1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
|
//===- BTFParser.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// BTFParser reads/interprets .BTF and .BTF.ext ELF sections.
// Refer to BTFParser.h for API description.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/BTF/BTFParser.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Errc.h"
#define DEBUG_TYPE "debug-info-btf-parser"
using namespace llvm;
using object::ObjectFile;
using object::SectionedAddress;
using object::SectionRef;
const char BTFSectionName[] = ".BTF";
const char BTFExtSectionName[] = ".BTF.ext";
// Utility class with API similar to raw_ostream but can be cast
// to Error, e.g.:
//
// Error foo(...) {
// ...
// if (Error E = bar(...))
// return Err("error while foo(): ") << E;
// ...
// }
//
namespace {
class Err {
std::string Buffer;
raw_string_ostream Stream;
public:
Err(const char *InitialMsg) : Buffer(InitialMsg), Stream(Buffer) {}
Err(const char *SectionName, DataExtractor::Cursor &C)
: Buffer(), Stream(Buffer) {
*this << "error while reading " << SectionName
<< " section: " << C.takeError();
};
template <typename T> Err &operator<<(T Val) {
Stream << Val;
return *this;
}
Err &write_hex(unsigned long long Val) {
Stream.write_hex(Val);
return *this;
}
Err &operator<<(Error Val) {
handleAllErrors(std::move(Val),
[=](ErrorInfoBase &Info) { Stream << Info.message(); });
return *this;
}
operator Error() const {
return make_error<StringError>(Buffer, errc::invalid_argument);
}
};
} // anonymous namespace
// ParseContext wraps information that is only necessary while parsing
// ObjectFile and can be discarded once parsing is done.
// Used by BTFParser::parse* auxiliary functions.
struct BTFParser::ParseContext {
const ObjectFile &Obj;
const ParseOptions &Opts;
// Map from ELF section name to SectionRef
DenseMap<StringRef, SectionRef> Sections;
public:
ParseContext(const ObjectFile &Obj, const ParseOptions &Opts)
: Obj(Obj), Opts(Opts) {}
Expected<DataExtractor> makeExtractor(SectionRef Sec) {
Expected<StringRef> Contents = Sec.getContents();
if (!Contents)
return Contents.takeError();
return DataExtractor(Contents.get(), Obj.isLittleEndian(),
Obj.getBytesInAddress());
}
std::optional<SectionRef> findSection(StringRef Name) const {
auto It = Sections.find(Name);
if (It != Sections.end())
return It->second;
return std::nullopt;
}
};
Error BTFParser::parseBTF(ParseContext &Ctx, SectionRef BTF) {
Expected<DataExtractor> MaybeExtractor = Ctx.makeExtractor(BTF);
if (!MaybeExtractor)
return MaybeExtractor.takeError();
DataExtractor &Extractor = MaybeExtractor.get();
DataExtractor::Cursor C = DataExtractor::Cursor(0);
uint16_t Magic = Extractor.getU16(C);
if (!C)
return Err(".BTF", C);
if (Magic != BTF::MAGIC)
return Err("invalid .BTF magic: ").write_hex(Magic);
uint8_t Version = Extractor.getU8(C);
if (!C)
return Err(".BTF", C);
if (Version != 1)
return Err("unsupported .BTF version: ") << (unsigned)Version;
(void)Extractor.getU8(C); // flags
uint32_t HdrLen = Extractor.getU32(C);
if (!C)
return Err(".BTF", C);
if (HdrLen < 8)
return Err("unexpected .BTF header length: ") << HdrLen;
uint32_t TypeOff = Extractor.getU32(C);
uint32_t TypeLen = Extractor.getU32(C);
uint32_t StrOff = Extractor.getU32(C);
uint32_t StrLen = Extractor.getU32(C);
uint32_t StrStart = HdrLen + StrOff;
uint32_t StrEnd = StrStart + StrLen;
uint32_t TypesInfoStart = HdrLen + TypeOff;
uint32_t TypesInfoEnd = TypesInfoStart + TypeLen;
uint32_t BytesExpected = std::max(StrEnd, TypesInfoEnd);
if (!C)
return Err(".BTF", C);
if (Extractor.getData().size() < BytesExpected)
return Err("invalid .BTF section size, expecting at-least ")
<< BytesExpected << " bytes";
StringsTable = Extractor.getData().slice(StrStart, StrEnd);
if (TypeLen > 0 && Ctx.Opts.LoadTypes) {
StringRef RawData = Extractor.getData().slice(TypesInfoStart, TypesInfoEnd);
if (Error E = parseTypesInfo(Ctx, TypesInfoStart, RawData))
return E;
}
return Error::success();
}
// Compute record size for each BTF::CommonType sub-type
// (including entries in the tail position).
