aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/FunctionPropertiesAnalysis.cpp
blob: c52a6de2bb71efed598243d3f2581d44d553d192 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//===- FunctionPropertiesAnalysis.cpp - Function Properties Analysis ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the FunctionPropertiesInfo and FunctionPropertiesAnalysis
// classes used to extract function properties.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include <deque>

using namespace llvm;

namespace llvm {
LLVM_ABI cl::opt<bool> EnableDetailedFunctionProperties(
    "enable-detailed-function-properties", cl::Hidden, cl::init(false),
    cl::desc("Whether or not to compute detailed function properties."));

static cl::opt<unsigned> BigBasicBlockInstructionThreshold(
    "big-basic-block-instruction-threshold", cl::Hidden, cl::init(500),
    cl::desc("The minimum number of instructions a basic block should contain "
             "before being considered big."));

static cl::opt<unsigned> MediumBasicBlockInstructionThreshold(
    "medium-basic-block-instruction-threshold", cl::Hidden, cl::init(15),
    cl::desc("The minimum number of instructions a basic block should contain "
             "before being considered medium-sized."));
} // namespace llvm

static cl::opt<unsigned> CallWithManyArgumentsThreshold(
    "call-with-many-arguments-threshold", cl::Hidden, cl::init(4),
    cl::desc("The minimum number of arguments a function call must have before "
             "it is considered having many arguments."));

namespace {
int64_t getNumBlocksFromCond(const BasicBlock &BB) {
  int64_t Ret = 0;
  if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
    if (BI->isConditional())
      Ret += BI->getNumSuccessors();
  } else if (const auto *SI = dyn_cast<SwitchInst>(BB.getTerminator())) {
    Ret += (SI->getNumCases() + (nullptr != SI->getDefaultDest()));
  }
  return Ret;
}

int64_t getUses(const Function &F) {
  return ((!F.hasLocalLinkage()) ? 1 : 0) + F.getNumUses();
}
} // namespace

void FunctionPropertiesInfo::reIncludeBB(const BasicBlock &BB) {
  updateForBB(BB, +1);
}

void FunctionPropertiesInfo::updateForBB(const BasicBlock &BB,
                                         int64_t Direction) {
  assert(Direction == 1 || Direction == -1);
  BasicBlockCount += Direction;
  BlocksReachedFromConditionalInstruction +=
      (Direction * getNumBlocksFromCond(BB));
  for (const auto &I : BB) {
    if (auto *CS = dyn_cast<CallBase>(&I)) {
      const auto *Callee = CS->getCalledFunction();
      if (Callee && !Callee->isIntrinsic() && !Callee->isDeclaration())
        DirectCallsToDefinedFunctions += Direction;
    }
    if (I.getOpcode() == Instruction::Load) {
      LoadInstCount += Direction;
    } else if (I.getOpcode() == Instruction::Store) {
      StoreInstCount += Direction;
    }
  }
  TotalInstructionCount += Direction * BB.sizeWithoutDebug();

  if (EnableDetailedFunctionProperties) {
    unsigned SuccessorCount = succ_size(&BB);
    if (SuccessorCount == 1)
      BasicBlocksWithSingleSuccessor += Direction;
    else if (SuccessorCount == 2)
      BasicBlocksWithTwoSuccessors += Direction;
    else if (SuccessorCount > 2)
      BasicBlocksWithMoreThanTwoSuccessors += Direction;

    unsigned PredecessorCount = pred_size(&BB);
    if (PredecessorCount == 1)
      BasicBlocksWithSinglePredecessor += Direction;
    else if (PredecessorCount == 2)
      BasicBlocksWithTwoPredecessors += Direction;
    else if (PredecessorCount > 2)
      BasicBlocksWithMoreThanTwoPredecessors += Direction;

    if (TotalInstructionCount > BigBasicBlockInstructionThreshold)
      BigBasicBlocks += Direction;
    else if (TotalInstructionCount > MediumBasicBlockInstructionThreshold)
      MediumBasicBlocks += Direction;
    else
      SmallBasicBlocks += Direction;

    // Calculate critical edges by looking through all successors of a basic
    // block that has multiple successors and finding ones that have multiple
    // predecessors, which represent critical edges.
    if (SuccessorCount > 1) {
      for (const auto *Successor : successors(&BB)) {
        if (pred_size(Successor) > 1)
          CriticalEdgeCount += Direction;
      }
    }

