aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/WindowsSecureHotPatching.cpp
blob: 6267207dbcbff039577fa67c30f2174e13b3b70d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
//===------ WindowsHotPatch.cpp - Support for Windows hotpatching ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Provides support for the Windows "Secure Hot-Patching" feature.
//
// Windows contains technology, called "Secure Hot-Patching" (SHP), for securely
// applying hot-patches to a running system. Hot-patches may be applied to the
// kernel, kernel-mode components, device drivers, user-mode system services,
// etc.
//
// SHP relies on integration between many tools, including compiler, linker,
// hot-patch generation tools, and the Windows kernel. This file implements that
// part of the workflow needed in compilers / code generators.
//
// SHP is not intended for productivity scenarios such as Edit-and-Continue or
// interactive development. SHP is intended to minimize downtime during
// installation of Windows OS patches.
//
// In order to work with SHP, LLVM must do all of the following:
//
// * On some architectures (X86, AMD64), the function prolog must begin with
//   hot-patchable instructions. This is handled by the MSVC `/hotpatch` option
//   and the equivalent `-fms-hotpatch` function. This is necessary because we
//   generally cannot anticipate which functions will need to be patched in the
//   future. This option ensures that a function can be hot-patched in the
//   future, but does not actually generate any hot-patch for it.
//
// * For a selected set of functions that are being hot-patched (which are
//   identified using command-line options), LLVM must generate the
//   `S_HOTPATCHFUNC` CodeView record (symbol). This record indicates that a
//   function was compiled with hot-patching enabled.
//
//   This implementation uses the `MarkedForWindowsHotPatching` attribute to
//   annotate those functions that were marked for hot-patching by command-line
//   parameters. The attribute may be specified by a language front-end by
//   setting an attribute when a function is created in LLVM IR, or it may be
//   set by passing LLVM arguments.
//
// * For those functions that are hot-patched, LLVM must rewrite references to
//   global variables so that they are indirected through a `__ref_*` pointer
//   variable.  For each global variable, that is accessed by a hot-patched
//   function, e.g. `FOO`, a `__ref_FOO` global pointer variable is created and
//   all references to the original `FOO` are rewritten as dereferences of the
//   `__ref_FOO` pointer.
//
//   Some globals do not need `__ref_*` indirection. The pointer indirection
//   behavior can be disabled for these globals by marking them with the
//   `AllowDirectAccessInHotPatchFunction`.
//
// Rewriting references to global variables has some complexity.
//
// For ordinary instructions that reference GlobalVariables, we rewrite the
// operand of the instruction to a Load of the __ref_* variable.
//
// For constant expressions, we have to convert the constant expression (and
// transitively all constant expressions in its parent chain) to non-constant
// expressions, i.e. to a sequence of instructions.
//
// Pass 1:
//   * Enumerate all instructions in all basic blocks.
//
//   * If an instruction references a GlobalVariable (and it is not marked
//     as being ignored), then we create (if necessary) the __ref_* variable
//     for the GlobalVariable reference. However, we do not yet modify the
//     Instruction.
//
//   * If an instruction has an operand that is a ConstantExpr and the
//     ConstantExpression tree contains a reference to a GlobalVariable, then
//     we similarly create __ref_*. Similarly, we do not yet modify the
//     Instruction or the ConstantExpr tree.
//
// After Pass 1 completes, we will know whether we found any references to
// globals in this pass.  If the function does not use any globals (and most
// functions do not use any globals), then we return immediately.
//
// If a function does reference globals, then we iterate the list of globals
// used by this function and we generate Load instructions for each (unique)
// global.
//
// Next, we do another pass over all instructions:
//
// Pass 2:
//   * Re-visit the instructions that were found in Pass 1.
//
//   * If an instruction operand is a GlobalVariable, then look up the
//   replacement
//     __ref_* global variable and the Value that came from the Load instruction
//     for it.  Replace the operand of the GlobalVariable with the Load Value.
//
//   * If an instruction operand is a ConstantExpr, then recursively examine the
//     operands of all instructions in the ConstantExpr tree.  If an operand is
//     a GlobalVariable, then replace the operand with the result of the load
//     *and* convert the ConstantExpr to a non-constant instruction.  This
//     instruction will need to be inserted into the BB of the instruction whose
//     operand is being modified, ideally immediately before the instruction
//     being modified.
//
// Limitations
//
// This feature is not intended to work in every situation. There are many
// legitimate code changes (patches) for which it is not possible to generate
// a hot-patch. Developers who are writing hot-patches are expected to
// understand the limitations.
//
// Tools which generate hot-patch metadata may also check that certain
// variables are upheld, and some of these invariants may be global (may require
// whole-program knowledge, not available in any single compiland). However,
// such tools are not required to be perfect; they are also best-effort.
//
// For these reasons, the hot-patching support implemented in this file is
// "best effort". It does not recognize every possible code pattern that could
// be patched, nor does it generate diagnostics for certain code patterns that
// could result in a binary that does not work with hot-patching. For example,
// const GlobalVariables that point to other non-const GlobalVariables are not
// compatible with hot-patching because they cannot use __ref_*-based
// redirection.
//
// References
//
// * "Hotpatching on Windows":
//   https://techcommunity.microsoft.com/blog/windowsosplatform/hotpatching-on-windows/2959541
//
// * "Hotpatch for Windows client now available":
//   https://techcommunity.microsoft.com/blog/windows-itpro-blog/hotpatch-for-windows-client-now-available/4399808
//
// * "Get hotpatching for Windows Server":
//   https://www.microsoft.com/en-us/windows-server/blog/2025/04/24/tired-of-all-the-restarts-get-hotpatching-for-windows-server/
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MemoryBuffer.h"