static size_t byteSize(BTF::CommonType *Type) {
size_t Size = sizeof(BTF::CommonType);
switch (Type->getKind()) {
case BTF::BTF_KIND_INT:
Size += sizeof(uint32_t);
break;
case BTF::BTF_KIND_ARRAY:
Size += sizeof(BTF::BTFArray);
break;
case BTF::BTF_KIND_VAR:
Size += sizeof(uint32_t);
break;
case BTF::BTF_KIND_DECL_TAG:
Size += sizeof(uint32_t);
break;
case BTF::BTF_KIND_STRUCT:
case BTF::BTF_KIND_UNION:
Size += sizeof(BTF::BTFMember) * Type->getVlen();
break;
case BTF::BTF_KIND_ENUM:
Size += sizeof(BTF::BTFEnum) * Type->getVlen();
break;
case BTF::BTF_KIND_ENUM64:
Size += sizeof(BTF::BTFEnum64) * Type->getVlen();
break;
case BTF::BTF_KIND_FUNC_PROTO:
Size += sizeof(BTF::BTFParam) * Type->getVlen();
break;
case BTF::BTF_KIND_DATASEC:
Size += sizeof(BTF::BTFDataSec) * Type->getVlen();
break;
}
return Size;
}
// Guard value for voids, simplifies code a bit, but NameOff is not
// actually valid.
const BTF::CommonType VoidTypeInst = {0, BTF::BTF_KIND_UNKN << 24, {0}};
// Type information "parsing" is very primitive:
// - The `RawData` is copied to a buffer owned by `BTFParser` instance.
// - The buffer is treated as an array of `uint32_t` values, each value
// is swapped to use native endianness. This is possible, because
// according to BTF spec all buffer elements are structures comprised
// of `uint32_t` fields.
// - `BTFParser::Types` vector is filled with pointers to buffer
// elements, using `byteSize()` function to slice the buffer at type
// record boundaries.
// - If at some point a type definition with incorrect size (logical size
// exceeding buffer boundaries) is reached it is not added to the
// `BTFParser::Types` vector and the process stops.
Error BTFParser::parseTypesInfo(ParseContext &Ctx, uint64_t TypesInfoStart,
StringRef RawData) {
using support::endian::byte_swap;
TypesBuffer = OwningArrayRef<uint8_t>(arrayRefFromStringRef(RawData));
// Switch endianness if necessary.
endianness Endianness = Ctx.Obj.isLittleEndian() ? llvm::endianness::little
: llvm::endianness::big;
uint32_t *TypesBuffer32 = (uint32_t *)TypesBuffer.data();
for (uint64_t I = 0; I < TypesBuffer.size() / 4; ++I)
TypesBuffer32[I] = byte_swap(TypesBuffer32[I], Endianness);
// The type id 0 is reserved for void type.