    ControlFlowEdgeCount += Direction * SuccessorCount;

    if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
      if (!BI->isConditional())
        UnconditionalBranchCount += Direction;
    }

    for (const Instruction &I : BB.instructionsWithoutDebug()) {
      if (I.isCast())
        CastInstructionCount += Direction;

      if (I.getType()->isFloatTy())
        FloatingPointInstructionCount += Direction;
      else if (I.getType()->isIntegerTy())
        IntegerInstructionCount += Direction;

      if (isa<IntrinsicInst>(I))
        ++IntrinsicCount;

      if (const auto *Call = dyn_cast<CallInst>(&I)) {
        if (Call->isIndirectCall())
          IndirectCallCount += Direction;
        else
          DirectCallCount += Direction;

        if (Call->getType()->isIntegerTy())
          CallReturnsIntegerCount += Direction;
        else if (Call->getType()->isFloatingPointTy())
          CallReturnsFloatCount += Direction;
        else if (Call->getType()->isPointerTy())
          CallReturnsPointerCount += Direction;
        else if (Call->getType()->isVectorTy()) {
          if (Call->getType()->getScalarType()->isIntegerTy())
            CallReturnsVectorIntCount += Direction;
          else if (Call->getType()->getScalarType()->isFloatingPointTy())
            CallReturnsVectorFloatCount += Direction;
          else if (Call->getType()->getScalarType()->isPointerTy())
            CallReturnsVectorPointerCount += Direction;
        }

        if (Call->arg_size() > CallWithManyArgumentsThreshold)
          CallWithManyArgumentsCount += Direction;

        for (const auto &Arg : Call->args()) {
          if (Arg->getType()->isPointerTy()) {
            CallWithPointerArgumentCount += Direction;
            break;
          }
        }
      }

#define COUNT_OPERAND(OPTYPE)                                                  \
  if (isa<OPTYPE>(Operand)) {                                                  \
    OPTYPE##OperandCount += Direction;                                         \
    continue;                                                                  \
  }

      for (unsigned int OperandIndex = 0; OperandIndex < I.getNumOperands();
           ++OperandIndex) {
        Value *Operand = I.getOperand(OperandIndex);
        COUNT_OPERAND(GlobalValue)
        COUNT_OPERAND(ConstantInt)
        COUNT_OPERAND(ConstantFP)
        COUNT_OPERAND(Constant)
        COUNT_OPERAND(Instruction)
        COUNT_OPERAND(BasicBlock)
        COUNT_OPERAND(InlineAsm)
        COUNT_OPERAND(Argument)

        // We only get to this point if we haven't matched any of the other
        // operand types.
        UnknownOperandCount += Direction;
      }

#undef CHECK_OPERAND
    }
  }

  if (IR2VecVocab) {
    // We instantiate the IR2Vec embedder each time, as having an unique
    // pointer to the embedder as member of the class would make it
    // non-copyable. Instantiating the embedder in itself is not costly.
    auto Embedder = ir2vec::Embedder::create(IR2VecKind::Symbolic,
                                             *BB.getParent(), *IR2VecVocab);
    if (!Embedder) {
      BB.getContext().emitError("Error creating IR2Vec embeddings");
      return;
    }
    const auto &BBEmbedding = Embedder->getBBVector(BB);
    // Subtract BBEmbedding from Function embedding if the direction is -1,
    // and add it if the direction is +1.
    if (Direction == -1)
      FunctionEmbedding -= BBEmbedding;
    else
      FunctionEmbedding += BBEmbedding;
  }
}

void FunctionPropertiesInfo::updateAggregateStats(const Function &F,
                                                  const LoopInfo &LI) {

  Uses = getUses(F);
  TopLevelLoopCount = llvm::size(LI);
  MaxLoopDepth = 0;
  std::deque<const Loop *> Worklist;
  llvm::append_range(Worklist, LI);
  while (!Worklist.empty()) {
    const auto *L = Worklist.front();
    MaxLoopDepth =
        std::max(MaxLoopDepth, static_cast<int64_t>(L->getLoopDepth()));
    Worklist.pop_front();
    llvm::append_range(Worklist, L->getSubLoops());
  }
}

FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo(
    Function &F, FunctionAnalysisManager &FAM) {
  // We use the cached result of the IR2VecVocabAnalysis run by
  // InlineAdvisorAnalysis. If the IR2VecVocabAnalysis is not run, we don't
  // use IR2Vec embeddings.
  auto Vocabulary = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
                        .getCachedResult<IR2VecVocabAnalysis>(*F.getParent());
  return getFunctionPropertiesInfo(F, FAM.getResult<DominatorTreeAnalysis>(F),
                                   FAM.getResult<LoopAnalysis>(F), Vocabulary);
}

FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo(
    const Function &F, const DominatorTree &DT, const LoopInfo &LI,
    const ir2vec::Vocabulary *Vocabulary) {

  FunctionPropertiesInfo FPI;
  if (Vocabulary && Vocabulary->isValid()) {
    FPI.IR2VecVocab = Vocabulary;
    FPI.FunctionEmbedding = ir2vec::Embedding(Vocabulary->getDimension(), 0.0);
  }
  for (const auto &BB : F)
    if (DT.isReachableFromEntry(&BB))
      FPI.reIncludeBB(BB);
  FPI.updateAggregateStats(F, LI);
  return FPI;
}

bool FunctionPropertiesInfo::operator==(
    const FunctionPropertiesInfo &FPI) const {
  if (BasicBlockCount != FPI.BasicBlockCount ||
      BlocksReachedFromConditionalInstruction !=
          FPI.BlocksReachedFromConditionalInstruction ||
      Uses != FPI.Uses ||
      DirectCallsToDefinedFunctions != FPI.DirectCallsToDefinedFunctions ||
      LoadInstCount != FPI.LoadInstCount ||
      StoreInstCount != FPI.StoreInstCount ||
      MaxLoopDepth != FPI.MaxLoopDepth ||
      TopLevelLoopCount != FPI.TopLevelLoopCount ||
      TotalInstructionCount != FPI.TotalInstructionCount ||
      BasicBlocksWithSingleSuccessor != FPI.BasicBlocksWithSingleSuccessor ||
      BasicBlocksWithTwoSuccessors != FPI.BasicBlocksWithTwoSuccessors ||
      BasicBlocksWithMoreThanTwoSuccessors !=
          FPI.BasicBlocksWithMoreThanTwoSuccessors ||
      BasicBlocksWithSinglePredecessor !=
          FPI.BasicBlocksWithSinglePredecessor ||
      BasicBlocksWithTwoPredecessors != FPI.BasicBlocksWithTwoPredecessors ||
      BasicBlocksWithMoreThanTwoPredecessors !=
          FPI.BasicBlocksWithMoreThanTwoPredecessors ||
      BigBasicBlocks != FPI.BigBasicBlocks ||
      MediumBasicBlocks != FPI.MediumBasicBlocks ||
      SmallBasicBlocks != FPI.SmallBasicBlocks ||
      CastInstructionCount != FPI.CastInstructionCount ||
      FloatingPointInstructionCount != FPI.FloatingPointInstructionCount ||
      IntegerInstructionCount != FPI.IntegerInstructionCount ||
      ConstantIntOperandCount != FPI.ConstantIntOperandCount ||
      ConstantFPOperandCount != FPI.ConstantFPOperandCount ||
      ConstantOperandCount != FPI.ConstantOperandCount ||
      InstructionOperandCount != FPI.InstructionOperandCount ||
      BasicBlockOperandCount != FPI.BasicBlockOperandCount ||
      GlobalValueOperandCount != FPI.GlobalValueOperandCount ||
      InlineAsmOperandCount != FPI.InlineAsmOperandCount ||
      ArgumentOperandCount != FPI.ArgumentOperandCount ||
      UnknownOperandCount != FPI.UnknownOperandCount ||
      CriticalEdgeCount != FPI.CriticalEdgeCount ||
      ControlFlowEdgeCount != FPI.ControlFlowEdgeCount ||
      UnconditionalBranchCount != FPI.UnconditionalBranchCount ||
      IntrinsicCount != FPI.IntrinsicCount ||
      DirectCallCount != FPI.DirectCallCount ||
      IndirectCallCount != FPI.IndirectCallCount ||
      CallReturnsIntegerCount != FPI.CallReturnsIntegerCount ||
      CallReturnsFloatCount != FPI.CallReturnsFloatCount ||
      CallReturnsPointerCount != FPI.CallReturnsPointerCount ||
      CallReturnsVectorIntCount != FPI.CallReturnsVectorIntCount ||
      CallReturnsVectorFloatCount != FPI.CallReturnsVectorFloatCount ||
      CallReturnsVectorPointerCount != FPI.CallReturnsVectorPointerCount ||
      CallWithManyArgumentsCount != FPI.CallWithManyArgumentsCount ||
      CallWithPointerArgumentCount != FPI.CallWithPointerArgumentCount) {
    return false;
  }
  // Check the equality of the function embeddings. We don't check the equality
  // of Vocabulary as it remains the same.
  if (!FunctionEmbedding.approximatelyEquals(FPI.FunctionEmbedding))
    return false;

  return true;
}

void FunctionPropertiesInfo::print(raw_ostream &OS) const {
#define PRINT_PROPERTY(PROP_NAME) OS << #PROP_NAME ": " << PROP_NAME << "\n";

