1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
|
//===- IR2Vec.cpp - Implementation of IR2Vec -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM
// Exceptions. See the LICENSE file for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the IR2Vec algorithm.
///
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/IR2Vec.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace llvm;
using namespace ir2vec;
#define DEBUG_TYPE "ir2vec"
STATISTIC(VocabMissCounter,
"Number of lookups to entites not present in the vocabulary");
namespace llvm {
namespace ir2vec {
static cl::OptionCategory IR2VecCategory("IR2Vec Options");
// FIXME: Use a default vocab when not specified
static cl::opt<std::string>
VocabFile("ir2vec-vocab-path", cl::Optional,
cl::desc("Path to the vocabulary file for IR2Vec"), cl::init(""),
cl::cat(IR2VecCategory));
cl::opt<float> OpcWeight("ir2vec-opc-weight", cl::Optional, cl::init(1.0),
cl::desc("Weight for opcode embeddings"),
cl::cat(IR2VecCategory));
cl::opt<float> TypeWeight("ir2vec-type-weight", cl::Optional, cl::init(0.5),
cl::desc("Weight for type embeddings"),
cl::cat(IR2VecCategory));
cl::opt<float> ArgWeight("ir2vec-arg-weight", cl::Optional, cl::init(0.2),
cl::desc("Weight for argument embeddings"),
cl::cat(IR2VecCategory));
} // namespace ir2vec
} // namespace llvm
AnalysisKey IR2VecVocabAnalysis::Key;
// ==----------------------------------------------------------------------===//
// Local helper functions
//===----------------------------------------------------------------------===//
namespace llvm::json {
inline bool fromJSON(const llvm::json::Value &E, Embedding &Out,
llvm::json::Path P) {
std::vector<double> TempOut;
if (!llvm::json::fromJSON(E, TempOut, P))
return false;
Out = Embedding(std::move(TempOut));
return true;
}
} // namespace llvm::json
// ==----------------------------------------------------------------------===//
// Embedding
//===----------------------------------------------------------------------===//
Embedding &Embedding::operator+=(const Embedding &RHS) {
assert(this->size() == RHS.size() && "Vectors must have the same dimension");
std::transform(this->begin(), this->end(), RHS.begin(), this->begin(),
std::plus<double>());
return *this;
}
Embedding Embedding::operator+(const Embedding &RHS) const {
Embedding Result(*this);
Result += RHS;
return Result;
}
Embedding &Embedding::operator-=(const Embedding &RHS) {
assert(this->size() == RHS.size() && "Vectors must have the same dimension");
std::transform(this->begin(), this->end(), RHS.begin(), this->begin(),
std::minus<double>());
return *this;
}
Embedding Embedding::operator-(const Embedding &RHS) const {
Embedding Result(*this);
Result -= RHS;
return Result;
}
Embedding &Embedding::operator*=(double Factor) {
std::transform(this->begin(), this->end(), this->begin(),
[Factor](double Elem) { return Elem * Factor; });
return *this;
}
Embedding Embedding::operator*(double Factor) const {
Embedding Result(*this);
Result *= Factor;
return Result;
}
Embedding &Embedding::scaleAndAdd(const Embedding &Src, float Factor) {
assert(this->size() == Src.size() && "Vectors must have the same dimension");
for (size_t Itr = 0; Itr < this->size(); ++Itr)
(*this)[Itr] += Src[Itr] * Factor;
return *this;
}
bool Embedding::approximatelyEquals(const Embedding &RHS,
double Tolerance) const {
assert(this->size() == RHS.size() && "Vectors must have the same dimension");
for (size_t Itr = 0; Itr < this->size(); ++Itr)
if (std::abs((*this)[Itr] - RHS[Itr]) > Tolerance)
return false;
return true;
}
void Embedding::print(raw_ostream &OS) const {
OS << " [";
for (const auto &Elem : Data)
OS << " " << format("%.2f", Elem) << " ";
OS << "]\n";
}
// ==----------------------------------------------------------------------===//
// Embedder and its subclasses
//===----------------------------------------------------------------------===//
Embedder::Embedder(const Function &F, const Vocabulary &Vocab)
: F(F), Vocab(Vocab), Dimension(Vocab.getDimension()),
OpcWeight(::OpcWeight), TypeWeight(::TypeWeight), ArgWeight(::ArgWeight) {
}
std::unique_ptr<Embedder> Embedder::create(IR2VecKind Mode, const Function &F,
const Vocabulary &Vocab) {
switch (Mode) {
case IR2VecKind::Symbolic:
return std::make_unique<SymbolicEmbedder>(F, Vocab);
}
return nullptr;
}
const InstEmbeddingsMap &Embedder::getInstVecMap() const {
if (InstVecMap.empty())
computeEmbeddings();
return InstVecMap;
}
const BBEmbeddingsMap &Embedder::getBBVecMap() const {
if (BBVecMap.empty())
computeEmbeddings();
return BBVecMap;
}
const Embedding &Embedder::getBBVector(const BasicBlock &BB) const {
auto It = BBVecMap.find(&BB);
if (It != BBVecMap.end())
return It->second;
computeEmbeddings(BB);
return BBVecMap[&BB];
}
const Embedding &Embedder::getFunctionVector() const {
// Currently, we always (re)compute the embeddings for the function.