Types.push_back(&VoidTypeInst);
uint64_t Pos = 0;
while (Pos < RawData.size()) {
uint64_t BytesLeft = RawData.size() - Pos;
uint64_t Offset = TypesInfoStart + Pos;
BTF::CommonType *Type = (BTF::CommonType *)&TypesBuffer[Pos];
if (BytesLeft < sizeof(*Type))
return Err("incomplete type definition in .BTF section:")
<< " offset " << Offset << ", index " << Types.size();
uint64_t Size = byteSize(Type);
if (BytesLeft < Size)
return Err("incomplete type definition in .BTF section:")
<< " offset=" << Offset << ", index=" << Types.size()
<< ", vlen=" << Type->getVlen();
LLVM_DEBUG({
llvm::dbgs() << "Adding BTF type:\n"
<< " Id = " << Types.size() << "\n"
<< " Kind = " << Type->getKind() << "\n"
<< " Name = " << findString(Type->NameOff) << "\n"
<< " Record Size = " << Size << "\n";
});
Types.push_back(Type);
Pos += Size;
}
return Error::success();
}
Error BTFParser::parseBTFExt(ParseContext &Ctx, SectionRef BTFExt) {
Expected<DataExtractor> MaybeExtractor = Ctx.makeExtractor(BTFExt);
if (!MaybeExtractor)
return MaybeExtractor.takeError();
DataExtractor &Extractor = MaybeExtractor.get();
DataExtractor::Cursor C = DataExtractor::Cursor(0);
uint16_t Magic = Extractor.getU16(C);
if (!C)
return Err(".BTF.ext", C);
if (Magic != BTF::MAGIC)
return Err("invalid .BTF.ext magic: ").write_hex(Magic);
uint8_t Version = Extractor.getU8(C);
if (!C)
return Err(".BTF", C);
if (Version != 1)
return Err("unsupported .BTF.ext version: ") << (unsigned)Version;
(void)Extractor.getU8(C); // flags
uint32_t HdrLen = Extractor.getU32(C);
if (!C)
return Err(".BTF.ext", C);
if (HdrLen < 8)
return Err("unexpected .BTF.ext header length: ") << HdrLen;
(void)Extractor.getU32(C); // func_info_off
(void)Extractor.getU32(C); // func_info_len
uint32_t LineInfoOff = Extractor.getU32(C);
uint32_t LineInfoLen = Extractor.getU32(C);
uint32_t RelocInfoOff = Extractor.getU32(C);
uint32_t RelocInfoLen = Extractor.getU32(C);
if (!C)
return Err(".BTF.ext", C);
if (LineInfoLen > 0 && Ctx.Opts.LoadLines) {
uint32_t LineInfoStart = HdrLen + LineInfoOff;
uint32_t LineInfoEnd = LineInfoStart + LineInfoLen;
if (Error E = parseLineInfo(Ctx, Extractor, LineInfoStart, LineInfoEnd))
return E;
}
if (RelocInfoLen > 0 && Ctx.Opts.LoadRelocs) {
uint32_t RelocInfoStart = HdrLen + RelocInfoOff;
uint32_t RelocInfoEnd = RelocInfoStart + RelocInfoLen;
if (Error E = parseRelocInfo(Ctx, Extractor, RelocInfoStart, RelocInfoEnd))
return E;
}
return Error::success();
}
Error BTFParser::parseLineInfo(ParseContext &Ctx, DataExtractor &Extractor,
uint64_t LineInfoStart, uint64_t LineInfoEnd) {
DataExtractor::Cursor C = DataExtractor::Cursor(LineInfoStart);
uint32_t RecSize = Extractor.getU32(C);
if (!C)
return Err(".BTF.ext", C);
if (RecSize < 16)
return Err("unexpected .BTF.ext line info record length: ") << RecSize;
while (C && C.tell() < LineInfoEnd) {
uint32_t SecNameOff = Extractor.getU32(C);
uint32_t NumInfo = Extractor.getU32(C);
StringRef SecName = findString(SecNameOff);
std::optional<SectionRef> Sec = Ctx.findSection(SecName);
if (!C)
return Err(".BTF.ext", C);
if (!Sec)
return Err("") << "can't find section '" << SecName
<< "' while parsing .BTF.ext line info";
BTFLinesVector &Lines = SectionLines[Sec->getIndex()];
for (uint32_t I = 0; C && I < NumInfo; ++I) {
uint64_t RecStart = C.tell();
uint32_t InsnOff = Extractor.getU32(C);
uint32_t FileNameOff = Extractor.getU32(C);
uint32_t LineOff = Extractor.getU32(C);