using namespace llvm;

#define DEBUG_TYPE "windows-secure-hot-patch"

// A file containing list of mangled function names to mark for hot patching.
static cl::opt<std::string> LLVMMSSecureHotPatchFunctionsFile(
    "ms-secure-hotpatch-functions-file", cl::value_desc("filename"),
    cl::desc("A file containing list of mangled function names to mark for "
             "Windows Secure Hot-Patching"));

// A list of mangled function names to mark for hot patching.
static cl::list<std::string> LLVMMSSecureHotPatchFunctionsList(
    "ms-secure-hotpatch-functions-list", cl::value_desc("list"),
    cl::desc("A list of mangled function names to mark for Windows Secure "
             "Hot-Patching"),
    cl::CommaSeparated);

namespace {

struct GlobalVariableUse {
  // GlobalVariable *GV;
  Instruction *User;
  unsigned Op;
};

class WindowsSecureHotPatching : public ModulePass {
public:
  static char ID;

  WindowsSecureHotPatching() : ModulePass(ID) {
    initializeWindowsSecureHotPatchingPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
  }

  bool doInitialization(Module &) override;
  bool runOnModule(Module &M) override { return false; }

private:
  bool
  runOnFunction(Function &F,
                SmallDenseMap<GlobalVariable *, GlobalVariable *> &RefMapping);
};

} // end anonymous namespace

char WindowsSecureHotPatching::ID = 0;

INITIALIZE_PASS(WindowsSecureHotPatching, "windows-secure-hot-patch",
                "Mark functions for Windows hot patch support", false, false)
ModulePass *llvm::createWindowsSecureHotPatchingPass() {
  return new WindowsSecureHotPatching();
}

// Find functions marked with Attribute::MarkedForWindowsHotPatching and modify
// their code (if necessary) to account for accesses to global variables.
//
// This runs during doInitialization() instead of runOnModule() because it needs
// to run before CodeViewDebug::collectGlobalVariableInfo().
bool WindowsSecureHotPatching::doInitialization(Module &M) {
  // The front end may have already marked functions for hot-patching. However,
  // we also allow marking functions by passing -ms-hotpatch-functions-file or
  // -ms-hotpatch-functions-list directly to LLVM. This allows hot-patching to
  // work with languages that have not yet updated their front-ends.
  if (!LLVMMSSecureHotPatchFunctionsFile.empty() ||
      !LLVMMSSecureHotPatchFunctionsList.empty()) {
    std::vector<std::string> HotPatchFunctionsList;