  PRINT_PROPERTY(BasicBlockCount)
  PRINT_PROPERTY(BlocksReachedFromConditionalInstruction)
  PRINT_PROPERTY(Uses)
  PRINT_PROPERTY(DirectCallsToDefinedFunctions)
  PRINT_PROPERTY(LoadInstCount)
  PRINT_PROPERTY(StoreInstCount)
  PRINT_PROPERTY(MaxLoopDepth)
  PRINT_PROPERTY(TopLevelLoopCount)
  PRINT_PROPERTY(TotalInstructionCount)

  if (EnableDetailedFunctionProperties) {
    PRINT_PROPERTY(BasicBlocksWithSingleSuccessor)
    PRINT_PROPERTY(BasicBlocksWithTwoSuccessors)
    PRINT_PROPERTY(BasicBlocksWithMoreThanTwoSuccessors)
    PRINT_PROPERTY(BasicBlocksWithSinglePredecessor)
    PRINT_PROPERTY(BasicBlocksWithTwoPredecessors)
    PRINT_PROPERTY(BasicBlocksWithMoreThanTwoPredecessors)
    PRINT_PROPERTY(BigBasicBlocks)
    PRINT_PROPERTY(MediumBasicBlocks)
    PRINT_PROPERTY(SmallBasicBlocks)
    PRINT_PROPERTY(CastInstructionCount)
    PRINT_PROPERTY(FloatingPointInstructionCount)
    PRINT_PROPERTY(IntegerInstructionCount)
    PRINT_PROPERTY(ConstantIntOperandCount)
    PRINT_PROPERTY(ConstantFPOperandCount)
    PRINT_PROPERTY(ConstantOperandCount)
    PRINT_PROPERTY(InstructionOperandCount)
    PRINT_PROPERTY(BasicBlockOperandCount)
    PRINT_PROPERTY(GlobalValueOperandCount)
    PRINT_PROPERTY(InlineAsmOperandCount)
    PRINT_PROPERTY(ArgumentOperandCount)
    PRINT_PROPERTY(UnknownOperandCount)
    PRINT_PROPERTY(CriticalEdgeCount)
    PRINT_PROPERTY(ControlFlowEdgeCount)
    PRINT_PROPERTY(UnconditionalBranchCount)
    PRINT_PROPERTY(IntrinsicCount)
    PRINT_PROPERTY(DirectCallCount)
    PRINT_PROPERTY(IndirectCallCount)
    PRINT_PROPERTY(CallReturnsIntegerCount)
    PRINT_PROPERTY(CallReturnsFloatCount)
    PRINT_PROPERTY(CallReturnsPointerCount)
    PRINT_PROPERTY(CallReturnsVectorIntCount)
    PRINT_PROPERTY(CallReturnsVectorFloatCount)
    PRINT_PROPERTY(CallReturnsVectorPointerCount)
    PRINT_PROPERTY(CallWithManyArgumentsCount)
    PRINT_PROPERTY(CallWithPointerArgumentCount)
  }

#undef PRINT_PROPERTY

  OS << "\n";
}

AnalysisKey FunctionPropertiesAnalysis::Key;

FunctionPropertiesInfo
FunctionPropertiesAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
  return FunctionPropertiesInfo::getFunctionPropertiesInfo(F, FAM);
}

PreservedAnalyses
FunctionPropertiesPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
  OS << "Printing analysis results of CFA for function "
     << "'" << F.getName() << "':"
     << "\n";
  AM.getResult<FunctionPropertiesAnalysis>(F).print(OS);
  return PreservedAnalyses::all();
}