uint32_t LineCol = Extractor.getU32(C);
if (!C)
return Err(".BTF.ext", C);
Lines.push_back({InsnOff, FileNameOff, LineOff, LineCol});
C.seek(RecStart + RecSize);
}
llvm::stable_sort(Lines,
[](const BTF::BPFLineInfo &L, const BTF::BPFLineInfo &R) {
return L.InsnOffset < R.InsnOffset;
});
}
if (!C)
return Err(".BTF.ext", C);
return Error::success();
}
Error BTFParser::parseRelocInfo(ParseContext &Ctx, DataExtractor &Extractor,
uint64_t RelocInfoStart,
uint64_t RelocInfoEnd) {
DataExtractor::Cursor C = DataExtractor::Cursor(RelocInfoStart);
uint32_t RecSize = Extractor.getU32(C);
if (!C)
return Err(".BTF.ext", C);
if (RecSize < 16)
return Err("unexpected .BTF.ext field reloc info record length: ")
<< RecSize;
while (C && C.tell() < RelocInfoEnd) {
uint32_t SecNameOff = Extractor.getU32(C);
uint32_t NumInfo = Extractor.getU32(C);
StringRef SecName = findString(SecNameOff);
std::optional<SectionRef> Sec = Ctx.findSection(SecName);
BTFRelocVector &Relocs = SectionRelocs[Sec->getIndex()];
for (uint32_t I = 0; C && I < NumInfo; ++I) {
uint64_t RecStart = C.tell();
uint32_t InsnOff = Extractor.getU32(C);
uint32_t TypeID = Extractor.getU32(C);
uint32_t OffsetNameOff = Extractor.getU32(C);
uint32_t RelocKind = Extractor.getU32(C);
if (!C)
return Err(".BTF.ext", C);
Relocs.push_back({InsnOff, TypeID, OffsetNameOff, RelocKind});
C.seek(RecStart + RecSize);
}
llvm::stable_sort(
Relocs, [](const BTF::BPFFieldReloc &L, const BTF::BPFFieldReloc &R) {
return L.InsnOffset < R.InsnOffset;
});
}
if (!C)
return Err(".BTF.ext", C);
return Error::success();
}
Error BTFParser::parse(const ObjectFile &Obj, const ParseOptions &Opts) {
StringsTable = StringRef();
SectionLines.clear();
SectionRelocs.clear();
Types.clear();
TypesBuffer = OwningArrayRef<uint8_t>();
ParseContext Ctx(Obj, Opts);
std::optional<SectionRef> BTF;
std::optional<SectionRef> BTFExt;
for (SectionRef Sec : Obj.sections()) {
Expected<StringRef> MaybeName = Sec.getName();
if (!MaybeName)
return Err("error while reading section name: ") << MaybeName.takeError();
Ctx.Sections[*MaybeName] = Sec;
if (*MaybeName == BTFSectionName)
BTF = Sec;
if (*MaybeName == BTFExtSectionName)
BTFExt = Sec;
}
if (!BTF)
return Err("can't find .BTF section");
if (!BTFExt)
return Err("can't find .BTF.ext section");
if (Error E = parseBTF(Ctx, *BTF))
return E;
if (Error E = parseBTFExt(Ctx, *BTFExt))
return E;
return Error::success();
}
bool BTFParser::hasBTFSections(const ObjectFile &Obj) {
bool HasBTF = false;
bool HasBTFExt = false;
for (SectionRef Sec : Obj.sections()) {
Expected<StringRef> Name = Sec.getName();
if (Error E = Name.takeError()) {
logAllUnhandledErrors(std::move(E), errs());
continue;
}
HasBTF |= *Name == BTFSectionName;
HasBTFExt |= *Name == BTFExtSectionName;
if (HasBTF && HasBTFExt)
return true;
}
return false;
}
StringRef BTFParser::findString(uint32_t Offset) const {
return StringsTable.slice(Offset, StringsTable.find(0, Offset));
}
template <typename T>
static const T *findInfo(const DenseMap<uint64_t, SmallVector<T, 0>> &SecMap,
SectionedAddress Address) {
auto MaybeSecInfo = SecMap.find(Address.SectionIndex);
if (MaybeSecInfo == SecMap.end())
return nullptr;
const SmallVector<T, 0> &SecInfo = MaybeSecInfo->second;
const uint64_t TargetOffset = Address.Address;
typename SmallVector<T, 0>::const_iterator MaybeInfo = llvm::partition_point(
SecInfo, [=](const T &Entry) { return Entry.InsnOffset < TargetOffset; });