    if (!LLVMMSSecureHotPatchFunctionsFile.empty()) {
      auto BufOrErr = MemoryBuffer::getFile(LLVMMSSecureHotPatchFunctionsFile);
      if (BufOrErr) {
        const MemoryBuffer &FileBuffer = **BufOrErr;
        for (line_iterator I(FileBuffer.getMemBufferRef(), true), E; I != E;
             ++I)
          HotPatchFunctionsList.push_back(std::string{*I});
      } else {
        M.getContext().diagnose(DiagnosticInfoGeneric{
            Twine("failed to open hotpatch functions file "
                  "(--ms-hotpatch-functions-file): ") +
            LLVMMSSecureHotPatchFunctionsFile + Twine(" : ") +
            BufOrErr.getError().message()});
      }
    }

    if (!LLVMMSSecureHotPatchFunctionsList.empty())
      for (const auto &FuncName : LLVMMSSecureHotPatchFunctionsList)
        HotPatchFunctionsList.push_back(FuncName);

    // Build a set for quick lookups. This points into HotPatchFunctionsList, so
    // HotPatchFunctionsList must live longer than HotPatchFunctionsSet.
    SmallSet<StringRef, 16> HotPatchFunctionsSet;
    for (const auto &FuncName : HotPatchFunctionsList)
      HotPatchFunctionsSet.insert(StringRef{FuncName});

    // Iterate through all of the functions and check whether they need to be
    // marked for hotpatching using the list provided directly to LLVM.
    for (auto &F : M.functions()) {
      // Ignore declarations that are not definitions.
      if (F.isDeclarationForLinker())
        continue;

      if (HotPatchFunctionsSet.contains(F.getName()))
        F.addFnAttr("marked_for_windows_hot_patching");
    }
  }

  SmallDenseMap<GlobalVariable *, GlobalVariable *> RefMapping;
  bool MadeChanges = false;
  for (auto &F : M.functions()) {
    if (F.hasFnAttribute("marked_for_windows_hot_patching")) {
      if (runOnFunction(F, RefMapping))
        MadeChanges = true;
    }
  }
  return MadeChanges;
}

static bool TypeContainsPointers(Type *ty) {
  switch (ty->getTypeID()) {
  case Type::PointerTyID:
    return true;

  case Type::ArrayTyID:
    return TypeContainsPointers(ty->getArrayElementType());

  case Type::StructTyID: {
    unsigned NumElements = ty->getStructNumElements();
    for (unsigned I = 0; I < NumElements; ++I) {
      if (TypeContainsPointers(ty->getStructElementType(I))) {
        return true;
      }
    }
    return false;
  }

  default:
    return false;
  }
}

// Returns true if GV needs redirection through a __ref_* variable.
static bool globalVariableNeedsRedirect(GlobalVariable *GV) {
  // If a global variable is explictly marked as allowing access in hot-patched
  // functions, then do not redirect it.
  if (GV->hasAttribute("allow_direct_access_in_hot_patch_function"))
    return false;

  // If the global variable is not a constant, then we want to redirect it.
  if (!GV->isConstant()) {
    if (GV->getName().starts_with("??_R")) {
      // This is the name mangling prefix that MSVC uses for RTTI data.
      // Clang is currently generating RTTI data that is marked non-constant.
      // We override that and treat it like it is constant.
      return false;
    }

    // In general, if a global variable is not a constant, then redirect it.
    return true;
  }

  // If the type of GV cannot contain pointers, then it cannot point to
  // other global variables. In this case, there is no need for redirects.
  // For example, string literals do not contain pointers.
  return TypeContainsPointers(GV->getValueType());
}

