part of [X, SignedMin] without SignedMin is [X, -1].
          AdjNegLLower = Lower;
        else
          // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
          AdjNegLLower = NegL.Lower + 1;

        PosRes = PosRes.unionWith(
            ConstantRange(std::move(Lo),
                          AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
      }
    } else {
      PosRes = PosRes.unionWith(
          ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
    }
  }

  ConstantRange NegRes = getEmpty();
  if (!PosL.isEmptySet() && !NegR.isEmptySet())
    // pos / neg = neg.
    NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
                           PosL.Lower.sdiv(NegR.Lower) + 1);

  if (!NegL.isEmptySet() && !PosR.isEmptySet())
    // neg / pos = neg.
    NegRes = NegRes.unionWith(
        ConstantRange(NegL.Lower.sdiv(PosR.Lower),
                      (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));

  // Prefer a non-wrapping signed range here.
  ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);

  // Preserve the zero that we dropped when splitting the LHS by sign.
  if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
    Res = Res.unionWith(ConstantRange(Zero));
  return Res;
}

ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
    return getEmpty();

  if (const APInt *RHSInt = RHS.getSingleElement()) {
    // UREM by null is UB.
    if (RHSInt->isZero())
      return getEmpty();
    // Use APInt's implementation of UREM for single element ranges.
    if (const APInt *LHSInt = getSingleElement())
      return {LHSInt->urem(*RHSInt)};
  }

  // L % R for L < R is L.
  if (getUnsignedMax().ult(RHS.getUnsignedMin()))
    return *this;

  // L % R is <= L and < R.
  APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
  return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper));
}

ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
  if (isEmptySet() || RHS.isEmptySet())
    return getEmpty();

  if (const APInt *RHSInt = RHS.getSingleElement()) {
    // SREM by null is UB.
    if (RHSInt->isZero())
      return getEmpty();
    // Use APInt's implementation of SREM for single element ranges.
    if (const APInt *LHSInt = getSingleElement())
      return {LHSInt->srem(*RHSInt)};
  }

  ConstantRange AbsRHS = RHS.abs();
  APInt MinAbsRHS = AbsRHS.getUnsignedMin();
  APInt MaxAbsRHS = AbsRHS.getUnsignedMax();

  // Modulus by zero is UB.
  if (MaxAbsRHS.isZero())
    return getEmpty();

  if (MinAbsRHS.isZero())
    ++MinAbsRHS;

  APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();

  if (MinLHS.isNonNegative()) {
    // L % R for L < R is L.
    if (MaxLHS.ult(MinAbsRHS))
      return *this;

    // L % R is <= L and < R.
    APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
    return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper));
  }

  // Same basic logic as above, but the result is negative.
  if (MaxLHS.isNegative()) {
    if (MinLHS.ugt(-MinAbsRHS))
      return *this;

    APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
    return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
  }

  // LHS range crosses zero.
  APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
  APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
  return ConstantRange(std::move(Lower), std::move(Upper));
}

ConstantRange ConstantRange::binaryNot() const {
  return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this);
}

/// Estimate the 'bit-masked AND' operation's lower bound.
///
/// E.g., given two ranges as follows (single quotes are separators and
/// have no meaning here),
///
///   LHS = [10'00101'1,  ; LLo
///          10'10000'0]  ; LHi
///   RHS = [10'11111'0,  ; RLo
///          10'11111'1]  ; RHi
///
/// we know that the higher 2 bits of the result is always 10; and we also
/// notice that RHS[1:6] are always 1, so the result[1:6] cannot be less than
/// LHS[1:6] (i.e., 00101). Thus, the lower bound is 10'00101'0.
///
/// The algorithm is as follows,
/// 1. we first calculate a mask to find the higher common bits by
///       Mask = ~((LLo ^ LHi) | (RLo ^ RHi) | (LLo ^ RLo));
///       Mask = clear all non-leading-ones bits in Mask;
///    in the example, the Mask is set to 11'00000'0;
/// 2. calculate a new mask by setting all common leading bits to 1 in RHS, and
///    keeping the longest leading ones (i.e., 11'11111'0 in the example);
/// 3. return (LLo & new mask) as the lower bound;
/// 4. repeat the step 2 and 3 with LHS and RHS swapped, and update the lower
///    bound with the larger one.
static APInt estimateBitMaskedAndLowerBound(const ConstantRange &LHS,
                                            const ConstantRange &RHS) {
  auto BitWidth = LHS.getBitWidth();
  // If either is full set or unsigned wrapped, then the range must contain '0'
  // which leads the lower bound to 0.
  if ((LHS.isFullSet() || RHS.isFullSet()) ||
      (LHS.isWrappedSet() || RHS.isWrappedSet()))
    return APInt::getZero(BitWidth);