if (MaybeInfo == SecInfo.end() || MaybeInfo->InsnOffset != Address.Address)
return nullptr;
return &*MaybeInfo;
}
const BTF::BPFLineInfo *
BTFParser::findLineInfo(SectionedAddress Address) const {
return findInfo(SectionLines, Address);
}
const BTF::BPFFieldReloc *
BTFParser::findFieldReloc(SectionedAddress Address) const {
return findInfo(SectionRelocs, Address);
}
const BTF::CommonType *BTFParser::findType(uint32_t Id) const {
if (Id < Types.size())
return Types[Id];
return nullptr;
}
enum RelocKindGroup {
RKG_FIELD,
RKG_TYPE,
RKG_ENUMVAL,
RKG_UNKNOWN,
};
static RelocKindGroup relocKindGroup(const BTF::BPFFieldReloc *Reloc) {
switch (Reloc->RelocKind) {
case BTF::FIELD_BYTE_OFFSET:
case BTF::FIELD_BYTE_SIZE:
case BTF::FIELD_EXISTENCE:
case BTF::FIELD_SIGNEDNESS:
case BTF::FIELD_LSHIFT_U64:
case BTF::FIELD_RSHIFT_U64:
return RKG_FIELD;
case BTF::BTF_TYPE_ID_LOCAL:
case BTF::BTF_TYPE_ID_REMOTE:
case BTF::TYPE_EXISTENCE:
case BTF::TYPE_MATCH:
case BTF::TYPE_SIZE:
return RKG_TYPE;
case BTF::ENUM_VALUE_EXISTENCE:
case BTF::ENUM_VALUE:
return RKG_ENUMVAL;
default:
return RKG_UNKNOWN;
}
}
static bool isMod(const BTF::CommonType *Type) {
switch (Type->getKind()) {
case BTF::BTF_KIND_VOLATILE:
case BTF::BTF_KIND_CONST:
case BTF::BTF_KIND_RESTRICT:
case BTF::BTF_KIND_TYPE_TAG:
return true;
default:
return false;
}
}
static bool printMod(const BTFParser &BTF, const BTF::CommonType *Type,
raw_ostream &Stream) {
switch (Type->getKind()) {
case BTF::BTF_KIND_CONST:
Stream << " const";
break;
case BTF::BTF_KIND_VOLATILE:
Stream << " volatile";
break;
case BTF::BTF_KIND_RESTRICT:
Stream << " restrict";
break;
case BTF::BTF_KIND_TYPE_TAG:
Stream << " type_tag(\"" << BTF.findString(Type->NameOff) << "\")";
break;
default:
return false;
}
return true;
}
static const BTF::CommonType *skipModsAndTypedefs(const BTFParser &BTF,
const BTF::CommonType *Type) {
while (isMod(Type) || Type->getKind() == BTF::BTF_KIND_TYPEDEF) {
auto *Base = BTF.findType(Type->Type);
if (!Base)
break;
Type = Base;
}
return Type;
}
namespace {
struct StrOrAnon {
const BTFParser &BTF;
uint32_t Offset;
uint32_t Idx;
};
static raw_ostream &operator<<(raw_ostream &Stream, const StrOrAnon &S) {
StringRef Str = S.BTF.findString(S.Offset);
if (Str.empty())
Stream << "<anon " << S.Idx << ">";
else
Stream << Str;
return Stream;
}
} // anonymous namespace
static void relocKindName(uint32_t X, raw_ostream &Out) {
Out << "<";
switch (X) {
default:
Out << "reloc kind #" << X;
break;
case BTF::FIELD_BYTE_OFFSET:
Out << "byte_off";
break;
case BTF::FIELD_BYTE_SIZE:
Out << "byte_sz";
break;
case BTF::FIELD_EXISTENCE:
Out << "field_exists";
break;
case BTF::FIELD_SIGNEDNESS:
Out << "signed";
break;
case BTF::FIELD_LSHIFT_U64:
Out << "lshift_u64";
break;
case BTF::FIELD_RSHIFT_U64:
Out << "rshift_u64";
break;
case BTF::BTF_TYPE_ID_LOCAL:
Out << "local_type_id";
break;
case BTF::BTF_TYPE_ID_REMOTE:
Out << "target_type_id";
break;
case BTF::TYPE_EXISTENCE:
Out << "type_exists";
break;
case BTF::TYPE_MATCH:
Out << "type_matches";
break;
case BTF::TYPE_SIZE:
Out << "type_size";
break;
case BTF::ENUM_VALUE_EXISTENCE:
Out << "enumval_exists";
break;
case BTF::ENUM_VALUE:
Out << "enumval_value";
break;
}
Out << ">";
}
// Produces a human readable description of a CO-RE relocation.
// Such relocations are generated by BPF backend, and processed
// by libbpf's BPF program loader [1].