// Get or create a new global variable that points to the old one and whose
// name begins with `__ref_`.
//
// In hot-patched images, the __ref_* variables point to global variables in
// the original (unpatched) image. Hot-patched functions in the hot-patch
// image use these __ref_* variables to access global variables. This ensures
// that all code (both unpatched and patched) is using the same instances of
// global variables.
//
// The Windows hot-patch infrastructure handles modifying these __ref_*
// variables. By default, they are initialized with pointers to the equivalent
// global variables, so when a hot-patch module is loaded *as* a base image
// (such as after a system reboot), hot-patch functions will access the
// instances of global variables that are compiled into the hot-patch image.
// This is the desired outcome, since in this situation (normal boot) the
// hot-patch image *is* the base image.
//
// When we create the GlobalVariable for the __ref_* variable, we must create
// it as a *non-constant* global variable. The __ref_* pointers will not change
// during the runtime of the program, so it is tempting to think that they
// should be constant. However, they still need to be updateable by the
// hot-patching infrastructure. Also, if the GlobalVariable is created as a
// constant, then the LLVM optimizer will assume that it can dereference the
// definition of the __ref_* variable at compile time, which defeats the
// purpose of the indirection (pointer).
//
// The RefMapping table spans the entire module, not just a single function.
static GlobalVariable *getOrCreateRefVariable(
    Function &F, SmallDenseMap<GlobalVariable *, GlobalVariable *> &RefMapping,
    GlobalVariable *GV) {
  GlobalVariable *&ReplaceWithRefGV = RefMapping.try_emplace(GV).first->second;
  if (ReplaceWithRefGV != nullptr) {
    // We have already created a __ref_* pointer for this GlobalVariable.
    return ReplaceWithRefGV;
  }

  Module *M = F.getParent();

  const DISubprogram *Subprogram = F.getSubprogram();
  DICompileUnit *Unit = Subprogram != nullptr ? Subprogram->getUnit() : nullptr;
  DIFile *File = Subprogram != nullptr ? Subprogram->getFile() : nullptr;
  DIBuilder DebugInfo{*F.getParent(), true, Unit};

  auto PtrTy = PointerType::get(M->getContext(), 0);

  Constant *AddrOfOldGV =
      ConstantExpr::getGetElementPtr(PtrTy, GV, ArrayRef<Value *>{});

  GlobalVariable *RefGV =
      new GlobalVariable(*M, PtrTy, false, GlobalValue::LinkOnceAnyLinkage,
                         AddrOfOldGV, Twine("__ref_").concat(GV->getName()),
                         nullptr, GlobalVariable::NotThreadLocal);

  // Create debug info for the replacement global variable.
  DataLayout Layout = M->getDataLayout();
  DIType *DebugType = DebugInfo.createPointerType(
      nullptr, Layout.getTypeSizeInBits(GV->getValueType()));
  DIGlobalVariableExpression *GVE = DebugInfo.createGlobalVariableExpression(
      Unit, RefGV->getName(), StringRef{}, File,
      /*LineNo*/ 0, DebugType,
      /*IsLocalToUnit*/ false);
  RefGV->addDebugInfo(GVE);

  // Store the __ref_* in RefMapping so that future calls use the same RefGV.
  ReplaceWithRefGV = RefGV;

  return RefGV;
}

// Given a ConstantExpr, this searches for GlobalVariable references within
// the expression tree.  If found, it will generate instructions and will
// return a non-null Value* that points to the new root instruction.
//
// If C does not contain any GlobalVariable references, this returns nullptr.
//
// If this function creates new instructions, then it will insert them
// before InsertionPoint.
static Value *rewriteGlobalVariablesInConstant(
    Constant *C, SmallDenseMap<GlobalVariable *, Value *> &GVLoadMap,
    IRBuilder<> &IRBuilderAtEntry) {
  if (C->getValueID() == Value::GlobalVariableVal) {
    GlobalVariable *GV = cast<GlobalVariable>(C);
    if (globalVariableNeedsRedirect(GV)) {
      return GVLoadMap.at(GV);
    } else {
      return nullptr;
    }
  }

  // Scan the operands of this expression.