FunctionPropertiesUpdater::FunctionPropertiesUpdater(
    FunctionPropertiesInfo &FPI, CallBase &CB)
    : FPI(FPI), CallSiteBB(*CB.getParent()), Caller(*CallSiteBB.getParent()) {
  assert(isa<CallInst>(CB) || isa<InvokeInst>(CB));
  // For BBs that are likely to change, we subtract from feature totals their
  // contribution. Some features, like max loop counts or depths, are left
  // invalid, as they will be updated post-inlining.
  SmallPtrSet<const BasicBlock *, 4> LikelyToChangeBBs;
  // The CB BB will change - it'll either be split or the callee's body (single
  // BB) will be pasted in.
  LikelyToChangeBBs.insert(&CallSiteBB);

  // The caller's entry BB may change due to new alloca instructions.
  LikelyToChangeBBs.insert(&*Caller.begin());

  // The users of the value returned by call instruction can change
  // leading to the change in embeddings being computed, when used.
  // We conservatively add the BBs with such uses to LikelyToChangeBBs.
  for (const auto *User : CB.users())
    CallUsers.insert(dyn_cast<Instruction>(User)->getParent());
  // CallSiteBB can be removed from CallUsers if present, it's taken care
  // separately.
  CallUsers.erase(&CallSiteBB);
  LikelyToChangeBBs.insert_range(CallUsers);

  // The successors may become unreachable in the case of `invoke` inlining.
  // We track successors separately, too, because they form a boundary, together
  // with the CB BB ('Entry') between which the inlined callee will be pasted.
  Successors.insert_range(successors(&CallSiteBB));

  // the outcome of the inlining may be that some edges get lost (DCEd BBs
  // because inlining brought some constant, for example). We don't know which
  // edges will be removed, so we list all of them as potentially removable.
  // Some BBs have (at this point) duplicate edges. Remove duplicates, otherwise
  // the DT updater will not apply changes correctly.
  DenseSet<const BasicBlock *> Inserted;
  for (auto *Succ : successors(&CallSiteBB))
    if (Inserted.insert(Succ).second)
      DomTreeUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
                                  const_cast<BasicBlock *>(&CallSiteBB),
                                  const_cast<BasicBlock *>(Succ));
  // Reuse Inserted (which has some allocated capacity at this point) below, if
  // we have an invoke.
  Inserted.clear();
  // Inlining only handles invoke and calls. If this is an invoke, and inlining
  // it pulls another invoke, the original landing pad may get split, so as to
  // share its content with other potential users. So the edge up to which we
  // need to invalidate and then re-account BB data is the successors of the
  // current landing pad. We can leave the current lp, too - if it doesn't get
  // split, then it will be the place traversal stops. Either way, the
  // discounted BBs will be checked if reachable and re-added.
  if (const auto *II = dyn_cast<InvokeInst>(&CB)) {
    const auto *UnwindDest = II->getUnwindDest();
    Successors.insert_range(successors(UnwindDest));
    // Same idea as above, we pretend we lose all these edges.
    for (auto *Succ : successors(UnwindDest))
      if (Inserted.insert(Succ).second)
        DomTreeUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
                                    const_cast<BasicBlock *>(UnwindDest),
                                    const_cast<BasicBlock *>(Succ));
  }

  // Exclude the CallSiteBB, if it happens to be its own successor (1-BB loop).
  // We are only interested in BBs the graph moves past the callsite BB to
  // define the frontier past which we don't want to re-process BBs. Including
  // the callsite BB in this case would prematurely stop the traversal in
  // finish().
  Successors.erase(&CallSiteBB);

  LikelyToChangeBBs.insert_range(Successors);

  // Commit the change. While some of the BBs accounted for above may play dual
  // role - e.g. caller's entry BB may be the same as the callsite BB - set
  // insertion semantics make sure we account them once. This needs to be
  // followed in `finish`, too.
  for (const auto *BB : LikelyToChangeBBs)
    FPI.updateForBB(*BB, -1);
}

DominatorTree &FunctionPropertiesUpdater::getUpdatedDominatorTree(
    FunctionAnalysisManager &FAM) const {
  auto &DT =
      FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(Caller));

  SmallVector<DominatorTree::UpdateType, 2> FinalDomTreeUpdates;

  DenseSet<const BasicBlock *> Inserted;
  for (auto *Succ : successors(&CallSiteBB))
    if (Inserted.insert(Succ).second)
      FinalDomTreeUpdates.push_back({DominatorTree::UpdateKind::Insert,
                                     const_cast<BasicBlock *>(&CallSiteBB),
                                     const_cast<BasicBlock *>(Succ)});