//
// Each relocation record has the following information:
// - Relocation kind;
// - BTF type ID;
// - Access string offset in string table.
//
// There are different kinds of relocations, these kinds could be split
// in three groups:
// - load-time information about types (size, existence),
// `BTFParser::symbolize()` output for such relocations uses the template:
//
// <relocation-kind> [<id>] <type-name>
//
// For example:
// - "<type_exists> [7] struct foo"
// - "<type_size> [7] struct foo"
//
// - load-time information about enums (literal existence, literal value),
// `BTFParser::symbolize()` output for such relocations uses the template:
//
// <relocation-kind> [<id>] <type-name>::<literal-name> = <original-value>
//
// For example:
// - "<enumval_exists> [5] enum foo::U = 1"
// - "<enumval_value> [5] enum foo::V = 2"
//
// - load-time information about fields (e.g. field offset),
// `BTFParser::symbolize()` output for such relocations uses the template:
//
// <relocation-kind> [<id>] \
// <type-name>::[N].<field-1-name>...<field-M-name> \
// (<access string>)
//
// For example:
// - "<byte_off> [8] struct bar::[7].v (7:1)"
// - "<field_exists> [8] struct bar::v (0:1)"
//
// If relocation description is not valid output follows the following pattern:
//
// <relocation-kind> <type-id>::<unprocessedaccess-string> <<error-msg>>
//
// For example:
//
// - "<type_sz> [42] '' <unknown type id: 42>"
// - "<byte_off> [4] '0:' <field spec too short>"
//
// Additional examples could be found in unit tests, see
// llvm/unittests/DebugInfo/BTF/BTFParserTest.cpp.
//
// [1] https://www.kernel.org/doc/html/latest/bpf/libbpf/index.html
void BTFParser::symbolize(const BTF::BPFFieldReloc *Reloc,
SmallVectorImpl<char> &Result) const {
raw_svector_ostream Stream(Result);
StringRef FullSpecStr = findString(Reloc->OffsetNameOff);
SmallVector<uint32_t, 8> RawSpec;
auto Fail = [&](auto Msg) {
Result.resize(0);
relocKindName(Reloc->RelocKind, Stream);
Stream << " [" << Reloc->TypeID << "] '" << FullSpecStr << "'"
<< " <" << Msg << ">";
};
// Relocation access string follows pattern [0-9]+(:[0-9]+)*,
// e.g.: 12:22:3. Code below splits `SpecStr` by ':', parses
// numbers, and pushes them to `RawSpec`.
StringRef SpecStr = FullSpecStr;
while (SpecStr.size()) {
unsigned long long Val;
if (consumeUnsignedInteger(SpecStr, 10, Val))
return Fail("spec string is not a number");
RawSpec.push_back(Val);
if (SpecStr.empty())
break;
if (SpecStr[0] != ':')
return Fail(format("unexpected spec string delimiter: '%c'", SpecStr[0]));
SpecStr = SpecStr.substr(1);
}
// Print relocation kind to `Stream`.
relocKindName(Reloc->RelocKind, Stream);
uint32_t CurId = Reloc->TypeID;
const BTF::CommonType *Type = findType(CurId);
if (!Type)
return Fail(format("unknown type id: %d", CurId));
Stream << " [" << CurId << "]";
// `Type` might have modifiers, e.g. for type 'const int' the `Type`
// would refer to BTF type of kind BTF_KIND_CONST.
// Print all these modifiers to `Stream`.
for (uint32_t ChainLen = 0; printMod(*this, Type, Stream); ++ChainLen) {
if (ChainLen >= 32)
return Fail("modifiers chain is too long");
CurId = Type->Type;
const BTF::CommonType *NextType = findType(CurId);
if (!NextType)
return Fail(format("unknown type id: %d in modifiers chain", CurId));
Type = NextType;
}
// Print the type name to `Stream`.