  auto LLo = LHS.getLower();
  auto LHi = LHS.getUpper() - 1;
  auto RLo = RHS.getLower();
  auto RHi = RHS.getUpper() - 1;

  // Calculate the mask for the higher common bits.
  auto Mask = ~((LLo ^ LHi) | (RLo ^ RHi) | (LLo ^ RLo));
  unsigned LeadingOnes = Mask.countLeadingOnes();
  Mask.clearLowBits(BitWidth - LeadingOnes);

  auto estimateBound = [BitWidth, &Mask](APInt ALo, const APInt &BLo,
                                         const APInt &BHi) {
    unsigned LeadingOnes = ((BLo & BHi) | Mask).countLeadingOnes();
    unsigned StartBit = BitWidth - LeadingOnes;
    ALo.clearLowBits(StartBit);
    return ALo;
  };

  auto LowerBoundByLHS = estimateBound(LLo, RLo, RHi);
  auto LowerBoundByRHS = estimateBound(RLo, LLo, LHi);

  return APIntOps::umax(LowerBoundByLHS, LowerBoundByRHS);
}

ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  ConstantRange KnownBitsRange =
      fromKnownBits(toKnownBits() & Other.toKnownBits(), false);
  auto LowerBound = estimateBitMaskedAndLowerBound(*this, Other);
  ConstantRange UMinUMaxRange = getNonEmpty(
      LowerBound, APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()) + 1);
  return KnownBitsRange.intersectWith(UMinUMaxRange);
}

ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  ConstantRange KnownBitsRange =
      fromKnownBits(toKnownBits() | Other.toKnownBits(), false);

  //      ~a & ~b    >= x
  // <=>  ~(~a & ~b) <= ~x
  // <=>  a | b      <= ~x
  // <=>  a | b      <  ~x + 1 = -x
  // thus, UpperBound(a | b) == -LowerBound(~a & ~b)
  auto UpperBound =
      -estimateBitMaskedAndLowerBound(binaryNot(), Other.binaryNot());
  // Upper wrapped range.
  ConstantRange UMaxUMinRange = getNonEmpty(
      APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()), UpperBound);
  return KnownBitsRange.intersectWith(UMaxUMinRange);
}

ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // Use APInt's implementation of XOR for single element ranges.
  if (isSingleElement() && Other.isSingleElement())
    return {*getSingleElement() ^ *Other.getSingleElement()};

  // Special-case binary complement, since we can give a precise answer.
  if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes())
    return binaryNot();
  if (isSingleElement() && getSingleElement()->isAllOnes())
    return Other.binaryNot();

  KnownBits LHSKnown = toKnownBits();
  KnownBits RHSKnown = Other.toKnownBits();
  KnownBits Known = LHSKnown ^ RHSKnown;
  ConstantRange CR = fromKnownBits(Known, /*IsSigned*/ false);
  // Typically the following code doesn't improve the result if BW = 1.
  if (getBitWidth() == 1)
    return CR;

  // If LHS is known to be the subset of RHS, treat LHS ^ RHS as RHS -nuw/nsw
  // LHS. If RHS is known to be the subset of LHS, treat LHS ^ RHS as LHS
  // -nuw/nsw RHS.
  if ((~LHSKnown.Zero).isSubsetOf(RHSKnown.One))
    CR = CR.intersectWith(Other.sub(*this), PreferredRangeType::Unsigned);
  else if ((~RHSKnown.Zero).isSubsetOf(LHSKnown.One))
    CR = CR.intersectWith(this->sub(Other), PreferredRangeType::Unsigned);
  return CR;
}