// This is cheaper than caching the vector.
computeEmbeddings();
return FuncVector;
}
void SymbolicEmbedder::computeEmbeddings(const BasicBlock &BB) const {
Embedding BBVector(Dimension, 0);
// We consider only the non-debug and non-pseudo instructions
for (const auto &I : BB.instructionsWithoutDebug()) {
Embedding ArgEmb(Dimension, 0);
for (const auto &Op : I.operands())
ArgEmb += Vocab[Op];
auto InstVector =
Vocab[I.getOpcode()] + Vocab[I.getType()->getTypeID()] + ArgEmb;
InstVecMap[&I] = InstVector;
BBVector += InstVector;
}
BBVecMap[&BB] = BBVector;
}
void SymbolicEmbedder::computeEmbeddings() const {
if (F.isDeclaration())
return;
// Consider only the basic blocks that are reachable from entry
for (const BasicBlock *BB : depth_first(&F)) {
computeEmbeddings(*BB);
FuncVector += BBVecMap[BB];
}
}
// ==----------------------------------------------------------------------===//
// Vocabulary
//===----------------------------------------------------------------------===//
Vocabulary::Vocabulary(VocabVector &&Vocab)
: Vocab(std::move(Vocab)), Valid(true) {}
bool Vocabulary::isValid() const {
return Vocab.size() == (MaxOpcodes + MaxTypeIDs + MaxOperandKinds) && Valid;
}
size_t Vocabulary::size() const {
assert(Valid && "IR2Vec Vocabulary is invalid");
return Vocab.size();
}
unsigned Vocabulary::getDimension() const {
assert(Valid && "IR2Vec Vocabulary is invalid");
return Vocab[0].size();
}
const Embedding &Vocabulary::operator[](unsigned Opcode) const {
assert(Opcode >= 1 && Opcode <= MaxOpcodes && "Invalid opcode");
return Vocab[Opcode - 1];
}
const Embedding &Vocabulary::operator[](Type::TypeID TypeId) const {
assert(static_cast<unsigned>(TypeId) < MaxTypeIDs && "Invalid type ID");
return Vocab[MaxOpcodes + static_cast<unsigned>(TypeId)];
}
const ir2vec::Embedding &Vocabulary::operator[](const Value *Arg) const {
OperandKind ArgKind = getOperandKind(Arg);
return Vocab[MaxOpcodes + MaxTypeIDs + static_cast<unsigned>(ArgKind)];
}
StringRef Vocabulary::getVocabKeyForOpcode(unsigned Opcode) {
assert(Opcode >= 1 && Opcode <= MaxOpcodes && "Invalid opcode");
#define HANDLE_INST(NUM, OPCODE, CLASS) \
if (Opcode == NUM) { \
return #OPCODE; \
}
#include "llvm/IR/Instruction.def"
#undef HANDLE_INST
return "UnknownOpcode";
}
StringRef Vocabulary::getVocabKeyForTypeID(Type::TypeID TypeID) {
switch (TypeID) {
case Type::VoidTyID:
return "VoidTy";
case Type::HalfTyID:
case Type::BFloatTyID:
case Type::FloatTyID:
case Type::DoubleTyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
return "FloatTy";
case Type::IntegerTyID:
return "IntegerTy";
case Type::FunctionTyID:
return "FunctionTy";
case Type::StructTyID:
return "StructTy";
case Type::ArrayTyID:
return "ArrayTy";
case Type::PointerTyID:
case Type::TypedPointerTyID:
return "PointerTy";
case Type::FixedVectorTyID:
case Type::ScalableVectorTyID:
return "VectorTy";
case Type::LabelTyID:
return "LabelTy";
case Type::TokenTyID:
return "TokenTy";
case Type::MetadataTyID:
return "MetadataTy";
case Type::X86_AMXTyID:
case Type::TargetExtTyID:
return "UnknownTy";
}
return "UnknownTy";
}
StringRef Vocabulary::getVocabKeyForOperandKind(Vocabulary::OperandKind Kind) {