if (CurId == 0) {
Stream << " void";
} else {
switch (Type->getKind()) {
case BTF::BTF_KIND_TYPEDEF:
Stream << " typedef";
break;
case BTF::BTF_KIND_STRUCT:
Stream << " struct";
break;
case BTF::BTF_KIND_UNION:
Stream << " union";
break;
case BTF::BTF_KIND_ENUM:
Stream << " enum";
break;
case BTF::BTF_KIND_ENUM64:
Stream << " enum";
break;
case BTF::BTF_KIND_FWD:
if (Type->Info & BTF::FWD_UNION_FLAG)
Stream << " fwd union";
else
Stream << " fwd struct";
break;
default:
break;
}
Stream << " " << StrOrAnon({*this, Type->NameOff, CurId});
}
RelocKindGroup Group = relocKindGroup(Reloc);
// Type-based relocations don't use access string but clang backend
// generates '0' and libbpf checks it's value, do the same here.
if (Group == RKG_TYPE) {
if (RawSpec.size() != 1 || RawSpec[0] != 0)
return Fail("unexpected type-based relocation spec: should be '0'");
return;
}
Stream << "::";
// For enum-based relocations access string is a single number,
// corresponding to the enum literal sequential number.
// E.g. for `enum E { U, V }`, relocation requesting value of `V`
// would look as follows:
// - kind: BTF::ENUM_VALUE
// - BTF id: id for `E`
// - access string: "1"
if (Group == RKG_ENUMVAL) {
Type = skipModsAndTypedefs(*this, Type);
if (RawSpec.size() != 1)
return Fail("unexpected enumval relocation spec size");
uint32_t NameOff;
uint64_t Val;
uint32_t Idx = RawSpec[0];
if (auto *T = dyn_cast<BTF::EnumType>(Type)) {
if (T->values().size() <= Idx)
return Fail(format("bad value index: %d", Idx));
const BTF::BTFEnum &E = T->values()[Idx];
NameOff = E.NameOff;
Val = E.Val;
} else if (auto *T = dyn_cast<BTF::Enum64Type>(Type)) {
if (T->values().size() <= Idx)
return Fail(format("bad value index: %d", Idx));
const BTF::BTFEnum64 &E = T->values()[Idx];
NameOff = E.NameOff;
Val = (uint64_t)E.Val_Hi32 << 32u | E.Val_Lo32;
} else {
return Fail(format("unexpected type kind for enum relocation: %d",
Type->getKind()));
}
Stream << StrOrAnon({*this, NameOff, Idx});
if (Type->Info & BTF::ENUM_SIGNED_FLAG)
Stream << " = " << (int64_t)Val;
else
Stream << " = " << (uint64_t)Val;
return;
}
// For type-based relocations access string is an array of numbers,
// which resemble index parameters for `getelementptr` LLVM IR instruction.
// E.g. for the following types:
//
// struct foo {
// int a;
// int b;
// };
// struct bar {
// int u;
// struct foo v[7];
// };
//
// Relocation requesting `offsetof(struct bar, v[2].b)` will have
// the following access string: 0:1:2:1
// ^ ^ ^ ^
// | | | |
// initial index | | field 'b' is a field #1
// | | (counting from 0)
// | array index #2
// field 'v' is a field #1
// (counting from 0)
if (Group == RKG_FIELD) {
if (RawSpec.size() < 1)
return Fail("field spec too short");
if (RawSpec[0] != 0)
Stream << "[" << RawSpec[0] << "]";
for (uint32_t I = 1; I < RawSpec.size(); ++I) {
Type = skipModsAndTypedefs(*this, Type);
uint32_t Idx = RawSpec[I];
if (auto *T = dyn_cast<BTF::StructType>(Type)) {
if (T->getVlen() <= Idx)
return Fail(
format("member index %d for spec sub-string %d is out of range",
Idx, I));
const BTF::BTFMember &Member = T->members()[Idx];
if (I != 1 || RawSpec[0] != 0)
Stream << ".";
Stream << StrOrAnon({*this, Member.NameOff, Idx});
Type = findType(Member.Type);
if (!Type)
return Fail(format("unknown member type id %d for spec sub-string %d",
Member.Type, I));
} else if (auto *T = dyn_cast<BTF::ArrayType>(Type)) {
Stream << "[" << Idx << "]";
Type = findType(T->getArray().ElemType);
if (!Type)
return Fail(
format("unknown element type id %d for spec sub-string %d",
T->getArray().ElemType, I));
} else {
return Fail(format("unexpected type kind %d for spec sub-string %d",
Type->getKind(), I));
}
}
Stream << " (" << FullSpecStr << ")";
return;
}
return Fail(format("unknown relocation kind: %d", Reloc->RelocKind));
}
|