  // Perform the deletes last, so that any new nodes connected to nodes
  // participating in the edge deletion are known to the DT.
  for (auto &Upd : DomTreeUpdates)
    if (!llvm::is_contained(successors(Upd.getFrom()), Upd.getTo()))
      FinalDomTreeUpdates.push_back(Upd);

  DT.applyUpdates(FinalDomTreeUpdates);
#ifdef EXPENSIVE_CHECKS
  assert(DT.verify(DominatorTree::VerificationLevel::Full));
#endif
  return DT;
}

void FunctionPropertiesUpdater::finish(FunctionAnalysisManager &FAM) const {
  // Update feature values from the BBs that were copied from the callee, or
  // might have been modified because of inlining. The latter have been
  // subtracted in the FunctionPropertiesUpdater ctor.
  // There could be successors that were reached before but now are only
  // reachable from elsewhere in the CFG.
  // One example is the following diamond CFG (lines are arrows pointing down):
  //    A
  //  /   \
  // B     C
  // |     |
  // |     D
  // |     |
  // |     E
  //  \   /
  //    F
  // There's a call site in C that is inlined. Upon doing that, it turns out
  // it expands to
  //   call void @llvm.trap()
  //   unreachable
  // F isn't reachable from C anymore, but we did discount it when we set up
  // FunctionPropertiesUpdater, so we need to re-include it here.
  // At the same time, D and E were reachable before, but now are not anymore,
  // so we need to leave D out (we discounted it at setup), and explicitly
  // remove E.
  SetVector<const BasicBlock *> Reinclude;
  SetVector<const BasicBlock *> Unreachable;
  auto &DT = getUpdatedDominatorTree(FAM);

  if (&CallSiteBB != &*Caller.begin())
    Reinclude.insert(&*Caller.begin());

  // Reinclude the BBs which use the values returned by call instruction
  Reinclude.insert_range(CallUsers);

  // Distribute the successors to the 2 buckets.
  for (const auto *Succ : Successors)
    if (DT.isReachableFromEntry(Succ))
      Reinclude.insert(Succ);
    else
      Unreachable.insert(Succ);

  // For reinclusion, we want to stop at the reachable successors, who are at
  // the beginning of the worklist; but, starting from the callsite bb and
  // ending at those successors, we also want to perform a traversal.
  // IncludeSuccessorsMark is the index after which we include successors.
  const auto IncludeSuccessorsMark = Reinclude.size();
  bool CSInsertion = Reinclude.insert(&CallSiteBB);
  (void)CSInsertion;
  assert(CSInsertion);
  for (size_t I = 0; I < Reinclude.size(); ++I) {
    const auto *BB = Reinclude[I];
    FPI.reIncludeBB(*BB);
    if (I >= IncludeSuccessorsMark)
      Reinclude.insert_range(successors(BB));
  }

  // For exclusion, we don't need to exclude the set of BBs that were successors
  // before and are now unreachable, because we already did that at setup. For
  // the rest, as long as a successor is unreachable, we want to explicitly
  // exclude it.
  const auto AlreadyExcludedMark = Unreachable.size();
  for (size_t I = 0; I < Unreachable.size(); ++I) {
    const auto *U = Unreachable[I];
    if (I >= AlreadyExcludedMark)
      FPI.updateForBB(*U, -1);
    for (const auto *Succ : successors(U))
      if (!DT.isReachableFromEntry(Succ))
        Unreachable.insert(Succ);
  }

  const auto &LI = FAM.getResult<LoopAnalysis>(const_cast<Function &>(Caller));
  FPI.updateAggregateStats(Caller, LI);
#ifdef EXPENSIVE_CHECKS
  assert(isUpdateValid(Caller, FPI, FAM));
#endif
}

bool FunctionPropertiesUpdater::isUpdateValid(Function &F,
                                              const FunctionPropertiesInfo &FPI,
                                              FunctionAnalysisManager &FAM) {
  if (!FAM.getResult<DominatorTreeAnalysis>(F).verify(
          DominatorTree::VerificationLevel::Full))
    return false;
  DominatorTree DT(F);
  LoopInfo LI(DT);
  auto Vocabulary = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
                        .getCachedResult<IR2VecVocabAnalysis>(*F.getParent());
  auto Fresh =
      FunctionPropertiesInfo::getFunctionPropertiesInfo(F, DT, LI, Vocabulary);
  return FPI == Fresh;
}