ConstantRange
ConstantRange::shl(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt Min = getUnsignedMin();
  APInt Max = getUnsignedMax();
  if (const APInt *RHS = Other.getSingleElement()) {
    unsigned BW = getBitWidth();
    if (RHS->uge(BW))
      return getEmpty();

    unsigned EqualLeadingBits = (Min ^ Max).countl_zero();
    if (RHS->ule(EqualLeadingBits))
      return getNonEmpty(Min << *RHS, (Max << *RHS) + 1);

    return getNonEmpty(APInt::getZero(BW),
                       APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1);
  }

  APInt OtherMax = Other.getUnsignedMax();
  if (isAllNegative() && OtherMax.ule(Min.countl_one())) {
    // For negative numbers, if the shift does not overflow in a signed sense,
    // a larger shift will make the number smaller.
    Max <<= Other.getUnsignedMin();
    Min <<= OtherMax;
    return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
  }

  // There's overflow!
  if (OtherMax.ugt(Max.countl_zero()))
    return getFull();

  // FIXME: implement the other tricky cases

  Min <<= Other.getUnsignedMin();
  Max <<= OtherMax;

  return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
}

static ConstantRange computeShlNUW(const ConstantRange &LHS,
                                   const ConstantRange &RHS) {
  unsigned BitWidth = LHS.getBitWidth();
  bool Overflow;
  APInt LHSMin = LHS.getUnsignedMin();
  unsigned RHSMin = RHS.getUnsignedMin().getLimitedValue(BitWidth);
  APInt MinShl = LHSMin.ushl_ov(RHSMin, Overflow);
  if (Overflow)
    return ConstantRange::getEmpty(BitWidth);
  APInt LHSMax = LHS.getUnsignedMax();
  unsigned RHSMax = RHS.getUnsignedMax().getLimitedValue(BitWidth);
  APInt MaxShl = MinShl;
  unsigned MaxShAmt = LHSMax.countLeadingZeros();
  if (RHSMin <= MaxShAmt)
    MaxShl = LHSMax << std::min(RHSMax, MaxShAmt);
  RHSMin = std::max(RHSMin, MaxShAmt + 1);
  RHSMax = std::min(RHSMax, LHSMin.countLeadingZeros());
  if (RHSMin <= RHSMax)
    MaxShl = APIntOps::umax(MaxShl,
                            APInt::getHighBitsSet(BitWidth, BitWidth - RHSMin));
  return ConstantRange::getNonEmpty(MinShl, MaxShl + 1);
}

static ConstantRange computeShlNSWWithNNegLHS(const APInt &LHSMin,
                                              const APInt &LHSMax,
                                              unsigned RHSMin,
                                              unsigned RHSMax) {
  unsigned BitWidth = LHSMin.getBitWidth();
  bool Overflow;
  APInt MinShl = LHSMin.sshl_ov(RHSMin, Overflow);
  if (Overflow)
    return ConstantRange::getEmpty(BitWidth);
  APInt MaxShl = MinShl;
  unsigned MaxShAmt = LHSMax.countLeadingZeros() - 1;
  if (RHSMin <= MaxShAmt)
    MaxShl = LHSMax << std::min(RHSMax, MaxShAmt);
  RHSMin = std::max(RHSMin, MaxShAmt + 1);
  RHSMax = std::min(RHSMax, LHSMin.countLeadingZeros() - 1);
  if (RHSMin <= RHSMax)
    MaxShl = APIntOps::umax(MaxShl,
                            APInt::getBitsSet(BitWidth, RHSMin, BitWidth - 1));
  return ConstantRange::getNonEmpty(MinShl, MaxShl + 1);
}