unsigned Index = static_cast<unsigned>(Kind);
assert(Index < MaxOperandKinds && "Invalid OperandKind");
return OperandKindNames[Index];
}
Vocabulary::VocabVector Vocabulary::createDummyVocabForTest(unsigned Dim) {
VocabVector DummyVocab;
float DummyVal = 0.1f;
// Create a dummy vocabulary with entries for all opcodes, types, and
// operand
for ([[maybe_unused]] unsigned _ :
seq(0u, Vocabulary::MaxOpcodes + Vocabulary::MaxTypeIDs +
Vocabulary::MaxOperandKinds)) {
DummyVocab.push_back(Embedding(Dim, DummyVal));
DummyVal += 0.1f;
}
return DummyVocab;
}
// Helper function to classify an operand into OperandKind
Vocabulary::OperandKind Vocabulary::getOperandKind(const Value *Op) {
if (isa<Function>(Op))
return OperandKind::FunctionID;
if (isa<PointerType>(Op->getType()))
return OperandKind::PointerID;
if (isa<Constant>(Op))
return OperandKind::ConstantID;
return OperandKind::VariableID;
}
StringRef Vocabulary::getStringKey(unsigned Pos) {
assert(Pos < MaxOpcodes + MaxTypeIDs + MaxOperandKinds &&
"Position out of bounds in vocabulary");
// Opcode
if (Pos < MaxOpcodes)
return getVocabKeyForOpcode(Pos + 1);
// Type
if (Pos < MaxOpcodes + MaxTypeIDs)
return getVocabKeyForTypeID(static_cast<Type::TypeID>(Pos - MaxOpcodes));
// Operand
return getVocabKeyForOperandKind(
static_cast<OperandKind>(Pos - MaxOpcodes - MaxTypeIDs));
}
// For now, assume vocabulary is stable unless explicitly invalidated.
bool Vocabulary::invalidate(Module &M, const PreservedAnalyses &PA,
ModuleAnalysisManager::Invalidator &Inv) const {
auto PAC = PA.getChecker<IR2VecVocabAnalysis>();
return !(PAC.preservedWhenStateless());
}
// ==----------------------------------------------------------------------===//
// IR2VecVocabAnalysis
//===----------------------------------------------------------------------===//
Error IR2VecVocabAnalysis::parseVocabSection(
StringRef Key, const json::Value &ParsedVocabValue, VocabMap &TargetVocab,
unsigned &Dim) {
json::Path::Root Path("");
const json::Object *RootObj = ParsedVocabValue.getAsObject();
if (!RootObj)
return createStringError(errc::invalid_argument,
"JSON root is not an object");
const json::Value *SectionValue = RootObj->get(Key);
if (!SectionValue)
return createStringError(errc::invalid_argument,
"Missing '" + std::string(Key) +
"' section in vocabulary file");
if (!json::fromJSON(*SectionValue, TargetVocab, Path))
return createStringError(errc::illegal_byte_sequence,
"Unable to parse '" + std::string(Key) +
"' section from vocabulary");
Dim = TargetVocab.begin()->second.size();
if (Dim == 0)
return createStringError(errc::illegal_byte_sequence,
"Dimension of '" + std::string(Key) +
"' section of the vocabulary is zero");
if (!std::all_of(TargetVocab.begin(), TargetVocab.end(),
[Dim](const std::pair<StringRef, Embedding> &Entry) {
return Entry.second.size() == Dim;
}))
return createStringError(
errc::illegal_byte_sequence,
"All vectors in the '" + std::string(Key) +
"' section of the vocabulary are not of the same dimension");
return Error::success();
}
// FIXME: Make this optional. We can avoid file reads
// by auto-generating a default vocabulary during the build time.