  SmallVector<Value *, 8> ReplacedValues;
  bool ReplacedAnyOperands = false;

  unsigned NumOperands = C->getNumOperands();
  for (unsigned OpIndex = 0; OpIndex < NumOperands; ++OpIndex) {
    Value *OldValue = C->getOperand(OpIndex);
    Value *ReplacedValue = nullptr;
    if (Constant *OldConstant = dyn_cast<Constant>(OldValue)) {
      ReplacedValue = rewriteGlobalVariablesInConstant(OldConstant, GVLoadMap,
                                                       IRBuilderAtEntry);
    }
    // Do not use short-circuiting, here. We need to traverse the whole tree.
    ReplacedAnyOperands |= ReplacedValue != nullptr;
    ReplacedValues.push_back(ReplacedValue);
  }

  // If none of our operands were replaced, then don't rewrite this expression.
  if (!ReplacedAnyOperands) {
    return nullptr;
  }

  // We need to rewrite this expression. Convert this constant expression
  // to an instruction, then replace any operands as needed.
  Instruction *NewInst = cast<ConstantExpr>(C)->getAsInstruction();
  for (unsigned OpIndex = 0; OpIndex < NumOperands; ++OpIndex) {
    Value *ReplacedValue = ReplacedValues[OpIndex];
    if (ReplacedValue != nullptr) {
      NewInst->setOperand(OpIndex, ReplacedValue);
    }
  }

  // Insert the new instruction before the reference instruction.
  IRBuilderAtEntry.Insert(NewInst);

  return NewInst;
}

static bool searchConstantExprForGlobalVariables(
    Value *V, SmallDenseMap<GlobalVariable *, Value *> &GVLoadMap,
    SmallVector<GlobalVariableUse> &GVUses) {

  SmallVector<Value *, 8> ReplacedOperands;

  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    if (globalVariableNeedsRedirect(GV)) {
      GVLoadMap[GV] = nullptr;
      return true;
    } else {
      return false;
    }
  }

  if (User *U = dyn_cast<User>(V)) {
    unsigned NumOperands = U->getNumOperands();
    bool FoundAny = false;
    for (unsigned OpIndex = 0; OpIndex < NumOperands; ++OpIndex) {
      Value *Op = U->getOperand(OpIndex);
      // Do not use short-circuiting, here. We need to traverse the whole tree.
      FoundAny |= searchConstantExprForGlobalVariables(Op, GVLoadMap, GVUses);
    }
    return FoundAny;
  } else {
    return false;
  }
}

// Processes a function that is marked for hot-patching.
//
// If a function is marked for hot-patching, we generate an S_HOTPATCHFUNC
// CodeView debug symbol. Tools that generate hot-patches look for
// S_HOTPATCHFUNC in final PDBs so that they can find functions that have been
// hot-patched and so that they can distinguish hot-patched functions from
// non-hot-patched functions.
//
// Also, in functions that are hot-patched, we must indirect all access to
// (mutable) global variables through a pointer. This pointer may point into the
// unpatched ("base") binary or may point into the patched image, depending on
// whether a hot-patch was loaded as a patch or as a base image.  These
// indirections go through a new global variable, named `__ref_<Foo>` where
// `<Foo>` is the original symbol name of the global variable.
//
// This function handles rewriting accesses to global variables, but the
// generation of S_HOTPATCHFUNC occurs in
// CodeViewDebug::emitHotPatchInformation().
//
// Returns true if any global variable references were found and rewritten.
bool WindowsSecureHotPatching::runOnFunction(
    Function &F,
    SmallDenseMap<GlobalVariable *, GlobalVariable *> &RefMapping) {
  // Scan the function for references to global variables. If we find such a
  // reference, create (if necessary) the __ref_* variable, then add an entry
  // to the GVUses table.
  //
  // We ignore references to global variables if the variable is marked with
  // AllowDirectAccessInHotPatchFunction.