static ConstantRange computeShlNSWWithNegLHS(const APInt &LHSMin,
                                             const APInt &LHSMax,
                                             unsigned RHSMin, unsigned RHSMax) {
  unsigned BitWidth = LHSMin.getBitWidth();
  bool Overflow;
  APInt MaxShl = LHSMax.sshl_ov(RHSMin, Overflow);
  if (Overflow)
    return ConstantRange::getEmpty(BitWidth);
  APInt MinShl = MaxShl;
  unsigned MaxShAmt = LHSMin.countLeadingOnes() - 1;
  if (RHSMin <= MaxShAmt)
    MinShl = LHSMin.shl(std::min(RHSMax, MaxShAmt));
  RHSMin = std::max(RHSMin, MaxShAmt + 1);
  RHSMax = std::min(RHSMax, LHSMax.countLeadingOnes() - 1);
  if (RHSMin <= RHSMax)
    MinShl = APInt::getSignMask(BitWidth);
  return ConstantRange::getNonEmpty(MinShl, MaxShl + 1);
}

static ConstantRange computeShlNSW(const ConstantRange &LHS,
                                   const ConstantRange &RHS) {
  unsigned BitWidth = LHS.getBitWidth();
  unsigned RHSMin = RHS.getUnsignedMin().getLimitedValue(BitWidth);
  unsigned RHSMax = RHS.getUnsignedMax().getLimitedValue(BitWidth);
  APInt LHSMin = LHS.getSignedMin();
  APInt LHSMax = LHS.getSignedMax();
  if (LHSMin.isNonNegative())
    return computeShlNSWWithNNegLHS(LHSMin, LHSMax, RHSMin, RHSMax);
  else if (LHSMax.isNegative())
    return computeShlNSWWithNegLHS(LHSMin, LHSMax, RHSMin, RHSMax);
  return computeShlNSWWithNNegLHS(APInt::getZero(BitWidth), LHSMax, RHSMin,
                                  RHSMax)
      .unionWith(computeShlNSWWithNegLHS(LHSMin, APInt::getAllOnes(BitWidth),
                                         RHSMin, RHSMax),
                 ConstantRange::Signed);
}

ConstantRange ConstantRange::shlWithNoWrap(const ConstantRange &Other,
                                           unsigned NoWrapKind,
                                           PreferredRangeType RangeType) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  switch (NoWrapKind) {
  case 0:
    return shl(Other);
  case OverflowingBinaryOperator::NoSignedWrap:
    return computeShlNSW(*this, Other);
  case OverflowingBinaryOperator::NoUnsignedWrap:
    return computeShlNUW(*this, Other);
  case OverflowingBinaryOperator::NoSignedWrap |
      OverflowingBinaryOperator::NoUnsignedWrap:
    return computeShlNSW(*this, Other)
        .intersectWith(computeShlNUW(*this, Other), RangeType);
  default:
    llvm_unreachable("Invalid NoWrapKind");
  }
}

ConstantRange
ConstantRange::lshr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
  APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
  return getNonEmpty(std::move(min), std::move(max));
}

ConstantRange
ConstantRange::ashr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // May straddle zero, so handle both positive and negative cases.
  // 'PosMax' is the upper bound of the result of the ashr
  // operation, when Upper of the LHS of ashr is a non-negative.
  // number. Since ashr of a non-negative number will result in a
  // smaller number, the Upper value of LHS is shifted right with
  // the minimum value of 'Other' instead of the maximum value.
  APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;

  // 'PosMin' is the lower bound of the result of the ashr
  // operation, when Lower of the LHS is a non-negative number.
  // Since ashr of a non-negative number will result in a smaller
  // number, the Lower value of LHS is shifted right with the
  // maximum value of 'Other'.
  APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());

  // 'NegMax' is the upper bound of the result of the ashr
  // operation, when Upper of the LHS of ashr is a negative number.
  // Since 'ashr' of a negative number will result in a bigger
  // number, the Upper value of LHS is shifted right with the
  // maximum value of 'Other'.
  APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;

  // 'NegMin' is the lower bound of the result of the ashr
  // operation, when Lower of the LHS of ashr is a negative number.
  // Since 'ashr' of a negative number will result in a bigger
  // number, the Lower value of LHS is shifted right with the
  // minimum value of 'Other'.
  APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());

  APInt max, min;
  if (getSignedMin().isNonNegative()) {
    // Upper and Lower of LHS are non-negative.
    min = PosMin;
    max = PosMax;
  } else if (getSignedMax().isNegative()) {
    // Upper and Lower of LHS are negative.
    min = NegMin;
    max = NegMax;
  } else {
    // Upper is non-negative and Lower is negative.
    min = NegMin;
    max = PosMax;
  }
  return getNonEmpty(std::move(min), std::move(max));
}

ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
  APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
  APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
  APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
  APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
  APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // Because we could be dealing with negative numbers here, the lower bound is
  // the smallest of the cartesian product of the lower and upper ranges;
  // for example:
  //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
  // Similarly for the upper bound, swapping min for max.

