1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
//===- UniformityAnalysis.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/UniformityAnalysis.h"
#include "llvm/ADT/GenericUniformityImpl.h"
#include "llvm/Analysis/CycleAnalysis.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::hasDivergentDefs(
const Instruction &I) const {
return isDivergent((const Value *)&I);
}
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::markDefsDivergent(
const Instruction &Instr) {
return markDivergent(cast<Value>(&Instr));
}
template <> void llvm::GenericUniformityAnalysisImpl<SSAContext>::initialize() {
for (auto &I : instructions(F)) {
if (TTI->isSourceOfDivergence(&I))
markDivergent(I);
else if (TTI->isAlwaysUniform(&I))
addUniformOverride(I);
}
for (auto &Arg : F.args()) {
if (TTI->isSourceOfDivergence(&Arg)) {
markDivergent(&Arg);
}
}
}
template <>
void llvm::GenericUniformityAnalysisImpl<SSAContext>::pushUsers(
const Value *V) {
for (const auto *User : V->users()) {
if (const auto *UserInstr = dyn_cast<const Instruction>(User)) {
markDivergent(*UserInstr);
}
}
}
template <>
void llvm::GenericUniformityAnalysisImpl<SSAContext>::pushUsers(
const Instruction &Instr) {
assert(!isAlwaysUniform(Instr));
if (Instr.isTerminator())
return;
pushUsers(cast<Value>(&Instr));
}
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::usesValueFromCycle(
const Instruction &I, const Cycle &DefCycle) const {
assert(!isAlwaysUniform(I));
for (const Use &U : I.operands()) {
if (auto *I = dyn_cast<Instruction>(&U)) {
if (DefCycle.contains(I->getParent()))
return true;
}
}
return false;
}
template <>
void llvm::GenericUniformityAnalysisImpl<
SSAContext>::propagateTemporalDivergence(const Instruction &I,
const Cycle &DefCycle) {
for (auto *User : I.users()) {
auto *UserInstr = cast<Instruction>(User);
if (DefCycle.contains(UserInstr->getParent()))
continue;
markDivergent(*UserInstr);
recordTemporalDivergence(&I, UserInstr, &DefCycle);
}
}
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::isDivergentUse(
const Use &U) const {
const auto *V = U.get();
if (isDivergent(V))
return true;
if (const auto *DefInstr = dyn_cast<Instruction>(V)) {
const auto *UseInstr = cast<Instruction>(U.getUser());
return isTemporalDivergent(*UseInstr->getParent(), *DefInstr);
}
return false;
}
// This ensures explicit instantiation of
// GenericUniformityAnalysisImpl::ImplDeleter::operator()
template class llvm::GenericUniformityInfo<SSAContext>;
template struct llvm::GenericUniformityAnalysisImplDeleter<
llvm::GenericUniformityAnalysisImpl<SSAContext>>;
//===----------------------------------------------------------------------===//
// UniformityInfoAnalysis and related pass implementations
//===----------------------------------------------------------------------===//
llvm::UniformityInfo UniformityInfoAnalysis::run(Function &F,
FunctionAnalysisManager &FAM) {
auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
auto &CI = FAM.getResult<CycleAnalysis>(F);
UniformityInfo UI{DT, CI, &TTI};
// Skip computation if we can assume everything is uniform.
if (TTI.hasBranchDivergence(&F))
UI.compute();
return UI;
}
AnalysisKey UniformityInfoAnalysis::Key;
UniformityInfoPrinterPass::UniformityInfoPrinterPass(raw_ostream &OS)
: OS(OS) {}
PreservedAnalyses UniformityInfoPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
OS << "UniformityInfo for function '" << F.getName() << "':\n";
AM.getResult<UniformityInfoAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}
//===----------------------------------------------------------------------===//
// UniformityInfoWrapperPass Implementation
//===----------------------------------------------------------------------===//
char UniformityInfoWrapperPass::ID = 0;
UniformityInfoWrapperPass::UniformityInfoWrapperPass() : FunctionPass(ID) {}
INITIALIZE_PASS_BEGIN(UniformityInfoWrapperPass, "uniformity",
"Uniformity Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CycleInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(UniformityInfoWrapperPass, "uniformity",
"Uniformity Analysis", false, true)
void UniformityInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequiredTransitive<CycleInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
bool UniformityInfoWrapperPass::runOnFunction(Function &F) {
auto &cycleInfo = getAnalysis<CycleInfoWrapperPass>().getResult();
auto &domTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &targetTransformInfo =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
m_function = &F;
m_uniformityInfo = UniformityInfo{domTree, cycleInfo, &targetTransformInfo};
// Skip computation if we can assume everything is uniform.
if (targetTransformInfo.hasBranchDivergence(m_function))
m_uniformityInfo.compute();
return false;
}
void UniformityInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
OS << "UniformityInfo for function '" << m_function->getName() << "':\n";
}
void UniformityInfoWrapperPass::releaseMemory() {
m_uniformityInfo = UniformityInfo{};
m_function = nullptr;
}
|