Error IR2VecVocabAnalysis::readVocabulary() {
auto BufOrError = MemoryBuffer::getFileOrSTDIN(VocabFile, /*IsText=*/true);
if (!BufOrError)
return createFileError(VocabFile, BufOrError.getError());
auto Content = BufOrError.get()->getBuffer();
Expected<json::Value> ParsedVocabValue = json::parse(Content);
if (!ParsedVocabValue)
return ParsedVocabValue.takeError();
unsigned OpcodeDim = 0, TypeDim = 0, ArgDim = 0;
if (auto Err =
parseVocabSection("Opcodes", *ParsedVocabValue, OpcVocab, OpcodeDim))
return Err;
if (auto Err =
parseVocabSection("Types", *ParsedVocabValue, TypeVocab, TypeDim))
return Err;
if (auto Err =
parseVocabSection("Arguments", *ParsedVocabValue, ArgVocab, ArgDim))
return Err;
if (!(OpcodeDim == TypeDim && TypeDim == ArgDim))
return createStringError(errc::illegal_byte_sequence,
"Vocabulary sections have different dimensions");
return Error::success();
}
void IR2VecVocabAnalysis::generateNumMappedVocab() {
// Helper for handling missing entities in the vocabulary.
// Currently, we use a zero vector. In the future, we will throw an error to
// ensure that *all* known entities are present in the vocabulary.
auto handleMissingEntity = [](const std::string &Val) {
LLVM_DEBUG(errs() << Val
<< " is not in vocabulary, using zero vector; This "
"would result in an error in future.\n");
++VocabMissCounter;
};
unsigned Dim = OpcVocab.begin()->second.size();
assert(Dim > 0 && "Vocabulary dimension must be greater than zero");
// Handle Opcodes
std::vector<Embedding> NumericOpcodeEmbeddings(Vocabulary::MaxOpcodes,
Embedding(Dim, 0));
for (unsigned Opcode : seq(0u, Vocabulary::MaxOpcodes)) {
StringRef VocabKey = Vocabulary::getVocabKeyForOpcode(Opcode + 1);
auto It = OpcVocab.find(VocabKey.str());
if (It != OpcVocab.end())
NumericOpcodeEmbeddings[Opcode] = It->second;
else
handleMissingEntity(VocabKey.str());
}
Vocab.insert(Vocab.end(), NumericOpcodeEmbeddings.begin(),
NumericOpcodeEmbeddings.end());
// Handle Types
std::vector<Embedding> NumericTypeEmbeddings(Vocabulary::MaxTypeIDs,
Embedding(Dim, 0));
for (unsigned TypeID : seq(0u, Vocabulary::MaxTypeIDs)) {
StringRef VocabKey =
Vocabulary::getVocabKeyForTypeID(static_cast<Type::TypeID>(TypeID));
if (auto It = TypeVocab.find(VocabKey.str()); It != TypeVocab.end()) {
NumericTypeEmbeddings[TypeID] = It->second;
continue;
}
handleMissingEntity(VocabKey.str());
}
Vocab.insert(Vocab.end(), NumericTypeEmbeddings.begin(),
NumericTypeEmbeddings.end());
// Handle Arguments/Operands
std::vector<Embedding> NumericArgEmbeddings(Vocabulary::MaxOperandKinds,
Embedding(Dim, 0));
for (unsigned OpKind : seq(0u, Vocabulary::MaxOperandKinds)) {
Vocabulary::OperandKind Kind = static_cast<Vocabulary::OperandKind>(OpKind);
StringRef VocabKey = Vocabulary::getVocabKeyForOperandKind(Kind);
auto It = ArgVocab.find(VocabKey.str());
if (It != ArgVocab.end()) {
NumericArgEmbeddings[OpKind] = It->second;
continue;
}
handleMissingEntity(VocabKey.str());
}
Vocab.insert(Vocab.end(), NumericArgEmbeddings.begin(),
NumericArgEmbeddings.end());
}
IR2VecVocabAnalysis::IR2VecVocabAnalysis(const VocabVector &Vocab)
: Vocab(Vocab) {}
IR2VecVocabAnalysis::IR2VecVocabAnalysis(VocabVector &&Vocab)
: Vocab(std::move(Vocab)) {}
void IR2VecVocabAnalysis::emitError(Error Err, LLVMContext &Ctx) {
handleAllErrors(std::move(Err), [&](const ErrorInfoBase &EI) {
Ctx.emitError("Error reading vocabulary: " + EI.message());
});
}
IR2VecVocabAnalysis::Result
IR2VecVocabAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
auto Ctx = &M.getContext();
// If vocabulary is already populated by the constructor, use it.