  APInt Min = getSignedMin();
  APInt Max = getSignedMax();
  APInt OtherMin = Other.getSignedMin();
  APInt OtherMax = Other.getSignedMax();

  auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax),
            Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)};
  auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
  return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1);
}

ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
  APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt Min = getSignedMin(), Max = getSignedMax();
  APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
  APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
  APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::inverse() const {
  if (isFullSet())
    return getEmpty();
  if (isEmptySet())
    return getFull();
  return ConstantRange(Upper, Lower);
}

ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
  if (isEmptySet())
    return getEmpty();

  if (isSignWrappedSet()) {
    APInt Lo;
    // Check whether the range crosses zero.
    if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
      Lo = APInt::getZero(getBitWidth());
    else
      Lo = APIntOps::umin(Lower, -Upper + 1);

    // If SignedMin is not poison, then it is included in the result range.
    if (IntMinIsPoison)
      return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
    else
      return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
  }

  APInt SMin = getSignedMin(), SMax = getSignedMax();

  // Skip SignedMin if it is poison.
  if (IntMinIsPoison && SMin.isMinSignedValue()) {
    // The range may become empty if it *only* contains SignedMin.
    if (SMax.isMinSignedValue())
      return getEmpty();
    ++SMin;
  }

  // All non-negative.
  if (SMin.isNonNegative())
    return ConstantRange(SMin, SMax + 1);

  // All negative.
  if (SMax.isNegative())
    return ConstantRange(-SMax, -SMin + 1);

  // Range crosses zero.
  return ConstantRange::getNonEmpty(APInt::getZero(getBitWidth()),
                                    APIntOps::umax(-SMin, SMax) + 1);
}

ConstantRange ConstantRange::ctlz(bool ZeroIsPoison) const {
  if (isEmptySet())
    return getEmpty();

  APInt Zero = APInt::getZero(getBitWidth());
  if (ZeroIsPoison && contains(Zero)) {
    // ZeroIsPoison is set, and zero is contained. We discern three cases, in
    // which a zero can appear:
    // 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc.
    // 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc.
    // 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc.

    if (getLower().isZero()) {
      if ((getUpper() - 1).isZero()) {
        // We have in input interval of kind [0, 1). In this case we cannot
        // really help but return empty-set.
        return getEmpty();
      }

      // Compute the resulting range by excluding zero from Lower.
      return ConstantRange(
          APInt(getBitWidth(), (getUpper() - 1).countl_zero()),
          APInt(getBitWidth(), (getLower() + 1).countl_zero() + 1));
    } else if ((getUpper() - 1).isZero()) {
      // Compute the resulting range by excluding zero from Upper.
      return ConstantRange(Zero,
                           APInt(getBitWidth(), getLower().countl_zero() + 1));
    } else {
      return ConstantRange(Zero, APInt(getBitWidth(), getBitWidth()));
    }
  }

  // Zero is either safe or not in the range. The output range is composed by
  // the result of countLeadingZero of the two extremes.
  return getNonEmpty(APInt(getBitWidth(), getUnsignedMax().countl_zero()),
                     APInt(getBitWidth(), getUnsignedMin().countl_zero()) + 1);
}

static ConstantRange getUnsignedCountTrailingZerosRange(const APInt &Lower,
                                                        const APInt &Upper) {
  assert(!ConstantRange(Lower, Upper).isWrappedSet() &&
         "Unexpected wrapped set.");
  assert(Lower != Upper && "Unexpected empty set.");
  unsigned BitWidth = Lower.getBitWidth();
  if (Lower + 1 == Upper)
    return ConstantRange(APInt(BitWidth, Lower.countr_zero()));
  if (Lower.isZero())
    return ConstantRange(APInt::getZero(BitWidth),
                         APInt(BitWidth, BitWidth + 1));