  SmallDenseMap<GlobalVariable *, Value *> GVLoadMap;
  SmallVector<GlobalVariableUse> GVUses;

  for (auto &I : instructions(F)) {
    unsigned NumOperands = I.getNumOperands();
    for (unsigned OpIndex = 0; OpIndex < NumOperands; ++OpIndex) {
      Value *V = I.getOperand(OpIndex);

      bool FoundAnyGVUses = false;

      switch (V->getValueID()) {
      case Value::GlobalVariableVal: {
        // Discover all uses of GlobalVariable, these will need to be replaced.
        GlobalVariable *GV = cast<GlobalVariable>(V);
        if (globalVariableNeedsRedirect(GV)) {
          GVLoadMap.insert(std::make_pair(GV, nullptr));
          FoundAnyGVUses = true;
        }
        break;
      }

      case Value::ConstantExprVal: {
        ConstantExpr *CE = cast<ConstantExpr>(V);
        if (searchConstantExprForGlobalVariables(CE, GVLoadMap, GVUses)) {
          FoundAnyGVUses = true;
        }
        break;
      }

      default:
        break;
      }

      if (FoundAnyGVUses) {
        GVUses.push_back(GlobalVariableUse{&I, OpIndex});
      }
    }
  }

  // If this function did not reference any global variables then we have no
  // work to do. Most functions do not access global variables.
  if (GVUses.empty()) {
    return false;
  }

  // We know that there is at least one instruction that needs to be rewritten.
  // Generate a Load instruction for each unique GlobalVariable used by this
  // function. The Load instructions are inserted at the beginning of the
  // entry block. Since entry blocks cannot contain PHI instructions, there is
  // no need to skip PHI instructions.

  // We use a single IRBuilder for inserting Load instructions as well as the
  // constants that we convert to instructions. Because constants do not
  // depend on any dynamic values (they're constant, after all!), it is safe
  // to move them to the start of entry BB.

  auto &EntryBlock = F.getEntryBlock();
  IRBuilder<> IRBuilderAtEntry(&EntryBlock, EntryBlock.begin());

  for (auto &[GV, LoadValue] : GVLoadMap) {
    assert(LoadValue == nullptr);
    GlobalVariable *RefGV = getOrCreateRefVariable(F, RefMapping, GV);
    LoadValue = IRBuilderAtEntry.CreateLoad(RefGV->getValueType(), RefGV);
  }

  const DISubprogram *Subprogram = F.getSubprogram();
  DICompileUnit *Unit = Subprogram != nullptr ? Subprogram->getUnit() : nullptr;
  DIBuilder DebugInfo{*F.getParent(), true, Unit};

  // Go back to the instructions and rewrite their uses of GlobalVariable.
  // Because a ConstantExpr can be a tree, it may reference more than one
  // GlobalVariable.

  for (auto &GVUse : GVUses) {
    Value *OldOperandValue = GVUse.User->getOperand(GVUse.Op);
    Value *NewOperandValue;

    switch (OldOperandValue->getValueID()) {
    case Value::GlobalVariableVal: {
      // This is easy. Look up the replacement value and store the operand.
      Value *OperandValue = GVUse.User->getOperand(GVUse.Op);
      GlobalVariable *GV = cast<GlobalVariable>(OperandValue);
      NewOperandValue = GVLoadMap.at(GV);
      break;
    }

    case Value::ConstantExprVal: {
      // Walk the recursive tree of the ConstantExpr. If we find a
      // GlobalVariable then replace it with the loaded value and rewrite
      // the ConstantExpr to an Instruction and insert it before the
      // current instruction.
      Value *OperandValue = GVUse.User->getOperand(GVUse.Op);
      ConstantExpr *CE = cast<ConstantExpr>(OperandValue);
      NewOperandValue =
          rewriteGlobalVariablesInConstant(CE, GVLoadMap, IRBuilderAtEntry);
      assert(NewOperandValue != nullptr);
      break;
    }

    default:
      // We should only ever get here because a GVUse was created in the first
      // pass, and this only happens for GlobalVariableVal and ConstantExprVal.
      llvm_unreachable_internal(
          "unexpected Value in second pass of hot-patching");
      break;
    }

    GVUse.User->setOperand(GVUse.Op, NewOperandValue);
  }

  return true;
}