if (!Vocab.empty())
return Vocabulary(std::move(Vocab));
// Otherwise, try to read from the vocabulary file.
if (VocabFile.empty()) {
// FIXME: Use default vocabulary
Ctx->emitError("IR2Vec vocabulary file path not specified; You may need to "
"set it using --ir2vec-vocab-path");
return Vocabulary(); // Return invalid result
}
if (auto Err = readVocabulary()) {
emitError(std::move(Err), *Ctx);
return Vocabulary();
}
// Scale the vocabulary sections based on the provided weights
auto scaleVocabSection = [](VocabMap &Vocab, double Weight) {
for (auto &Entry : Vocab)
Entry.second *= Weight;
};
scaleVocabSection(OpcVocab, OpcWeight);
scaleVocabSection(TypeVocab, TypeWeight);
scaleVocabSection(ArgVocab, ArgWeight);
// Generate the numeric lookup vocabulary
generateNumMappedVocab();
return Vocabulary(std::move(Vocab));
}
// ==----------------------------------------------------------------------===//
// Printer Passes
//===----------------------------------------------------------------------===//
PreservedAnalyses IR2VecPrinterPass::run(Module &M,
ModuleAnalysisManager &MAM) {
auto Vocabulary = MAM.getResult<IR2VecVocabAnalysis>(M);
assert(Vocabulary.isValid() && "IR2Vec Vocabulary is invalid");
for (Function &F : M) {
std::unique_ptr<Embedder> Emb =
Embedder::create(IR2VecKind::Symbolic, F, Vocabulary);
if (!Emb) {
OS << "Error creating IR2Vec embeddings \n";
continue;
}
OS << "IR2Vec embeddings for function " << F.getName() << ":\n";
OS << "Function vector: ";
Emb->getFunctionVector().print(OS);
OS << "Basic block vectors:\n";
const auto &BBMap = Emb->getBBVecMap();
for (const BasicBlock &BB : F) {
auto It = BBMap.find(&BB);
if (It != BBMap.end()) {
OS << "Basic block: " << BB.getName() << ":\n";
It->second.print(OS);
}
}
OS << "Instruction vectors:\n";
const auto &InstMap = Emb->getInstVecMap();
for (const BasicBlock &BB : F) {
for (const Instruction &I : BB) {
auto It = InstMap.find(&I);
if (It != InstMap.end()) {
OS << "Instruction: ";
I.print(OS);
It->second.print(OS);
}
}
}
}
return PreservedAnalyses::all();
}
PreservedAnalyses IR2VecVocabPrinterPass::run(Module &M,
ModuleAnalysisManager &MAM) {
auto IR2VecVocabulary = MAM.getResult<IR2VecVocabAnalysis>(M);
assert(IR2VecVocabulary.isValid() && "IR2Vec Vocabulary is invalid");
// Print each entry
unsigned Pos = 0;
for (const auto &Entry : IR2VecVocabulary) {
OS << "Key: " << IR2VecVocabulary.getStringKey(Pos++) << ": ";
Entry.print(OS);
}
return PreservedAnalyses::all();
}
|