  // Calculate longest common prefix.
  unsigned LCPLength = (Lower ^ (Upper - 1)).countl_zero();
  // If Lower is {LCP, 000...}, the maximum is Lower.countr_zero().
  // Otherwise, the maximum is BitWidth - LCPLength - 1 ({LCP, 100...}).
  return ConstantRange(
      APInt::getZero(BitWidth),
      APInt(BitWidth,
            std::max(BitWidth - LCPLength - 1, Lower.countr_zero()) + 1));
}

ConstantRange ConstantRange::cttz(bool ZeroIsPoison) const {
  if (isEmptySet())
    return getEmpty();

  unsigned BitWidth = getBitWidth();
  APInt Zero = APInt::getZero(BitWidth);
  if (ZeroIsPoison && contains(Zero)) {
    // ZeroIsPoison is set, and zero is contained. We discern three cases, in
    // which a zero can appear:
    // 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc.
    // 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc.
    // 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc.

    if (Lower.isZero()) {
      if (Upper == 1) {
        // We have in input interval of kind [0, 1). In this case we cannot
        // really help but return empty-set.
        return getEmpty();
      }

      // Compute the resulting range by excluding zero from Lower.
      return getUnsignedCountTrailingZerosRange(APInt(BitWidth, 1), Upper);
    } else if (Upper == 1) {
      // Compute the resulting range by excluding zero from Upper.
      return getUnsignedCountTrailingZerosRange(Lower, Zero);
    } else {
      ConstantRange CR1 = getUnsignedCountTrailingZerosRange(Lower, Zero);
      ConstantRange CR2 =
          getUnsignedCountTrailingZerosRange(APInt(BitWidth, 1), Upper);
      return CR1.unionWith(CR2);
    }
  }

  if (isFullSet())
    return getNonEmpty(Zero, APInt(BitWidth, BitWidth) + 1);
  if (!isWrappedSet())
    return getUnsignedCountTrailingZerosRange(Lower, Upper);
  // The range is wrapped. We decompose it into two ranges, [0, Upper) and
  // [Lower, 0).
  // Handle [Lower, 0)
  ConstantRange CR1 = getUnsignedCountTrailingZerosRange(Lower, Zero);
  // Handle [0, Upper)
  ConstantRange CR2 = getUnsignedCountTrailingZerosRange(Zero, Upper);
  return CR1.unionWith(CR2);
}

static ConstantRange getUnsignedPopCountRange(const APInt &Lower,
                                              const APInt &Upper) {
  assert(!ConstantRange(Lower, Upper).isWrappedSet() &&
         "Unexpected wrapped set.");
  assert(Lower != Upper && "Unexpected empty set.");
  unsigned BitWidth = Lower.getBitWidth();
  if (Lower + 1 == Upper)
    return ConstantRange(APInt(BitWidth, Lower.popcount()));

  APInt Max = Upper - 1;
  // Calculate longest common prefix.
  unsigned LCPLength = (Lower ^ Max).countl_zero();
  unsigned LCPPopCount = Lower.getHiBits(LCPLength).popcount();
  // If Lower is {LCP, 000...}, the minimum is the popcount of LCP.
  // Otherwise, the minimum is the popcount of LCP + 1.
  unsigned MinBits =
      LCPPopCount + (Lower.countr_zero() < BitWidth - LCPLength ? 1 : 0);
  // If Max is {LCP, 111...}, the maximum is the popcount of LCP + (BitWidth -
  // length of LCP).
  // Otherwise, the minimum is the popcount of LCP + (BitWidth -
  // length of LCP - 1).
  unsigned MaxBits = LCPPopCount + (BitWidth - LCPLength) -
                     (Max.countr_one() < BitWidth - LCPLength ? 1 : 0);
  return ConstantRange(APInt(BitWidth, MinBits), APInt(BitWidth, MaxBits + 1));
}

ConstantRange ConstantRange::ctpop() const {
  if (isEmptySet())
    return getEmpty();

  unsigned BitWidth = getBitWidth();
  APInt Zero = APInt::getZero(BitWidth);
  if (isFullSet())
    return getNonEmpty(Zero, APInt(BitWidth, BitWidth) + 1);
  if (!isWrappedSet())
    return getUnsignedPopCountRange(Lower, Upper);
  // The range is wrapped. We decompose it into two ranges, [0, Upper) and
  // [Lower, 0).
  // Handle [Lower, 0) == [Lower, Max]
  ConstantRange CR1 = ConstantRange(APInt(BitWidth, Lower.countl_one()),
                                    APInt(BitWidth, BitWidth + 1));
  // Handle [0, Upper)
  ConstantRange CR2 = getUnsignedPopCountRange(Zero, Upper);
  return CR1.unionWith(CR2);
}

ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();

  // a u+ b overflows high iff a u> ~b.
  if (Min.ugt(~OtherMin))
    return OverflowResult::AlwaysOverflowsHigh;
  if (Max.ugt(~OtherMax))
    return OverflowResult::MayOverflow;
  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getSignedMin(), Max = getSignedMax();
  APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();

  APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
  APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());

  // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
  // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
  if (Min.isNonNegative() && OtherMin.isNonNegative() &&
      Min.sgt(SignedMax - OtherMin))
    return OverflowResult::AlwaysOverflowsHigh;
  if (Max.isNegative() && OtherMax.isNegative() &&
      Max.slt(SignedMin - OtherMax))
    return OverflowResult::AlwaysOverflowsLow;

  if (Max.isNonNegative() && OtherMax.isNonNegative() &&
      Max.sgt(SignedMax - OtherMax))
    return OverflowResult::MayOverflow;
  if (Min.isNegative() && OtherMin.isNegative() &&
      Min.slt(SignedMin - OtherMin))
    return OverflowResult::MayOverflow;

  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();

  // a u- b overflows low iff a u< b.
  if (Max.ult(OtherMin))
    return OverflowResult::AlwaysOverflowsLow;
  if (Min.ult(OtherMax))
    return OverflowResult::MayOverflow;
  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getSignedMin(), Max = getSignedMax();
  APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();

  APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
  APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());

  // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
  // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
  if (Min.isNonNegative() && OtherMax.isNegative() &&
      Min.sgt(SignedMax + OtherMax))
    return OverflowResult::AlwaysOverflowsHigh;
  if (Max.isNegative() && OtherMin.isNonNegative() &&
      Max.slt(SignedMin + OtherMin))
    return OverflowResult::AlwaysOverflowsLow;

  if (Max.isNonNegative() && OtherMin.isNegative() &&
      Max.sgt(SignedMax + OtherMin))
    return OverflowResult::MayOverflow;
  if (Min.isNegative() && OtherMax.isNonNegative() &&
      Min.slt(SignedMin + OtherMax))
    return OverflowResult::MayOverflow;

  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
  bool Overflow;

  (void) Min.umul_ov(OtherMin, Overflow);
  if (Overflow)
    return OverflowResult::AlwaysOverflowsHigh;

  (void) Max.umul_ov(OtherMax, Overflow);
  if (Overflow)
    return OverflowResult::MayOverflow;

  return OverflowResult::NeverOverflows;
}

void ConstantRange::print(raw_ostream &OS) const {
  if (isFullSet())
    OS << "full-set";
  else if (isEmptySet())
    OS << "empty-set";
  else
    OS << "[" << Lower << "," << Upper << ")";
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ConstantRange::dump() const {
  print(dbgs());
}
#endif

ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
  const unsigned NumRanges = Ranges.getNumOperands() / 2;
  assert(NumRanges >= 1 && "Must have at least one range!");
  assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");

  auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
  auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));

  ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());

  for (unsigned i = 1; i < NumRanges; ++i) {
    auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
    auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));

    // Note: unionWith will potentially create a range that contains values not
    // contained in any of the original N ranges.
    CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
  }

  return CR;
}